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Increasing availability of high-dimensional clinical data, which improves the ability to define more specific
phenotypes, as well as molecular data, which can elucidate disease mechanisms, is a driving force and at the
same time a major challenge for translational and personalized medicine. Successful research in this field
requires an approach that ties together specific disease and health expertise with understanding of molecu-
lar data through statistical methods. We present PEAX (Phenotype-Expression Association eXplorer), built
upon open-source software, which integrates visual phenotype model definition with statistical testing of ex-
pression data presented concurrently in a web-browser. The integration of data and analysis tasks in a single
tool allows clinical domain experts to obtain new insights directly through exploration of relationships be-
tween multivariate phenotype models and gene expression data, showing the effects of model definition and
modification while also exploiting potential meaningful associations between phenotype and miRNA-mRNA
regulatory relationships. We combine the web visualization capabilities of Shiny and D3 with the power and
speed of R for backend statistical analysis, in order to abstract the scripting required for repetitive analysis
of sub-phenotype association. We describe the motivation for PEAX, demonstrate its utility through a use
case involving heart failure research, and discuss computational challenges and observations. We show that
our visual web-based representations are well-suited for rapid exploration of phenotype and gene expression
association, facilitating insight and discovery by domain experts.

Keywords: personalized medicine, hypothesis testing, visual analytics, gene expression, multidimensional
data exploration.

1. Introduction

The diversity of modern multidimensional clinical data enables researchers to define and study sub-
tle, complex sub-phenotypes of patients. For example, rather than defining mere presence or absence
of disease, certain types of cancer can be more precisely graded or staged when specific gene se-
quences and expression characteristics are known [1], and patients with different genotypes may
exhibit differential response to drug treatment [2]. Phenotype characterization is a broad challenge
in the field of phenomics [3], with much recent effort (e.g, [4]) towards associating phenotype with
single nucleotide polymorphisms (SNPs) in phenome-wide association studies (PheWAS). But the
art of meaningful classification using all available clinical and genetic data still requires significant
domain expertise, especially when novel, complex sub-groups are defined. Consequently, clinical
domain experts often define phenotypes and generate hypotheses using a certain set of tools and
manually curated knowledge sources, whereas statisticians separately perform statistical analyses
using an appropriate set of tools, most of which are poorly suited for phenotype definition. This
cyclical process involves different users and tools, and therefore tends to be too slow and tedious for
efficient collaborative work, presenting a major challenge in translational medical research.

From our collaboration with clinical experts and statisticians we have derived three primary ob-
servations regarding this inefficient workflow. First, datasets rich in both clinical and gene expression
data may lead to novel insights when a specific, interesting phenotype is defined, and that pheno-
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type is associated with the expression data in a biologically plausible manner. Second, data can and
should be treated differently based on the domain knowledge and understanding of the audience as
well as natural relationships and modeling techniques that are most appropriate for a particular class
of data. Finally, an integrative analysis that is both visual and dynamically responsive is more likely
to facilitate an iterative and collaborative analytical process that can generate useful insight than
text-based scripts and comparisons of static data representations.

Given these observations, we have developed PEAX (Phenotype-Expression Association eX-
plorer), which allows domain experts to define and explore novel sub-phenotype correlation with
gene expression using visual analytics. By integrating phenotype definition with statistical process-
ing in a single tool on a single screen, we seek to inspire novel insight from exploratory analysis,
in a more intuitive and collaborative approach than existing tools. We describe the iterative, agile
development process driven specifically by use case requirements of cardiology experts; however,
we also address general, fundamental challenges identified in personalized medicine involved in
clinical phenotype definition, multiple testing, and integrated analysis of heterogenous and missing
data [5]. Although issues such as “data dredging” and sparse data cannot be completely avoided,
providing clear, comprehensive, and responsive metrics to a domain expert formulating a hypothesis
may mitigate some of these effects. With PEAX, we contributed a tool that integrates web visualiza-
tion with statistical analysis, and its application to a specific biomedical task shows that interactivity
and responsiveness can improve existing methods and workflows for data analysis and exploration.

2. Domain Background

The motivating clinical research for PEAX is the analysis of drug efficacy in the clinical trial on
the “Effect of B-blockers on Structural Remodeling and Gene Expression in the Failing Human
Heart (BORG)” [6]. Heart failure has a devastating and costly impact within the United States, and
is responsible for one million hospital visits and 280,000 deaths annually [7]. Patients enrolled in
BORG were diagnosed with idiopathic dilated cardiomyopathy (IDCM), a form of heart failure
primarily affecting the left ventricle of the heart, and were randomized to one of three different
B-blocker treatments. The patients were monitored for up to a year from initial treatment; they ex-
hibited a variable improvement in left ventricular ejection fraction (LVEF) with -blocker treatment
as observed previously [8]. Biopsies from ventricular tissue for each patient were performed prior
to B-blocker treatment and at 3 and 12 months; myocardial gene expression of ~ 34,000 human
mRNAs and ~ 7800 miRNAs was measured, producing longitudinal in vivo whole-transcriptome
gene expression data in human IDCM patients. The clinical outcome used to measure drug response
was improvement in LVEF; the primary aim of the study was to understand molecular mechanisms
of LVEF improvement with -blockers and to identify predictive clinical and/or molecular biomark-
ers to predict LVEF improvement.

Although the patient size is relatively small, the depth of the data represents a typical clinical
trial scenario involving a primary research question of a single outcome tested against thousands
of potential biomarkers. Previous analysis of BORG data included standard t-testing of associations
between a subset of mRNA and miRNA probes with differential expression changes between re-
sponders and non-responders to accomplish the primary aim of the study. A previous collaborative
analysis [9] used the machine-learning software package Weka [10] to discover predictive C4.5 trees

420



Pacific Symposium on Biocomputing 2015

for miRNA expression that may be associated as a biomarker for 3-blocker drug response. In this
prior work, decision trees were seen to be a simpler and accurate predictive model compared to ma-
chine learning methods such as support vector machines and random forest, yielding a model of drug
responsiveness that was better accepted by cardiologists for description of phenotype. Additional
analysis of learning was limited in analyzing the vast potential search space of clinical phenotype
and molecular interaction, so that only a fraction of the data were used that could potentially provide
knowledge regarding heart failure, as well as the mechanisms of disease and repair (remodeling and
reverse remodeling, respectively).

Primary results of the BORG data analysis and new research in the field prompted additional
research questions. However, there was a desire to shorten the loop between hypothesis generation
and testing, and to move cardiology experts closer to the data analysis phase. In some cases, merely
understanding the cohort size and distribution of patients that met specific criteria was important
in deciding whether to proceed with further analysis. These research questions, and anticipation of
further data exploration, motivated the development of a new workflow.

3. Related Work

Several toolkits can present statistical analysis with visualization. Rattle [11] uses a GUI to provide
support for data exploration and output of statistical testing. It is useful for general statistical anal-
ysis methods but is not particularly enhanced for biomedical data analysis. Tools like JavaStat [12]
provide a Java/R interface to support the combined development in Java and R and potentially har-
ness the strengths of both languages. However, development requires an integrated mix of Java and
R code; as a result the functional code is not as easily portable and leveragable from existing tools,
new tools, and legacy code from user groups that are written natively in either of the individual
languages. Several tools address the desire for a GUI by running R as a web server, and providing
a web interfacing API and functionality. These include server tools such as RApache [13], and R
packages like RServe [14]. RStudio’s Shiny [15], on the other hand, provides a framework that
supports an R analytical backend that can be tied to browser-based visual displays as well, but also
handles the interactivity between visual inputs and outputs, so that extensive coding is not required
for this process, while analytical R scripts can generally be leveraged from native R-based projects.

Clinical hypothesis testing uses established statistical methodologies, by separating patients
into differentiated groups, defined by distinct, measurable features a priori; for example, drug re-
sponders vs. non-responders. Candidate features, such as mRNA expression are tested for significant
differences in expression between patient classes. The popular analysis pipeline Bioconductor [16]
contains functions, such as edgeR [17] for differential gene expression. The Gene Expression Om-
nibus (GEO), a public repository for gene expression experiments, includes online tools such as
heatmaps for analysis and display of differentially expressed genes [18]. The actual statistical test-
ing of differential expression in these cases is used to answer specific hypotheses about phenotype-
biomarker association.

Testing for associations between defined classes and potential predictors is also generally sup-
ported by machine learning techniques. Machine learning can be used to build models based on a
subset of features, such as gene expression data, that are used to classify or predict membership of
an instance, such as a patient, in a defined class group. Weka [10] is a popular tool that wraps sup-
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port of several supervised learning techniques, such as C4.5 trees [19], random forests, and support
vector machines. Predictive models can be tested and cross-validated. These techniques are based
on settled definition of phenotype, so that each model must be individually and iteratively tested for
association, requiring an additional step or solution for exploration.

Phenotype discovery can be considered generally as sub-group of latent class analysis, which
is a technique applied not just in biological sciences, but also in social and behavioral sciences [20].
Such grouping can be aided by cluster analysis, which is a type of unsupervised learning method
that takes all of the known features, and groups patients into distinct clusters based on aggregate
similarity using selected features and defined metrics. Clustering has been used for identifying novel
disease phenotypes [21]. R contains functions such as hclust and knn, and Weka contains clustering
support as well. But unsupervised clustering may result in groupings that are driven by features
which are less important or relevant to the discovery process, so feature selection, interpretation and
refinement by an expert is still critical, especially in large datasets. Topological data analysis is also
a powerful way to explore high-dimensional data, but tools like the Ayasdi Platform [22] are not
open source, and such models are not used as widely in clinical medicine as decision trees.

Because of the regulatory relationship between miRNA and gene expression, simultaneous pro-
filing and integrated analysis of expression data is useful in further understanding regulatory
networks. Experiments that include such profiling look for anti-correlated expression of miRNA
and respective mRNA targets, which may be searched in aggregated databases in packages like
multiMiR [23] that contain information about observed and predicted miRNA-mRNA interac-
tions. Tools such as mirConnx [24] use this prior knowledge to construct regulatory networks, which
can be augmented by expression data from a particular experiment. In general, once a candidate list
of potential interacting miRNA/genes is obtained, they can serve as inputs to other methods to look
for enrichment that suggests biological interaction. The cBioPortal for Cancer Genomics [25] pro-
vides visualization and analysis tools, but this support is tied directly to cancer datasets only.

4. Analysis Task Definition

To define features for our system, as well as prototype, test, and refine, we began with two research
questions that supported aims of the BORG study. Even though we use BORG as a driving dataset,
these tasks are likely to be supportive of similar research that is rich in clinical, mRNA, and miRNA
expression data.

Since BORG utilized three different types of the same class of drug, we want to analyze whether
patients with specific drug treatments exhibit different fold changes in gene and/or miRNA expres-
sion. Different drugs in the same class may function differently in different patients, potentially
exhibiting different side effects and, at a basic level, affect changes in gene expression. First, we
sought the ability to compare molecular expression change and association after drug treatment
when all patients on -blocker treatments were analyzed in a pooled fashion, versus a separate anal-
ysis of patients grouped by one of three specific B-blocker drugs. Second, we want to test whether
drug receptor polymorphisms exhibited different associations with molecular expression data. Even
a single nucleotide difference can have drastic effects on individual response to drugs. Therefore,
comprehensive understanding of differential drug response should ideally include genotype infor-
mation of important drug-related SNPs. The BORG dataset includes SNP data of several adrenergic
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receptors (e.g. 152234888, rs1801252, and rs1801253), known or suspected to affect 3-blocker re-
sponse [26, 27]. SNP variants are represented as a categorical variable representing whether a given
SNP locus is heterozygous, or either of the homozygous combinations. For the second analysis task,
we desired to stratify patients by genotype information for at least one of the SNPs, and compare
resulting gene associations.

S. Visual Analytics Approach

The overall goal of our design is to enable informed clinicians who are experts in a certain disease
domain to generate and test hypotheses regarding user-specified phenotypes and their associations
with gene and miRNA expression data; it was motivated by our previous collaborative work with
researchers in the Division of Cardiology in the CU Medical School. In order to bridge the statistical,
scientific, and clinical analysis of the BORG dataset, we used a visual analytics approach. The
visual analytics principles [28] in PEAX are used to integrate broad and heterogeneous data, and
present the analysis results at a variable level of detail in order to facilitate insight from clinical
experts. An improved analysis process also allows a group of users to obtain more rapid feedback
regarding disease biomarkers and pathological processes, reducing the need for independent work
by a dedicated statistician during hypothesis formation and refinement.

We now discuss our design methodology and infrastructure, including some of the vi-
sual analytics design choices used in PEAX. (The tool, demo, and code are available at
http://compbio.ucdenver.edu/PEAX). Based on our initial observations, several major design goals
and constraints were immediately apparent for our analysis engine:

e GUI for responsive phenotype definition (Input)
e Support for powerful statistical analysis (Processing)
e Visual display of processed data (Output)

Additional considerations included use of open-source software to provide maximum capability
of dissemination and re-use in the research community, and use of web-based applications to reduce
installation and platform-dependence overhead. Given these considerations, R is a compelling choice
for statistical analysis software, due to popularity and speed of statistical analysis. Using R would
also ensure the ability to adapt and integrate ever-increasing library of analysis packages, and R-
based analysis results were familiar to our domain experts. However, GUI support is not as well-
supported in native use of R.

In order to wrap the power of R statistical analysis in a web-friendly GUI, we employed RStu-
dio’s Shiny software as a visual front-end. It provides the ability to design webpages easily with
responsive controls and full access and use of Javascript user-interface elements, as well as HTML
capability, tied to an R-backend that could be used for data processing. Shiny also provides the
capability of “reactive” inputs and outputs, in which changes in inputs can automatically trigger
processing events, while newly updated data and Ul input elements can be used to trigger updates of
data outputs. Finally, we expanded our visual output display by using Data Driven Documents (D3),
which is a powerful Javascript-based system for data visualization [29].

Taken together, Shiny allowed us to integrate GUI and data inputs on a webpage. These inputs
are visible by R and used to construct a model. The model is processed and tested using statistical
algorithms in R, and then displayed as webpage outputs using HTML, Javascript, and D3. Using a
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Fig. 1. Sample Screenshot of PEAX. On the left are various controls for defining sub-phenotype, including the depth

of the decision tree (A), the decision variable for each node (B), and the decision variable threshold. A histogram of
the sub-population of patients is shown below each decision node drop-down box. Together, these controls define the
decision tree (C). A boxplot (D) shows distribution of a selected gene from a candidate list of genes (E), while a separate
adjacent table (F) shows the top correlating miRNA expression levels with the selected gene. Selectable thresholds (G)
allow for highlighting of significant associations in either table. Displayed data are random for illustrative purposes, due
to confidentiality of clinical research work described in this paper. The entire set of controls, and resulting tree, boxplot,
and associative tables, are replicated on the right side to allow for definition, viewing, and comparing of juxtaposed
models.

GUI removes the requirements of being able to script and interpret R code directly, increasing the
size of the audience of researchers capable of participating in the analysis process, as well as moving
the clinical expert closer to the data analysis. An overview of the PEAX GUI is shown in Figure 1.

We used several visual analytics concepts and design elements to represent data and analysis
results. We chose to use binary decision trees as visual representations of complex phenotypes.
In previous collaborative work, we used C4.5 trees [19] to discover a biomarker associated with
drug response [9]. Decision trees are already familiar to clinicians, who work with decision-support
systems in diagnosing and defining phenotype, as well as bioinformaticians, who are familiar with
common machine-learning techniques that use decision tree analysis. They are even used for crowd-
sourced cancer gene expression analysis by users with a variety of levels of research experience and
education [30]. A decision tree can cleanly and quickly present the data and relevant cutoffs for
decisions in a way that representations through simple tables cannot achieve.

In PEAX, trees are implemented as D3 collapsible trees defined in JSON format. Trees are dis-
played with the vertical axis representing decision variables, and the horizontal axis representing
patient/sample subgrouping. We augmented the decision tree with visual cues to show information
about the data, primarily by varying line thickness between nodes, so that thicker lines represent
a higher percentage of a sub-population of patients that meet a given decision-tree criterion. This
becomes more evident when the phenotype definition is changed slightly, providing immediate feed-
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back on distribution of phenotype. The leaves of the tree show the size of each group meeting the
phenotype definition. Only samples which have their phenotype fully defined by all previous nodes
are included in final analysis, so that patients with missing data are automatically excluded from
analysis. By noting the number of patients in the final groupings compared to the total population, a
researcher can discern how much data are missing.

PEAX also supports the comparison of two decision trees, presented side-by-side. This juxta-
position enables several potential use cases and scenarios, in which patients were stratified by drug
treatment and/or genotype in different ways. More generally, an analyst can more easily compare
two different phenotype definitions, perhaps with slight adjustments, and not have to rely on brain
memory to examine differences in phenotype distribution and association. The ability to use and
compare multiple, juxtaposed trees provides additional flexibility by providing an extra dimension
of exploration and comparison. Since our decision trees are relatively small (they are rarely deeper
than three levels) a simple juxtaposition is sufficient for a visual comparison and more advanced
approaches for comparing larger trees are not required.

Phenotype variables, shown as decision-tree selection nodes, can be selected with drop-down
boxes and adjusted via sliders; a histogram positioned directly above each slider shows the distri-
bution of patients hierarchically and dynamically split by all higher nodes. The histogram quickly
shows the data distribution based on a particular node and can provide insight into the distribu-
tion of the population, thus being useful to determine interesting cutoff values. Augmenting sliders
with histograms is an example implementation of a “scented widget,” in which a GUI element is
integrated with an embedded visualization, shown to help increase the number of discoveries in
data [31].

After a phenotype is defined, a list of mRNAs is displayed, sorted by significance of asso-
ciation with the defined phenotype. Several selectable methods, currently including ANOVA and
Kruskal-Wallis, provide statistical testing of association. Individual mRNAs can be selected from
the list, upon which a boxplot is displayed that shows the difference in distribution of the selected
mRNA. A red line indicates a separation between gene expression values that have increased or
decreased. The boxplot can provide insight into directionality of upregulation/downregulation of
specific genes, or possible dose-response or comparative relationships between more than two phe-
notypes. If a pattern of expression is found to be interesting based on a selectable threshold for
upregulation/downregulation, a researcher can search for other genes that exhibit the same pattern.
Once an mRNA is selected, a separate ordered list of the top-correlating miRNA expression values
is shown. Each mRNA and miRNA is hyperlinked to online databases, and associations meeting a
selectable threshold are highlighted in a different color. The combination of sorted lists, boxplots,
and database links provide the capability for the user to achieve “details on demand” [28] when
exploring a hypothesis.

Although investigating individual gene associations is rapid, we identified the performance bot-
tleneck as the sheer number of analysis-of-variance (aov) tests run when the phenotype definition
is modified. In order to improve performance to provide a responsive interface, we distributed the
aov calculations across the number of available cores. We achieved a noticeable improvement in
speed, but the system still lagged by 5-10 minutes for each input adjustment. We further optimized
the code by parallelizing several independent steps of the calculation instead of using the built-in
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aov function; namely, independent, parallelized computation of column means and sums. Finally,
we filtered out low-variant expression data (a common pre-processing step for other forms of analy-
sis [32]), leaving us with a set of 3893 fold-change gene expression values (reduced from the original
~ 34,000 values). Using the filtered gene-fold values, PEAX responded to input changes in approxi-
mately 30 seconds or less, so as to provide our clinical expert with a system that could meet research
needs as well as be sufficiently responsive for data exploration.

6. Case Study

Based on our previous collaborative work with a group of cardiologists, we designed a prototype of
PEAX to support the primary research tasks. We then met several times over the course of several
weeks with a cardiology expert and refined and tested our system based on initial feedback. Being
a researcher as well, this expert was also familiar with script-based analysis in R, and was able to
provide comparative feedback with respect to the visual and interactive capabilities of the tool.

To gain trust and experience with PEAX, the domain expert first recreated previous research
from his group. He looked into LVEF improvement, the clinical biomarker used for drug response,
and its association with gene expression, and was able to verify that the tool was able to provide
the same results through a visual interface rather than previous scripting. The domain expert then
investigated two additional research aims of the BORG study: examining differences between drug
treatment groups (Task I), and examining the effects of S-adrenergic SNPs on drug responsiveness
(Task II). Now that the domain expert was more familiar with the tool, he combined these two tasks
into a single exploratory analysis. These tasks were completed with a combination of unsupervised,
self-directed usage of the tool, succeeded by a follow-up discussion of the results. The researcher
stated that he was able to complete the task of initial investigation within half an hour, whereas it
would have taken most of a day or more to set up, refine, test, and verify script-based results; he was
also able to examine several genes of interest that he may otherwise not have investigated. For these
tasks, he designed two trees (Figure 2a and Figure 2c), which are nominally shown side-by-side in
PEAX. The first tree simply involves drug responsiveness, whereas the second tree combined drug
treatment group with the 8 1-adrenergic receptor Arg389Gly SNP, and drug responsiveness. He in-
vestigated several potential genes of interest, and quickly identified a gene association (p<<0.0005)
that had a more pronounced difference when the SNP and drug treatment group interaction was
considered. The gene has a moderate differential response between responders and non-responders
(Figure 2b), but this difference is mostly due to the drug treatment group (Figure 2d). He com-
mented that the side-by-side comparison gave him additional insight regarding potential interactions
when he was able to stratify patients by additional variables and compare to the more general LVEF
response vs. non-response gene expression associations to explore possible differences in relative
gene expression according to drug treatment and SNP. He suggested that the patterns of differenti-
ation which change when additional variables are added are evident due to the visual side-by-side
presentation.

After applying PEAX to Tasks I and II, he then annotated a screen shot (Figure 2c and 2d), which
he sent to another member of the clinical research team. This showed us that combined phenotype
and association output from the tool could be used quickly for transmitting and discussing results
for collaboration within a team of colleagues, and suggested future feature enhancements.
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Fig.2. Sample output from Tasks I and II. The analyst created a 1-node tree for drug responsiveness (a), and examined
boxplot distribution for a particular gene of interest (b). He then created a 3-level tree that used drug treatment group
grp, as well as SNP B1389 (corresponding to dbSNP rs/801253), in addition to drug responsiveness respstatus (c). He
noticed that the same gene selected previously exhibited a differential response between responders and non-responders
in group 3 (d). Tree branch group labels in (c) match those in (d), and are not generated by PEAX, but were added
post-analysis by our analyst when showing to a collaborator.

7. Discussion and Lessons Learned

The development of PEAX, including the design phase and preliminary testing, highlighted several
insights, challenges, and functional considerations that we used to refine the tool. The use of Shiny
to create a rapid, functional, GUI-based prototype with statistical analysis is quite helpful in de-
signing and refining development in an agile fashion. The continuous use of R for analysis allows
researchers and developers that already trust R to retain their confidence in underlying methods and
support for statistical computing. To our knowledge, PEAX is the first open-source based tool to
combine powerful statistical analysis with interactive decision-tree models to enable clinicians to
analyze heterogenous clinical and expression data. Below, we discuss lessons learned during the
development and usage of PEAX.

Interactive statistical analysis requires a reactive graphical interface. In order to direct the
user in exploratory analysis, an interface must be reactive so as to show the effect of changing aspects
of a hypothesis. Implementing our tool in Shiny abstracts the reactive handling of asynchronous user
input changes. Comparing different phenotype trees side-by-side, or seeing the difference in data
distribution (including the amount of missing data) when making changes to a phenotype definition,
for example, provides immediate visual feedback not readily apparent in text-based R-scripting,
while still allowing for the power and support of statistical analysis in R.

Interactivity is a driver for optimization of statistical algorithms. The largest performance
bottleneck with our test dataset was the number of ANOVA calculations necessary for thousands of
candidate genes. While the GUI allowed for easier definition for phenotypes for subsequent testing,
a long lag of several minutes caused the GUI to appear unresponsive and slow, and optimization of
this step was crucial to achieve acceptable usability. Instead of using R’s built-in linear model (Im)
or analysis of variance functions (aov), which provide model results and calculations unnecessary
for our interactive display, we decomposed the ANOVA function to optimize the calculation of
the F-value. We achieved a considerable speedup by using colMeans and colSums for intermediate
calculations, as well as parallelization using mclapply from the parallel library to distribute
the calculation of column means and the explained group variance for each of the defined phenotype
groups. This algorithmic refactoring allowed us to experiment with a reactive and responsive system,
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as we were able to demonstrate our prototype on an 8-core system. Parallelization should allow for
scalability on larger systems. We also observed that our framework took less than 1GB of memory
while running, suggesting that use cases similar to ours are likely to be computationally intensive
more than data intensive and therefore potentially more parallelizable.

True “real-time” responsiveness is not always necessary for useful data exploration. Even
with performance optimizations, refreshes of the visual display of our data and analysis can take tens
of seconds and the tool reactivity cannot be considered “real time.” However, we were surprised
to find that our collaborator considered this a vast improvement over more familiar script-based
techniques, which were more likely to require tedious and careful setup and checking of data setup
before testing an individual hypothesis. In combination with other visual cues that suggested possible
interesting patterns, the speed of visual updating encouraged our analyst to continue data exploration
and experimentation.

A GUlI-based tool allows the domain expert to drive analysis and collaboration. In our it-
erative design process and case analysis, we found a small, targeted audience of cardiology experts
to be responsive and enthusiastic in suggesting features and desire to experiment with the tool,
moreso than when similarly presented with an abstract, static list of potential features. With a work-
ing prototype, the clinical researcher was able to move closer to the data analysis, and the group
was enthusiastic about using the tool to begin analysis tasks that supported prior research grants.
Additionally, our collaborator explored data relationships in ways that were surprising to us, by ex-
ploration of both previously understood as well as novel gene associations, and by using screenshots
of the tool to communicate with colleagues.

Discovery through exploration is based on a comprehensive analysis of all available data.
A natural criticism of explorative approaches is the potential for false discovery rates (FDR), es-
pecially through “data dredging,” or drawing erroneous conclusions based on excessive analysis of
numerous possible relationships. Like any tool, PEAX can and should be used appropriately for
the appropriate task. We provide features for adjusting for multiple testing, such as displaying the
cumulative number of statistical tests during a session of exploration. The analyst is responsible for
appropriate adjustment of resulting significant associations. Another possible use case, not initially
envisioned but very manageable with our system, would be to split the dataset into a training and
test (holdout) set, whereupon a hypothesis is generated on the training set, and then tested on the
holdout set [33]. This approach is especially amenable to our system of allowing for two different
decision trees, where the holdout set could be verified side-by-side with the training set.

The evidence for biological plausibility is a comprehensive picture that depends on phenotype
input as well as mRNA and miRNA correlation. Phenotype classification is in itself a subjective task
performed by expertise, and a motivating factor of the interactivity of phenotype definition and data
exploration was to provide expert feedback into the system using a supervised method. The problem
of identifying potentially interesting, unknown phenotype definitions has not yet been adequately
solved. Therefore, we focused on facilitating domain expert expression of phenotypes and integra-
tion of associated molecular data. Correlative mRNA and miRNA biomarkers are more compelling
when, taken together, they relate to a plausible biological scenario, which will be determined by the
domain expert. PEAX can provide information regarding the data, but interpretation, presentation of
results, and experimental follow-up must be done with scientific care.
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8. Conclusion

This paper presents a new tool, PEAX, for integrated analysis of complex phenotype definition and
association with molecular expression data. This analytic scenario is targeted for clinical experts
with mixed datasets involving deep clinical, mRNA, and miRNA expression data, and is designed
to abstract statistical analysis scripts while providing useful feedback for exploration of data. We
developed a prototype tool, demonstrated its utility through a case study with a domain expert on a
cardiology dataset, and report initial observations and lessons learned. We chose decision trees as a
simplified model familiar to clinical researchers, and present analysis results on a single interactive
screen in order to streamline analysis.

We found the combination of visual interactivity in a web browser, with the statistical analysis
capabilities of R, to be a compelling combination to make this type of analysis more rapid, ex-
ploratory, and collaborative. We found the generalized functions of defining and testing sub-classes
visually to be faster, less error-prone, and more efficient than a process that uses “one-off,” propri-
etary scripts for very specifically subdividing patient groups based on specific features.

The web-based nature PEAX provides opportunities for scalability in performance and distribu-
tion, although clinical data sensitivity issues may require internal application usage. By supporting
Javascript and D3 for GUI support, PEAX can continue to leverage new web-based visualizations;
and by using R for statistical computation, we can add analysis algorithms based on the extensive
and growing library of R functions. In addition to further exploration on BORG and other datasets,
planned additional features include highlighting known miRNA-mRNA associations to direct further
exploration of plausible miRNA regulation of mRNA related to a hypothesized complex phenotype.

By necessity, PEAX sped up association calculations using analysis of variance by paralleliz-
ing several key steps. There is still a lag between user input and redisplay of output, so that the
interaction was not considered real-time in our scenario, but to our surprise, our clinical expert was
pleased in being able to see new results presented within tens of seconds, as opposed to his previ-
ous techniques which involved tedious, text-based scripting. This observation is important for large,
multidimensional datasets: interaction may not need to be real-time, if it is tolerably responsive and
represents an improvement in the amount of time required to analyze and check through existing
techniques, with a reduced cognitive demand for formulating and checking correct syntax of scripts.

Improper use of data-mining techniques to analyze high-dimensional data can lead to spuri-
ous, false associations. Therefore, an investigator must draw conclusions based on comprehensive
consideration of all of the evidence, and particularly important observations should be validated
independently. Nevertheless, a growing number of large datasets are available in which important
biological questions have gone unexplored and undiscovered, perhaps because of computational
complexity, or proprietary scripting. To address the big data challenges of personalized medicine,
integrated statistical and visual analysis tools such as PEAX are needed for rapid data exploration,
collaboration, and communication to drive hypothesis generation and testing by clinical experts.
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