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Abstract

Despite their clear importance as a class of regulatory molecules, pinpointing the relevance of 

individual miRNAs has been challenging. Studies querying miRNA functions by overexpressing 

or silencing specific miRNAs have yielded data that are often at odds with those collected from 

loss-of-functions models. In addition, knockout studies suggest that many conserved miRNAs are 

dispensable for animal development or viability. In this review we discuss these observations in 

the context of our current knowledge of miRNA biology and review the evidence implicating 

miRNA-mediated gene regulation in the mechanisms that ensure biological robustness.
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An elusive role for microRNAs

MicroRNAs (miRNAs) are small non-coding RNAs that regulate protein output post-

transcriptionally [1]. Overwhelming evidence accumulated since their discovery [2,3] leaves 

little doubt regarding their importance. They comprise 1-2% of all genes in worms, flies, and 

mammals [1], and because each miRNA is predicted to regulate hundreds of targets, the 

majority of protein coding genes is thought to be under their control [4]. In practice, this 

means that virtually every biological process is subject to miRNA-dependent regulation. As 

additional evidence of their functional relevance, miRNAs and their targets often display 

striking evolutionary conservation [5-7]. Lastly, animals carrying mutations that impair 

miRNA processing [8-12] are not viable, indicating that complete loss of miRNA activity is 

incompatible with life.

Despite their clear importance as a class of regulatory molecules, determining the biological 

relevance of individual miRNAs has proven challenging. For the most part, the 
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physiological functions of specific miRNAs have been inferred from overexpression studies 

in animals and cultured cells or from studies that used antisense molecules as a means of 

disrupting their pairing to targets. These experiments have attributed critical roles to 

miRNAs in processes such as cell proliferation, differentiation, and survival, and have 

implicated them as crucial players during normal development, homeostasis, and disease 

[13-17]. Surprisingly, the expectations raised by these early studies have been met by a 

growing number of knockout animals with very modest or no apparent phenotypes. 

Furthermore, so far only two miRNA genes (miR-17∼92 and miR-96) have been shown to 

cause developmental defects in humans when mutated [18,19]. The absence of phenotypic 

consequences upon ablation of individual miRNAs seems to be the rule rather than the 

exception. In Caenorhabditis elegans, for example, systematic deletion of miRNAs indicates 

that less than 10% of them are individually required for normal animal development or 

viability [20], and this trend seems to be true in mice as well [21] (Table 1).

In this review we discuss these observations in the context of our current understanding of 

miRNA-mediated gene regulation and examine the evidence implicating miRNA activity in 

the processes that ensure robust animal development and homeostasis.

Endogenous miRNAs exert mild repression on many targets

miRNA processing has been extensively reviewed [22] and will be only briefly discussed 

here. MiRNAs are transcribed as long primary transcripts (pri-miRNAs) and cleaved in the 

nucleus by the Drosha/DGCR8 microprocessor complex. The resulting ∼70-nucleotide-long 

hairpin-shaped molecule—the pre-miRNA—is exported into the cytoplasm, where it is 

further processed by Dicer, bound by an Argonaute protein, and incorporated into an RNA-

induced silencing complex (RISC). Metazoan miRNAs typically direct the RISC to target 

mRNAs through imperfect base pairing to their 3′ untranslated regions (3′UTR), leading to 

post-transcriptional repression mainly through mRNA destabilization, though a minor 

component of translation inhibition has also been detected [23] (see Box 1).

Target recognition is primarily determined by the seed-sequence, a stretch of 6 nucleotides 

spanning nucleotide 2-7 on the 5′ end of the miRNA [24,25]. Accordingly, targets can be 

confidently predicted by searching for conserved matches to this sequence in the 3′UTR of 

messages [26]. Prediction accuracy increases further when this search is restricted to 7-

nucleotide-long motifs encompassing the seed [26] and when the sequence context within 

the 3′UTR is taken into consideration [27]. Non-canonical targeting through sites with 

mismatches to the seed has also been reported [28-32], but seems to be generally associated 

with lower levels of repression and its biological relevance remains unclear [4,30]. Because 

targeting requires the presence of such short conserved sequences, individual miRNAs have 

the potential to regulate hundreds of targets [4]. These computational predictions have been 

supported by experimental evidence showing that loss or overexpression of a miRNA in 

cultured cells results in the deregulation of hundreds of genes [33,34]. In both cases, the 

deregulated messages are enriched in conserved miRNA binding sites and their expression 

in vivo tends to be anti-correlated with that of the miRNA [33-36]. These observations 

suggest that both knockout and ectopic expression studies can give clues into the biological 

functions of miRNAs.
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Nevertheless, in vivo studies tell a cautionary tale against taking these approaches as 

equivalent. In C. elegans for example, overexpression of miR-61 results in vulval 

development defects, which seem to stem from its ability to regulate Vav-1 and establish a 

feedback loop that regulates LIN-12/Notch expression within the vulval precursor cell 

population [13]. Yet, deletion of miR-61 is compatible with normal vulval development, and 

even animals carrying co-deletion of miR-61 and the closely related miR-267 are 

phenotypically normal [20]. In mammals, overexpression of members of the miR-34 family 

suggests a potent tumor suppressor function downstream of p53 [17,37-41]. However, mice 

carrying targeted deletions of all miR-34 genes display wild type p53 responses to a variety 

of cellular insults, including ionizing radiation and oncogenic stress [42,43].

How can we account for these differences? Obviously, ectopic expression studies address 

the question of whether a miRNA can exert a specific function, while loss-of-function 

studies test whether it is required for that function. In addition, it is important to keep in 

mind that the ability of a miRNA to repress its targets crucially depends on its expression 

levels [44,45].

Genetic inactivation of a miRNA results in very modest de-repression of its direct targets, 

typically less than two-fold even for highly abundant miRNAs [33,46]. These differences 

are well within the range that could be attributed to fluctuations of gene expression between 

two genetically identical cells or between individuals [47]. For most genes such modest 

changes in expression can be well tolerated by the organism, which might explain why 

genetic inactivation of miRNAs often does not have obvious phenotypic consequences. 

These observations sparked the idea that rather than acting as genetic switches—where 

strong repression of one or few targets results in a clear phenotypic outcome [48,49]—most 

miRNA act as rheostats, fine-tuning the expression of hundreds of genes to reinforce cell 

fate decisions brought about through other mechanisms [47,50,51].

It is important to note however, that even a mild derepression of many targets can have 

severe phenotypical consequencesly, especially if the targets are functionally linked. For 

example, in mice, deletion of miR-128 results in fatal epilepsy due de-repression of several 

components of the MAPK pathway, leading to a significant increase in ERK2 

phosphorylation [52]. Similarly, loss of miR-205 results in neonatal lethality in mice with 

compromised epidermal and hair follicle growth [53], presumably by modulating the 

expression of multiple components of the PI(3)K signaling pathway. Finally, a recent study 

has implicated Drosophila's miR-iab-8 in CNV patterning and fly fertility through the 

regulation of genes whose products act together within a protein complex [54]. Remarkably, 

there is evidence that even partial relief of miRNA-mediated repression can have phenotypic 

consequences. For example, hemizygous deletion of miR-17∼92 leads to severe 

developmental defects in mice and in humans [19].

In contrast to loss-of-function studies, ectopic expression often leads to supra-physiologic 

levels of the miRNA and stronger repression of its targets [23,33,34]. The magnitude of this 

repression can bring down to inconsequential levels the expression of genes that would 

otherwise remain functional even in the presence of the targeting miRNA. Often, these 

experiments also result in the expression of miRNAs in tissues or cells in which they would 
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normally be absent [55], leading to repression of messages that might not be their biological 

targets. Thus, despite their widespread use, the propensity to generate a high fraction of 

false-positive results constitutes a major caveat of miRNA overexpression experiments. This 

does not mean that such experiments are devoid of value. In fact, much of the knowledge we 

have accumulated over the years on miRNA biology has depended on them [27,44]. In 

addition, regardless of the physiologic relevance of these studies, overexpression of miRNA 

mimics may serve a therapeutic purpose [56-58] (Box 2).

Functional redundancy among family members

One remarkable aspect of miRNA genes is that a large number of them have obvious 

paralogs in the genome. Paralog miRNAs arise from both tandem and non-local gene 

duplication events, which give rise to either duplication of sequences in the same transcript

—thus originating miRNA clusters—or on distant loci, typically on different chromosomes 

[59]. These miRNA ‘copies’ not only retain a high degree of sequence homology but also 

share the same seed-sequence and are thus by convention grouped into ‘miRNA seed 

families’ [60]. In C. elegans, about 60% of all miRNAs can be assigned to one of 23 

families [61], a percentage significantly higher than that of protein-coding genes with known 

paralogs, which approximates 25% [62]. Similarly, about one-third of human miRNA genes 

and almost 40% of those in the mouse can be grouped into families based on sequence 

similarity [63,64].

Because paralog miRNAs share the same seed-sequence, they are expected to have similar 

affinities to messages. When expressed in the same cells, these related miRNAs can co-

regulate targets, leading to higher levels of repression than those that could be achieved by 

each miRNA individually. In vertebrate multiciliated cells for example, the six miRNAs that 

comprise the conserved miR-34/449 family—encoded by the miR-34a, miR-34b/c, and 

miR-449a/b/c loci—can coordinately repress cp110 expression during ciliogenesis [65]. The 

existence of miRNAs with redundant functions means that in some instances several 

members of the family need to be deleted before a phenotypic consequence can be detected 

(see Table 1). Indeed, animals carrying targeted deletions of single genes of the miR-34/449 

family are viable and phenotypically normal [42,65,66], whereas deletion of all three loci 

leads to high postnatal mortality, with surviving animals displaying an array of phenotypes 

associated with defective ciliogenesis [65]. Analogously, partial functional overlap has been 

observed among the miR-17∼92 cluster and its two paralogs: miR-106a∼363 and 

miR-106b∼25 [67].

This level of redundancy adds considerable complexity to gene knockout studies. For 

families as numerous as the let-7 family for example—which in mice comprises 12 members 

distributed across 8 loci [68]—the effort involved in generating compound loss-of-function 

mutants effectively precludes such studies from being undertaken.

Chemically modified antisense oligonucleotides (Box 2) provide an alternative to genetic 

miRNA ablation [69,70], and can to some extent circumvent the difficulties posed by the 

existence of paralog genes. These antisense molecules inactivate miRNAs by binding with 

high affinity to their mature sequence, thus preventing interaction with targets. Typically, 
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antisense molecules are designed to have full complementarity to the mature miRNA 

[69,70], but because affinity remains very high even for 8-mers targeting the seed region, 

this strategy can be adapted to simultaneously inhibit the function of multiple members of 

the same family [16,71]. This approach has shown that global inhibition of the let-7 family 

can prevent and treat impaired glucose tolerance in diet-induced obese mice [16]; this result 

is consistent with data gathered from let-7 transgenic animals [16,72] and from animals 

carrying gain- or loss-of-function alleles of Lin28a or LIN28B, two proteins that specifically 

block let-7 maturation [72,73].

Despite their clear utility, designing controls for experiments in which antisense oligos are 

used is challenging. A common approach is to deliver modified oligonucleotides with 

sequences that do not match any region in the genome, but these molecules often lead to 

unwanted effects when delivered systemically to animals. A recent study, for example, 

reported an increase in liver and spleen size as well as in the number of liver-associated 

macrophages upon injection of a control oligonucleotide in adult mice. These animals also 

displayed reduced number of white blood cells and a variety of alterations in blood 

chemistry [74]. In another example, injection of a control molecule in chick embryos 

resulted in a wide range of skeletal malformations including vertebral fusions, 

hemivertebrae, and split vertebrae [75]. Thus, while we can certainly learn a lot from studies 

with synthetic miRNA antagonists, the intrinsic limitations of this technology need to be 

carefully considered.

The question of functional redundancy among paralog miRNAs has perhaps been best 

tackled in C. elegans, where miRNA genes were systematically mutated to generate strains 

lacking all or most members of 15 of the 23 known miRNA families [61]. As in the cases 

discussed above, this approach uncovered high levels of redundancy among some paralogs: 

for example, although deletion of individual components of the miR-35 and miR-51 families 

did not cause phenotypical abnormalities, mutants for these families died as embryos or 

early larvae. Similarly, mutants for the miR-58 family showed a variety of phenotypic 

abnormalities, which were absent in mutants for its individual miRNAs [20]. This is perhaps 

not unexpected. What is surprising is that mutant animals for the remaining 12 families 

appeared largely normal even when subjected to a broad panel of phenotypical 

characterizations [61]. This suggests, that at least in C. elegans, most miRNA families might 

not be essential for animal development or viability.

miRNAs and biological robustness

Despite the frequent lack of phenotypes in miRNA knockout animals, the strong 

evolutionary conservation of many miRNAs indicates that they must confer some selective 

advantage, regardless of our ability to detect it. An important aspect to consider is that 

miRNAs do not act in isolation. In fact, a common theme among miRNAs is their 

positioning within gene regulatory networks, in particular within feedback and feedforward 

loops [76] (Figure 1A). Moreover, though the vast majority of 3′UTRs have a single 

conserved match for a particular seed, they typically have more than four conserved miRNA 

binding sites in total, thus allowing for combinatorial and overlapping regulation [1,4]. 

Redundant components and regulatory loops are two common strategies used to achieve 
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canalization [77], i.e., the stabilization of biological outcomes in spite of genetic, 

environmental, and stochastic perturbations. This has led to idea that miRNAs play a crucial 

role in ensuring that small changes arising from such perturbations do not have a detrimental 

impact on animal development or homeostasis [47,78,79].

In support of this view several miRNA knockout animals display phenotypes only in 

response to genetic or environmental stresses (Table 1). Under normal conditions, for 

example, the miR-143/145 cluster can be deleted without apparent consequences to intestinal 

architecture or epithelial turnover rate. However, miR-143/145-null mice fail to regenerate 

the intestinal epithelium upon injury, at least in part due to impaired IGF signaling [80], and 

a similar role for this cluster in the response to blood vessel injury has been reported 

[81-83]. In another example, mice lacking miR-208 showed no overt cardiac defects under 

physiologic conditions, but cardiac remodeling was profoundly impaired in response to 

various stresses [84].

miRNA-dependent phenotypes can also be uncovered by mutations in other genomic loci. In 

C. elegans, for example, 25 out of 31 miRNA mutations resulted in phenotypic 

abnormalities only in animals from sensitized backgrounds [85]. In mice, miR-34's role as a 

tumor suppressor is only uncovered when this miRNA family is co-deleted with trp53 

[42,86], an upstream regulator with whom it establishes a coherent feedforward loop that 

regulates MET expression [86,87]. Finally, it should be noted that a large fraction of miRNA 

knockout models show phenotypic traits with incomplete penetrance (Table 1), one of the 

hallmarks of impaired canalization [88-90].

Mechanisms of Canalization by miRNAs

As mentioned in the previous section, a possible mechanism by which miRNA-mediated 

regulation may confer phenotypic robustness is by buffering against cell-to-cell variability 

arising from stochastic fluctuations in gene transcription. These fluctuations occur because 

the biological processes that determine mRNA levels—such as binding of the RNA 

polymerase to the promoter and mRNA degradation—are inherently noisy, occurring at 

different times and different rates even among cells from a clonal population [91]. This 

noise is ultimately amplified by translation, which can give rise to even larger inter-cellular 

variability [92,93]. Though in many instances organisms can use such variability to control 

processes like lineage decision [94], noise must generally be buffered to ensure robust 

animal development. A failure to do so can result in pronounced phenotypic variation 

among genetically identical individuals [89].

One strategy to manage noise is to couple high rates of transcription with inefficient 

translation [92,95]. miRNAs limit translation largely by reducing mRNA stability and may 

therefore provide a simple mechanism to reduce overall fluctuations in protein synthesis. 

This might be of particular importance when subtle differences in gene expression can 

determine distinct cellular fates (Figure 1B). In Drosophila's larval wing imaginal disks, 

differentiation of sensory organ precursors (SOP) requires tight regulation of senseless 

(sens). While high levels of this transcription factor promote proneural gene expression in 

cells destined to become SOPs [96], low levels of Sens in non-SOP cells repress proneural 
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genes [97]. Sens is a direct target of miR-9, and in the absence of this miRNA about 33% of 

larvae develop extra sensory organs [98], presumably because fluctuations in Sens levels 

inappropriately trigger ectopic cell fate decisions [99]. Interestingly, recent experiments 

suggest that miR-9 can also minimize the impact of genomic diversity on sensory organ 

differentiation, thus providing an example of genetic buffering by a miRNA [100].

Integration of miRNAs in incoherent feedforward loops (IFFL) (Figure 1A) provides 

another mechanism to minimize unwanted oscillations in gene expression. This type of 

motif is particularly useful because it can counteract the effects of fluctuations in upstream 

components of the network. In C. elegans, for example, an IFFL involving both lin-4 and its 

target lin-14 ensures that variation in lin-14 mRNA levels are stabilized by synchronous 

oscillations in lin-4 [101]. The presence of miRNAs in IFFLs has also been associated with 

canalization mechanisms in vertebrates. In Zebrafish, for example, an IFFL involving 

miR-430 plays a significant role in controlling unwanted fluctuations in chemokine receptor 

signaling, which seems to be important for robust germ cell migration [102].

miRNAs have also been implicated in the mechanisms that buffer gene expression against 

environmental perturbations. Arguably the best example comes from work in Drosophila, in 

which miR-7 is involved in cell fate decisions that result in photoreceptor differentiation 

[103]. Before differentiation into photoreceptors is triggered, progenitor cells in the larval 

eye imaginal disk are maintained in an undifferentiated state by Yan [104], a direct target of 

miR-7 [105]. In these cells, Yan binds to the promoter of miR-7 and inhibits its transcription 

[105], thus establishing a negative feedback loop that reinforces its own expression (Figure 

1A, 1C). Yan also inhibits miR-7 indirectly through two other repressors, creating a coherent 

feedforward loop (CFFL) that is interlocked with the feedback loop [103]. This CFFL 

buffers miR-7's expression against fluctuations in Yan, ensuring that miR-7 is only turned on 

in response to a persistent decrease in yan expression (Figure 1A, 1C). Differentiation of 

progenitors into photoreceptors is triggered by signaling through the EGF receptor [106], 

which transiently degrades Yan and establishes a new coherent FFL involving miR-7 and 

Pnt-P1 [103]. This loop ensures that yan is not inappropriately turned on in cells that have 

committed to the photoreceptor lineage.

Interestingly, under uniform laboratory conditions, regulation of Yan expression is robust 

enough to ensure normal eye development even in the absence of miR-7 [103,105]. In a 

classic example of impaired canalization, however, mutant miR-7 flies fail to withstand 

fluctuations in environmental temperature and display abnormal patterning of sensory 

organs due to deregulated Yan expression [103].

Concluding Remarks

Over the past two decades we have witnessed a flourishing of studies aimed at defining the 

biological functions of miRNAs. Converging evidence from computational, biochemical, 

and genetic experiments have greatly expanded our understanding of their mechanism of 

action and biological properties. The picture emerging from these studies suggests that 

miRNAs occupy a very unique position in the hierarchy of gene regulators. By contrast to 

conventional transcription factors, in most cases miRNAs do not appear to act as master 
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regulators of gene expression. Rather, their mechanism of action allows them to act as fine 

tuners of transcriptional programs, as components of complex network motifs, and as “post-

transcriptional buffers” to confer robustness to transcriptional programs in the face of 

environmental and genetic variability.

Although investigating individual miRNA-mRNA interactions can and has been useful in 

some instances, moving forward it will be essential to resist the temptation to reduce the 

biological functions of individual miRNAs to repression of one or a few “key targets.” 

Rather, new computational and systems biology approaches will be needed to fully 

appreciate the intricacy, beauty, and multifaceted roles of gene regulation by small non-

coding RNAs.
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Box 1

Mechanisms of miRNA-mediated gene repression

Although it is well understood that miRNAs repress gene expression by recruiting the 

RISC silencing complex to target mRNAs, the molecular details underlying this 

repression are not entirely clear [107]. RISC binding to targets has been proposed to elicit 

both repression of translation and mRNA deadenylation and decay (Figure I). However, 

the mechanistic basis behind these modes of repression, their relative contribution to the 

overall action of RISC and the order by which they operate remain a matter of debate.

The core of the RISC complex is comprised of two components: an Argonaute protein 

(Ago1-Ago4 in mammals) and a GW182 protein (TNRC6A-C in mammals). While Ago 

proteins bind to miRNAs and are thus involved in target recognition, GW182 proteins 

seem to act as a molecular platform to which effector complexes bind to mediate target 

repression (Figure I, top panel). GW182 can directly bind PABP [108], a poly(A)-tail 

binding protein involved in the regulation of translation [109], but with a controversial 

role in miRNA-mediated gene silencing [107]. GW182 also binds (directly or through 

PABP) to deadenylation complexes [110,111]. Of these, CCR4-NOT has been shown to 

be required for miRNA-mediated deadenylation [110,112]. Finally, GW182 has been 

shown to bind to EDD, a protein that associates with the DEAD box helicase RCK/p54, 

which in turn enhances mRNA decapping and represses cap-dependent translation [113].

But what is the prevalent mechanism of miRNA-mediated repression? Recentgenome 

wide attempts to clarify this question have examined the influence ofendogenous and 

exogenous miRNAs [23,114,115] on mRNA levels (measuredby RNA-seq of 

polyadenylated mRNA; Figure I, middle panel) and translationefficiency (measured by 

sequencing of ribosome protected fragments or RPFs;Figure I, bottom panel). These 

studies suggest that the predominant mode ofmiRNA-mediated repression maybe 

context-dependent. In human cells and latezebrafish embryos the majority of RISC-

mediated repression can be attributed toa reduction in the levels of mRNA, with only a 

minor fraction stemming fromreduced translation efficiency [23,115]. In early stages of 

zebrafish development (2h and 4h post-fertilization) however, miRNAs seem to 

predominantly reducetranslation of their targets, while causing no detectable changes in 

the levels oftheir mRNAs [114,115]. These results are not necessarily in conflict, since 

arecent study suggests that the prevalence of translational inhibition in earlyzebrafish 

embryos is caused by a strong coupling of poly(A)-tail length andefficiency of translation 

in this system [115].
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Box 2

miRNA-based therapeutic strategies

Deregulation of miRNA activity has been frequently implicated in the development and 

progression of human diseases [116], and this observation has driven much of the 

research in the field. The discovery that in vivo delivery of oligonucleotides—that mimic 

or inhibit the activity of specific miRNAs—can have therapeutic effects in animal models 

has suggested that analogous approaches might be applicable in the clinic as well [117].

Several miRNA-based therapeutic strategies are currently under development, and these 

can broadly be divided into: (i) miRNA replacement strategies, which attempt to mimic 

the activity of specific miRNAs by delivering small double-stranded RNA molecules that 

resemble miRNA duplexes. MRX34 for example, is a mimic of the miR-34 family [56], 

which is currently in Phase I of clinical trials to test its safety for patients with primary 

liver cancer or liver metastasis (NCT01829971); (ii) miRNA targeting strategies, which 

rely on antisense oligonucleotides (ASO) that bind to endogenous miRNAs to prevent 

their interaction with targets. One such molecule, designed to inhibit miR-122 [118], has 

also reached clinical trials (Phase II) and is being evaluated for its long-term safety and 

efficacy in patients with chronicle HCV infection (NCT02031133).

An important aspect to keep in mind when thinking about delivery of oligonucleotides to 

patients or animal models is that they are generally poorly suited for in vivo applications 

[117]:

• They are substrates of serum nucleases, making them unstable;

• They are unable to penetrate the cell membrane;

• They have poor tissue distribution when delivered systemically.

These obstacles can be partially overcome by encapsulation in lyposomes or polymer-

based nanoparticles and through addition of chemical modifications [117]. Conjugation 

of cholesterol groups to the 3′ end of the oligonucleotide, for example, improves both 

entry of the oligo in the cell and its distribution across tissues. Modifications like 2′-O-

methyl (2′-OMe), 2′-O-methyoxyethyl (2′-MOE), and locked nucleic acid (LNA), on the 

other hand, improve the oligonucleotide's resistance to exonucleases. Of note, for 

miRNA-targeting strategies, LNA modifications have the additional advantage of 

increasing the affinity of the oligo to its complementary miRNA, leading to more 

efficient inhibition. Substituting the phosphodiester bond by a phosphorothioate bond can 

further increase stability of the oligonucleotides, but this modification decreases miRNA-

binding affinity.
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Highlights

• MicroRNA activity is essential for animal development and viability.

• Deletion of individual miRNAs often leads to subtle or no phenotypic 

consequences.

• miRNAs can have high levels of redundancy and are often placed in regulatory 

loops.

• miRNAs can buffer gene expression against internal and external perturbations.
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Figure 1. miRNAs participate in mechanisms of biological robustness
(A)miRNAs are common features of network motifs, some of which are represented here. 

(B) Regulation of transcripts by miRNAs can be important to ensure robust cell fate 

decisions by keeping expression levels of a particular gene below a decision threshold (red 

lines). In the absence of a miRNA, the expression of the gene becomes unbuffered (blue 

lines), and can lead to ectopic cell fate decisions in a fraction of the population due to 

stochastic fluctuations in transcript levels. (C) Schematic representation of miR-7's role in 

the differentiation of photoreceptor cells in Drosophila. Panel (B) and (C) of this figure are 

inspired by illustrations from [89] and [142], respectively.
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Figure I. Overview of protein complexes implicated in miRNA-mediated gene silencing and their 
effect on mRNA levels and translation efficiency
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