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Abstract

Background: Image analysis is the first crucial step to obtain reliable results from microarray
experiments. First, areas in the image belonging to single spots have to be identified. Then, those
target areas have to be partitioned into foreground and background. Finally, two scalar values for
the intensities have to be extracted. These goals have been tackled either by spot shape methods
or intensity histogram methods, but it would be desirable to have hybrid algorithms which combine
the advantages of both approaches.

Results: A new robust and adaptive histogram type method is pixel clustering, which has been
successfully applied for detecting and quantifying microarray spots. This paper demonstrates how
the spot shape can be effectively integrated in this approach. Based on the clustering results, a
bivalence mask is constructed. It estimates the expected spot shape and is used to filter the data,
improving the results of the cluster algorithm. The quality measure 'stability' is defined and
evaluated on a real data set. The improved clustering method is compared with the established Spot
software on a data set with replicates.

Conclusion: The new method presents a successful hybrid microarray image analysis solution. It
incorporates both shape and histogram features and is specifically adapted to deal with typical
microarray image characteristics. As a consequence of the filtering step pixels are divided into three
groups, namely foreground, background and deletions. This allows a separate treatment of artifacts
and their elimination from the further analysis.

Background probes. For early references of this technology see Schena

In DNA microarray experiments, genetic probes with
known identity are affixed to a glass slide or another sub-
strate at discrete spots. The probes are prepared for bind-
ing with cDNA or mRNA samples. Typically, the genetic
composition of two such samples is compared. The two
samples are labeled with red-fluorescent and green-fluo-
rescent dye, respectively, mixed and competitively hybrid-
ized to the microarray containing the complementary

etal. [1] and Shalon et al. [2].

Using a laser scanner, TIFF images of the microarray are
obtained. The relative abundance of one or the other sam-
ple is represented by a red or green signal at the spot loca-
tion. The two major objectives of microarray image
analysis are therefore to find the discrete spot locations
and to quantify the spot intensities. Many available tools
provide algorithms to solve these problems; among these,
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GenePix (Axon Instruments [3]), Imagene (Biodiscovery,
Inc. [4]), QuantArray (GSI Lumonics [5]) and ScanAlyze
(Eisen [6]) are widely used. Most methods assume circular
spot shapes and require manual alignment of the grid
locations. Therefore, automated grid and spot finding as
well as robust intensity quantification are highly desira-
ble. For oligonucleotide fingerprinting and complex
hybridizations, automated array processing has for exam-
ple been presented by Steinfath et al. [7]. The intensities
are calculated based on a normal distribution model for
every single spot. In ¢cDNA microarray images, the
assumption of a circular spot shape is usually not justifia-
ble due to artifacts caused by the printing process and the
hybridization technique. Generally, two main concepts
dealing with this obstacle have been presented, namely
pixel intensity histogram methods and shape detection
methods. Histogram methods are widely used, for exam-
ple by Imagene or QuantArray, see Chen et al. [8] for an
early reference. The first effective shape method is imple-
mented in Spot (Buckley [9]) and uses the 'seeded region
growing' algorithm (Adams and Bischof [10]), see also
Yang et al. [11] for further details. The Spot software is cur-
rently one of the most competitive software tools for
microarray image analysis, as it successfully deals with dif-
ferent spot shapes and artifacts.

A new robust method is pixel clustering. The basic algo-
rithm, introduced in Bozinov and Rah-nenfithrer [12],
was developed for spot identification and intensity quan-
tification. Subsequently, the clustering approach was
extended for grid finding. This idea was first tested in
Bozinov et al. [13], where it was applied to a single high-
quality array. The Gridclus algorithm described in this
paper represents an improvement that leads to satisfying
results also for low-quality arrays.

The original pixel clustering algorithm is an adaptive his-
togram method without direct attention towards the spot
shape. In the present paper, we describe the further devel-
opment and improvements of this algorithm. The
detailed algorithms are given in the Methods section. The
two main features of the new approach are repeated cluster-
ing and mask matching. Repeated clustering is applied, if the
clustering selects only very few pixels as foreground
region, mainly in case of low foreground intensity and
small bright artifacts. In such a case the outlier pixels are
removed and clustering is repeated on the background
pixels, until at least m pixels (e.g. m = 50) constitute for
the spot foreground area. Mask matching integrates the
spot shape into the algorithm. Based on the cluster results
of all spots, a bivalence mask is constructed to estimate
the average spot shape. The mask is used as a template to
filter out low-quality parts of single microarray spots. This
yields a genuine combination of the two central features
'histogram' and 'shape’ and thus a favorable hybrid image
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analysis solution. An advantage of this method is the par-
titioning of pixels into foreground, background and dis-
carded pixels. This allows the elimination of artifacts from
the further analysis.

In the Methods section below, first the pixel clustering
approaches for grid and spot detection are reviewed. Then
the hybrid approach and the associated quality measure
'stability' are introduced. The stability is the proportion of
pixels in the foreground area that are not deleted by the
mask matching step. The complete spot detection algo-
rithm is called HYBRID PXy, pans:

In the next chapter, we report on the application of the
new algorithms to real microarray images. The ability to
produce reliable values in an experiment with replicates is
compared, between the new hybrid solution and one of
the most successful alternatives, the Spot software (Buck-
ley [9]). The results show the competitiveness of the pixel
clustering approach.

Results and discussion

HYBRID PXg,,sans Was applied to a real microarray image
from the Microarray Core Facility of the University of
Nebraska Medical Center. The array consisted of 24 rows
and 36 columns of gene spots, in total 864 spots. With
Gridclus the target areas could be perfectly identified.

Multiple clustering

Figure 1 proves the positive effect of the repetitive cluster-
ing in step 3 of HYBRID PXy,,rans- The number of neces-
sary pixels in the foreground was set to m = 50. The grey
histogram bars capture the sizes of the foreground areas
after single clustering, the shaded histogram bars after
repeated clustering.

After single clustering, the foreground area size was
smaller than 25 pixels for 118 spots, approximately 14%
of all 864 spots. For all others spots the area was bigger
than 50 pixels. Clearly, in the 118 problematic cases, the
algorithm identified just very few outlier pixels as fore-
ground. After repeated clustering, all area sizes were bigger
than 50 pixels, by construction of the algorithm. It is strik-
ing, that the distribution of the sizes of these 118 reorgan-
ized spot areas resembles the distribution of the spot areas
identified after the first clustering. For 115 out of those
118 spots, the algorithm terminated immediately after the
second clustering; for the other 3 spots, after the third
clustering. These observations indicate, that the spot
shape is already detected after the second clustering, and
the foreground area size is not just continually increased
by some random pixels. More evidence for this hypothesis
is obtained by the distribution of the stability values. This
will be explained in more detail below. The choice of the
number m is not critical, since the only purpose of this
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Distribution of spot sizes. Distribution of foreground area
sizes after single clustering (grey) and after repeated cluster-
ing (shaded), applied to a microarray slide with 864 spots.

step is to eliminate the influence of bright pixels belong-
ing to small artifacts. Such pixels often constitute for the
whole foreground area after initial clustering. In the exam-
ple presented, any number between 25 and 50 would
have led to identical results.

Mask matching

After single clustering of all spots in the present image, the
number of foreground assignments was determined for
every pixel as described in step 4 of HYBRID PXpans-

The average of these numbers over pixels was f = 146.98.
According to step 4 of HYBRID PXypanss €very pixel with

f>f is assigned to foreground in the bivalence mask. In
other words, if in more than 147 out of 864 spots a pixel
at a fixed position belonged to foreground, it was also set
to foreground in the bivalence mask. The other pixels were
assigned to background.
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[T T LT

Figure 2

Accumulated foreground assignments of pixels. Plot of
assignments of pixels to the foreground area, according to
the clustering results, accumulated separately for every pixel
over all 864 spots.

Figure 2 shows the number of foreground assignments for
all pixels, summed up over spots. One can see, that the
accumulated information accurately defines an average
spot. Figure 3 shows the bivalence mask that represents
the average spot shape. Foreground pixels are plotted as
white squares and background pixels are plotted as black
squares. Although most single spots didn't have a nice cir-
cular shape, the aggregation of information led to an
almost perfect circle.

Figure 4 shows the number of deletions due to mask
matching, summed up over all spots. A pixel was deleted
if it was assigned to foreground in the spot and to back-
ground in the mask, or vice versa. In the background area
of the mask, only few deletions occurred, whereas in the
foreground area of the mask, deletions were more and
more likely for pixels closer to the margin. In the center of
the spot, the deletion frequency was also increased. This
reflects that some spots had a so-called doughnut shape
with significantly lower intensity in the center. This
artifact appears when the microarray pin detaches
improperly during the spotting process, and not enough
probe material is attached to the microarray slide. As
desired, such areas were deleted by mask matching and
not considered as background.

Figure 5 shows the 'stability’ values of all 864 spots. The
sizes of the foreground areas before mask matching are
plotted against single 'stabilities', the relative numbers of
deletions due to the mask. The 'median stability' over all
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Bivalence mask
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Figure 3
Bivalence mask. Typical bivalence mask for a real microarray
image.

spots was 0.945, very close to 1. The lowest 'stability’ was
0.5. Apparently, spots with smaller area sizes were more
jeopardized of having a serious relative number of dele-
tions, check for example the 13 spots with critical 'stabil-
ity' values below 0.7.

In Figure 5, the points belonging to spots 402 and 788 are
encircled (left 402, right 788). Spot 402 is a rather large
green spot with a big yellow artifact on top of it. Figure 6
shows the target area of that spot, as a respective cut out of
the original image. Due to mask matching, 42 of 227 fore-
ground pixels were deleted. This included the whole
artifact, see Figure 7 for the bivalence plot after mask
matching. Here again, pixels in foreground and back-
ground are plotted as white and black squares, respec-
tively. The deletion of the huge artifact was desirable, but
decreased the 'stability’ to 0.815. Only 59 other spots had
even lower values. Out of all spots with larger foreground
area size before mask matching, only spot 788 had a
smaller 'stability'. Figure 8 shows the bivalence plot. Obvi-
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Figure 4

Accumulated pixel deletions. Plot of pixel deletions caused
by mask matching, accumulated separately for every pixel
over all 864 spots.

ously the identified spot area was large compared to the
bivalence mask. The analysis of the two spots demon-
strates the success of the algorithm. It also makes clear that
a 'stability' value around 0.8 is not critical, if the fore-
ground area size is rather large.

In Figures 7 and 8 we also see that parts of the deleted
areas resemble almost ring-shaped regions between fore-
ground and background. This is a designed property of
many other microarray image analysis tools. Here, it is an
unforced consequence of the algorithm, which adds to the
confidence in the strength of this approach.

Comparative study

On a real microarray image with 864 genes and 2 repli-
cates for every gene (1728 spots in total, Figure 9 shows
the top left corner of the image), the extended pixel clus-
tering approach was compared to the Spot image analysis
software (Buckley [9]). The algorithms implemented in
Spot are based on a background estimation method called
'morphological opening' and on 'seeded region growing'
by Adams and Bischof [10], for details see Buckley [9] and
Yang et al. [11].

From the image analysis, two final intensity measure-
ments for red and green (R and G) are obtained for every
single spot. In an MA plot, the log ratio M = log,(R/G) is
plotted against the average log intensity A = log,(RG)/2. In
the present study, two replicates are available for every
transcript. The reproducibility of values is used to judge
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Relative foreground loss due to mask matching
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Figure 5

Distribution of 'stability' values. 'Stability' values for a micro-
array with 864 spots. For every spot, the foreground area
size is plotted against the 'stability'. The points that belong to
spots 402 and 788 are encircled.

the performance of the image analysis algorithms. Figure
10 shows MA plots obtained with HYBRID PXy,,zans (toP)
and with Spot (bottom), where the two measurements for
every gene are connected by a line. Short lines indicate
good stability of the procedure. A short horizontal dis-
tance stands for small intensity differences between the
two replicates, and a short vertical distance means that
both replicates produce similar estimates for the log ratio
M.

It turns out that both methods lead to a satisfying repro-
ducibility for M (log ratio) estimates, but for A (log inten-
sity) estimates the differences are huge, at least for a small
portion of the genes. This is partly due to the bad quality
of the microarray image that was chosen on purpose to
challenge both algorithms. Other reasons are biological
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Figure 6
Spot with large artifact on top. Green spot with a large yel-
low artifact on top that impairs results of the image analysis.

and experimental variance, and last not least the quality of
the algorithms. To directly compare both approaches, we
calculated the absolute difference between the two M val-
ues, since the log ratio M is the most interesting measure-
ment for investigators analyzing microarray data. The
results are shown in Figure 11. Both for HYBRID PXy,,ans
(top) and for Spot (bottom), the absolute differences are
plotted on a log,-scale against the intensities A. For both
data sets, a lowess fit is calculated. This fit is a scatter-plot
smoother that is popular also for microarray data
normalization. The two lowess fits are plotted together in
Figure 12 for better comparability. The solid line belongs
to pixel clustering and the dashed line to Spot.

Figure 12 wunderlines the differences of the two
approaches. The Spot algorithm produces only values
with higher intensities, due to the treatment of the back-
ground, whereas HYBRID PXy, rans l€ads to intensity esti-
mates in the whole potential intensity range. This is an
advantage of the pixel clustering method, since for the
low-quality array used for the comparison, the true
expression of many genes is in fact rather low. The
estimated relative expression of such genes is regressed
towards 1 by the Spot software. The clustering method
thus leads to a finer resolution for low expression values,
whereas Spot is less sensitive to systematic errors. Natu-
rally, in the low intensity range we observe a worse
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Pixel selection for spot 402 with large artifact
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Figure 7

Classification result for spot 402. Selected foreground
(white) and background (black) pixels for green spot 402
with a large artifact on top.
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Pixel selection for large spot 788
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Figure 8

Classification result for spot 788. Selected foreground
(white) and background (black) pixels for the relatively large
spot 788.

reproducibility for the clustering method, see Figure 11.
For intermediate intensities (in the range 8-10), the
reproducibility is extremely similar for both algorithms
(see Figure 12), and for high intensities, pixel clustering
performs better. One has to take into account the smaller
number of genes in this range, though.

To summarize, both algorithms create similar reproduci-
bility values, which underlines the competitiveness of the
new HYBRID PXy,pans algorithm. One problem of pixel
clustering should be discussed, though. In some cases, the
deletion step through mask matching leads to spots with
only very few pixels in the foreground area. This is the case
for example, if a large artifact in the background contains
most of the high-intensity pixels. This also is the reason
for the four long lines in the bottom right corner of Figure
10. In all cases, for one of the two replicates the problem
mentioned above appears and the spots should be
flagged.

Finally, we stress the improvement of the algorithm in
comparison with the original simple pixel clustering
approach introduced in Bozinov and Rahnenfithrer [12].
Without the extensions described in the present paper,
about 20% of the spots in the low-quality array have to be
flagged, because less then 5 pixels constitute for the fore-
ground area. Again, this is caused by small artifacts with a
very high intensity. The repetitive clustering eliminates
this problem. The mask matching step is a good control,
if now correct parts of the spot target area are assigned to
foreground and background. For the low-quality array,
only four spots are left to be flagged. This demonstrates
the usefulness and the suitability of the proposed
modifications.

Conclusions

The proposed HYBRID PXyrans algorithm represents a
true hybrid microarray image analysis solution. Originally
being a pure histogram method, the important shape
aspect is included through the mask matching step. We
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Figure 9

Microarray image of low quality. Microarray image with repli-
cated spots. The whole array consists of 4 blocks, the Figure
shows the top left block with 216 replicated spots that are
arranged in two blocks next to each other. The expression
values on the left side and on the right side should thus
coincide.

use indicator values of the clustering results instead of
original intensity values to construct the bivalence mask.
This is favorable, since then all microarray spots weigh
equally. Single low-quality spots with high intensities can-
not impair the results, and many spots with low intensi-
ties add valuable information.

Using a high quality array, the 'stability’ values provide a
good check of the ability of the algorithm to identify spot
areas. The median stability of 0.945 for our real data set
demonstrates the feasibility of the algorithm. With this
knowledge, we actually use the 'stability’ as a reliable
quality measure for the microarray image itself, both for
single spots and for the whole array. Spots with a low 'sta-
bility' are flagged. Another criterion to flag spots could be
a small absolute foreground area size relative to the biva-
lence mask.

On a low-quality microarray image with replicates, the
new algorithm is compared to the Spot software. The
results show the competitiveness of the extended pixel
clustering algorithm with established methods. Like other
approaches, this one can easily be generalized for different
types of arrays, for example with non-competitive hybrid-
izations. The only adjustment then, is to simply apply the
cluster algorithm to the one-dimensional values.

http://www.biomedcentral.com/1471-2105/5/47

MA plot for replicates, PxKmeans
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MA plots. MA plots for HYBRID PXyueans (top) and Spot
(bottom), measurements of two replicates are connected by
lines. In both plots, for every spot the mean of the measure-
ments for red and green intensity is plotted against their
ratio, on a log2-scale.

The software used for the analyses in this paper is availa-
ble upon request from the authors. The program was writ-
ten in Java and thoroughly tested on Windows.

Methods

Clustering microarray images

A fully automated microarray image analysis consists of
spot target area determination, partitioning of these areas
into foreground and background, and intensity extrac-
tion. We first describe the Gridclus algorithm that correctly
identified grids in a variety of real microarray images.
Then, the original pixel clustering algorithm for spot find-
ing and quantification is described, as a basis for its exten-
sion, the new hybrid approach.

Grid clustering
Two two-dimensional arrays of intensity values are given,
one for the red channel and one for the green channel. For
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M differences between replicates, PxKmeans
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Comparative plot for differences of M values for repeated
measurements. Plot of mean intensities against absolute dif-
ferences of log-ratios between two replicates, on a log2-
scale.

a pixel in row i; and column i,, let R(i;, i,) and G(i;, i,)
denote the intensity values for the red and the green
channel, with i, = 1..N; and i, = 1..N,. Here, N, and N,
denote the total number of pixel rows and columns,
respectively, on the entire microarray.

Definition: GRIDCLUS
Iterative clustering of all pixels into foreground and
background

Define m, := (min(R), min(G)) and m, := (max(R),
max(G)). Apply the k-means cluster algorithm with k = 2
to the N; - N, two-dimensional values (R(i;, i,), G(i;, 1,)).
Choose mgand m, as starting points for k-means. The out-
put is an indicator function I(i;, i,) that assigns a cluster
membership value to every pixel: 1 (for foreground) to
pixels in the cluster with the larger average intensity and 0
(for background) to pixels in the other cluster. Calculate
the fraction of pixels f in the foreground by dividing the
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Figure 12

Lowess fits to scatter-plots from Figure I 1. A local linear
scatter-plot smoother (lowess) is applied to the data from
Figure I1.

number of foreground pixels (I(i;, i,) = 1) by the total
number of pixels N, - N,. As long as f is smaller than a
prefixed value (e.g. 0.2), repeat clustering the group of
background pixels from the previous step into foreground
and background pixels and reassign the former back-
ground pixels, increasing f in every step.

Assignment of pixel rows and columns to foreground or
background

For every pixel row or column /, calculate the correspond-
ing fraction of foreground pixels f.. Apply smoothing to
the fractions f; with a fixed window size (e.g. w = 7), i.e.
calculate averages of w contiguous fractions. Then, assign
aline to foreground, if f;>f, and to background, if ;< f. The
output are two binary vectors, one for columns and one
for rows, that assign all lines to foreground or to
background.

Calculation of target area separation lines

Both for rows and columns, determine intervals of contig-
uous background lines. Calculate means of those intervals
as spot target area separation lines and adjust leftmost and
rightmost separation line based on median separation
line distance.

Determination of fixed size spot target areas
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Between each pair of contiguous target area separation
lines, determine the maximum of the smoothed fractions
f;- This is the estimated midpoint of a spot row or column,
respectively. Choose a fixed size area (e.g. 25 x 25 pixels)
around the estimated midpoints as final spot target areas.

In some cases, a further refinement is necessary. Microar-
ray grids are often slightly rotated. Thus, out of a set of
potential rotation angles one is chosen that maximizes an
optimization criterion for best separation into foreground
and background lines. The choice of the smoothing con-
stant w = 7 is rather conservative and guaranteed for all
tested examples, that contiguous sequences for the fore-
ground and background regions are found. For high-qual-
ity arrays, a value of w = 3, in some cases even no
smoothing can produce the same results. The fixed size
area of 252 pixels has to be adjusted, if the true average
spot size is significantly different. For the clustering
algorithms it is most convenient to choose an area that
consists of at least twice as many points as belong to the
true average spot size.

The feasibility of a basic version of Gridclus was demon-
strated on one real high-quality microarray image tiff-file
(Bozinov et al. [13]). In this old version, there was no iter-
ation in step 1. The iteration is needed only in the pres-
ence of few high-intensity outlier pixels to avoid an
extreme unbalanced segmentation into foreground and
background. Thus the specific value 0.2 for the minimum
portion of foreground pixels is not critical and can be used
for every array. Furthermore, step 4 was not present in the
old version. The centralization is essential for the mask
matching step in the hybrid spot clustering algorithm
described below. The extensions in Gridclus allow the
application to microarray images of a wider quality range.

Spot clustering

The basic spot clustering approach uses the k-means algo-
rithm. A more suitable version for typical impediments
encountered in microarray spots was developed by Bozi-
nov and Rahnenfithrer [12] using the algorithm PAM
(Partitioning around medoids, introduced by Kaufman
and Rousseeuw [14]) with a robust dissimilarity matrix.

Definition: PXieans (Pixel extraction with k-means)
Construction of initial representatives

Define starting midpoints m; = (Rg, Gg) and m; = (R,
Gy,), where Ry, and Gy, are the highest red and green inten-
sity values and R, and G, the lowest ones.

Determination of local optimum of cluster problem (k-
means)

http://www.biomedcentral.com/1471-2105/5/47

Repeat alternating the following two until

convergence:

steps

- Assign each data point to its closest of the two
midpoints.

- Calculate two new midpoints as the means of all points
assigned to the old midpoints. The outcome are two clus-
ter midpoints m, and m,.

Reduction
Let R and G, be the values of the cluster mean with
higher intensity values and R, and G, those of the other

one. Calculate (R - Ry,)/(Gf, - Gy,) as the final relative
abundance estimate.

Several refinements of this algorithm have been intro-
duced in the original paper, especially the use of the
median instead of the mean in step 3. This adjustment is
not justified in theory. A more theoretically based
approach replaces k-means by PAM. Here, steps 2 and 3
are inherently solved in one step. The cluster algorithm
minimizes an objective function and returns the corre-
sponding prototypes.

Definition: PXpay (Pixel extraction with Partitioning around medoids
(PAM))
Calculation of dissimilarity matrix of spot pixels

Calculate the Manhattan distances between all pairs of
pixels, i.e. the distance between two pixels is defined as
the sum of the absolute differences of red and green
intensities.

Construction of initial representatives

Build phase of PAM with Manhattan dissimilarity matrix.
Determination of local optimum of cluster problem

Swap phase of PAM.

Reduction

See PXyypanss Only cluster means are replaced by cluster
medoid pixels.

The analysis of real microarray spots showed that both
methods yield very similar final results in practice.
Whereas the refined PXy,,ans T€Presents a more heuristic
solution, the theoretically more meaningful use of PAM is
by far more time consuming and sometimes lacks stabil-
ity. In the following we refer to pixel clustering as imple-
mented in PXy,,pans. For related literature on the 2-center
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problem and cluster analysis we refer to Agarwal et al.
[15], Gordon [16], Haralick and Shapiro [17] and Jain et
al. [18].

Hybrid pixel clustering including the spot shape

Pixel clustering applied to real microarray images on a
larger scale disclosed two drawbacks. To address these
problems, the pixel clustering algorithm is extended by
two steps. We first present the problems and then the
improved algorithm.

Very few foreground pixels for low-quality spots

Sometimes spots are comprised of a few outlier pixels
with extreme high intensity, due to noise or generally low
foreground intensities. Consequently, very few pixels (less
then 20 in most cases) are assigned to foreground and the
rest to background. Many true foreground pixels are
missed, and the spot intensities are overestimated.

Missing incorporation of spot shape

Most spot shapes are recovered well by pixel clustering. In
some cases, however, regions within the spot target areas
are obviously incorrectly assigned, taking into considera-
tion the known theoretical circular shape of microarray
spots. In particular, artifacts in the background are
assigned to foreground and inner regions with low inten-
sities are assigned to background.

Definition: HYBRID PXymeans (Hybrid pixel extraction with k-
means)
Determination of starting values and applying k-means

See PXyveans:

Potential repeated clustering to increase number of fore-
ground pixels

Choose a minimum number m of pixels for the fore-
ground area, typically at least m = 50. As long as this
number is not reached, the set of background pixels alone
is continuously clustered into two groups and the brighter
group is assigned to foreground.

Pixel reduction through mask matching

All target areas have the same size by construction of the
grid clustering algorithm. For every pixel with a fixed posi-
tion in the target area, count the number f, for how many
spots of the array the pixel is considered to be in the fore-

ground. Calculate the average f of these values over all

pixels. Define the 'bivalence mask' as follows. If f >]_C, a
pixel in the mask is assigned to foreground, otherwise to
background. For a single spot, delete all pixels that are

http://www.biomedcentral.com/1471-2105/5/47

assigned to foreground in the spot and to background in
the mask and vice versa.

Reduction

See PXyypanss Only use medians instead of means and
omit pixels that are deleted due to mask matching in step
4.

Step 3 is designed to guarantee a minimum size for the
foreground area. The idea of step 4 is to overlay all single
spot clustering results in order to obtain more reliable
information through the aggregated results. The bivalence
mask represents a prototype for the average spot shape
(for an example see Figure 3). Note that frequencies are
not compared to the constant 1/2, but to the average value

f for all pixels. This can be interpreted as a statistical
method, based on the comparison with the null
hypothesis of random foreground or background mem-
bership. A convenient consequence of the mask matching
step is that pixels are divided into three groups instead of
two: Foreground, background and deletions. This is desir-
able, since it allows a separate treatment of artifacts and
their elimination from the further analysis.

Quality measure

To demonstrate the practical feasibility of this proceeding,
a suitable quality measure is introduced. In a perfect sce-
nario, all spots have the same shape, can be fully identi-
fied by the clustering algorithm, and no pixels are deleted
through mask matching. The deviation from this ideal
case illustrates, how well the algorithm works for a spe-
cific array.

Definition: STABILITY
STABILITY

For a fixed spot on the array, the stability s is defined as the
relative frequency of pixels in the foreground area that are
not deleted by mask matching in step 4 of the HYBRID
PXypmeans algorithm.

MEDIAN STABILITY

For a whole microarray, the median stability s is defined
as the median of all single spot stabilities s.

Obviously, it holds 0 <s<1and 0 < 5 < 1. Values close
to 1 indicate a high quality for the respective spot or array.
'Stability' is well suited as a quality measure, since the
original pixel clustering algorithm doesn't take the shape
into account at all. Thus the 'stability' represents a good
subsequent control for the correct assignment of the pix-
els. The 'median stability' is a meaningful scalar summary
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measure. Especially so-called black holes with higher
background than foreground intensities can be easily
detected. In such a situation, most pixels are deleted by
the mask matching step and the stability yields a number
close to 0. In general, low stability values can be caused
both by a failure of the algorithm and by poor array
quality.
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