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Abstract

Objective—The Penn Computerized Neurocognitive Battery (CNB) was designed to measure 

performance accuracy and speed on specific neurobehavioral domains using tests that were 

previously validated with functional neuroimaging. A crucial step in determining whether the 

CNB has attained its objective is to assess its factor structure. The goal of the present study was to 

evaluate the neuropsychological theory used to construct the CNB by confirming the factor 

structure of the tests composing it.

Method—In a large community sample (N = 9138; age range 8-21), we performed a correlated-

traits confirmatory factor analysis (CFA) and multiple exploratory factor analyses (EFA’s) on the 

twelve CNB measures of Efficiency (which combine Accuracy and Speed). To further explore the 

measures contributing to Efficiency, we then performed EFA’s of the Accuracy and Speed 

measures separately. Finally, we performed a confirmatory bifactor analysis of the Efficiency 

scores. All analyses were performed with Mplus using maximum likelihood estimation.

Results—Results strongly support the a priori theory used to construct the CNB, showing that 

tests designed to measure executive, episodic memory, complex cognition and social cognition 

aggregate their loadings within these domains. When Accuracy and Speed were analyzed 

separately, Accuracy produced three reliable factors: executive and complex cognition, episodic 

memory and social cognition, while speed produced two factors: tests that require fast responses 

and those where each item requires deliberation. The interpretability and statistical “Fit” of almost 

all models described above was acceptable (usually excellent).

Conclusions—Based on the well powered analysis from these large scale data, the CNB offers 

an effective means for measuring the integrity of intended neurocognitive domains in about one 

hour of testing and is thus suitable for large-scale clinical and genomic studies.
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The recent incorporation of genomics into clinical neuroscience has generated an 

unprecedented need for behavioral assessment of domains that can be linked to brain 

systems and serve as “biomarkers” of psychopathology (Insel & Cuthbert, 2009). The scale 

of such studies requires efficient computerized testing of a broad range of abilities using 

tests that have been validated with functional neuroimaging. Such “neurobehavioral probes” 

(Gur, Erwin and Gur, 1992) have been assembled into a computerized neurocognitive 

battery (CNB) in which these tasks have been adapted to assure adequate psychometric 

properties, such as reliability and validity (Gur et al., 2001, 2010) and its linkage to brain 

systems (Roalf et al., 2013). The CNB has been applied in large-scale genomic studies 

(Aliyu et al., 2006; Greenwood et al., 2007; Gur et al., 2007a,b; Almasy et al., 2008), 

treatment research (Gur et al., 2001b; Grant et al., 2013), and the military (Thomas et al., 

2013). Although its individual tests’ scores have been largely reliable (and their inferences 

valid), the overall latent structure of the battery has not been sufficiently evaluated. Using 

confirmatory and exploratory factor analysis, we aimed to examine the factor structure of 

the CNB, which is of paramount importance in justifying how the instrument is scored and 

interpreted.

The CNB currently comprises fourteen tests grouped into five domains of neurobehavioral 

function. These broad domains were selected because they represent well-established brain 

systems, and each test in the battery was used in functional neuroimaging studies to probe 

aspects of these domains (Roalf et al., 2013). There are three tests in each of four domains 

measuring “Executive Control,” “Episodic Memory,” “Complex Cognition,” and “Social 

Cognition” as summarized in Table 1. A fifth domain (Sensorimotor speed) was measured 

by two tests, but the current analysis examined accuracy and these tests only provide speed 

measures and were therefore not included. Here we examined the factorial structure of the 

CNB in a sample of over 9,000 individuals age 8 to 21 who were administered the CNB as 

part of their participation in the Philadelphia Neurodevelopmental Cohort (PNC; Gur et al., 

2012, 2013).

Methods

Sample

The PNC sample included children (age 8-21) recruited through an NIMH funded Grand 

Opportunity (GO) study characterizing clinical and neurobehavioral phenotypes in a 

genotyped prospectively accrued community cohort. All study participants were previously 

consented for genomic studies when they presented for pediatric services within the 

Children’s Hospital of Philadelphia (CHOP) healthcare network. At that time they provided 

a blood sample for genetic studies, authorized access to Electronic Medical Records (EMRs) 

and gave written informed consent/assent to be re-contacted for future studies. Of the 50,540 
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genotyped subjects, 18,344 met criteria and were randomly selected, with stratification for 

age, sex and ethnicity.

The sample included ambulatory children in stable health, proficient in English, physically 

and cognitively capable of participating in an interview and performing the computerized 

neurocognitive testing. Youths with disorders that impaired motility or cognition (e.g., 

significant paresis or palsy, intellectual disability) were excluded. Notably, participants were 

not recruited from psychiatric clinics and the sample is not enriched for individuals who 

seek psychiatric help. A total of 9,138 enrolled in the study between 11/2009 - 10/2011 and 

were included in this analysis. Participants provided informed consent/assent after receiving 

a complete description of the study and the Institutional Review Boards at Penn and CHOP 

approved the protocol.

CNB Tests and Administration

The tests included in the CNB have been described in detail in Gur et al (2010, 2012). The 

tests are briefly described below by domain:

1. Executive—The Penn Conditional Exclusion Test (PCET; Kurtz et al., 2004) measures 

the executive functions of abstraction and mental flexibility (ABF), critical for effective 

problem solving. It assesses the ability to derive principles and concepts from feedback, as 

well as the ability to detect and adjust to changing rules. The PCET uses the “odd man out” 

paradigm, in which participants must determine which object in a group does not belong. 

The exclusion rule can be based on the shape or configuration of the objects (e.g. a square 

would not fit in with three stars), the size of the objects, or the thickness of the lines 

outlining the objects. The participant is given feedback (“correct” or “incorrect”) after each 

response, and the test-administration program automatically changes the exclusion rule after 

ten consecutively correct responses (without informing the participant). The participant must 

then use the feedback to determine what the new exclusion rule is, and after ten 

consecutively correct responses, the rule is changed again. The test is scored based on 

demonstrated learning (proportion of correct responses multiplied by the number of learned 

rules; 1 is added to accommodate participants who were unable to discover any rule).

The Penn Continuous Performance Test (PCPT) measures vigilance and visual attention 

(ATT) independent of working memory or perceptual factors. Vertical and horizontal lines 

in 7-segment displays appear on the screen (at a rate of one second each), and the participant 

must press the spacebar when the lines are configured as complete numbers (first half of 

task) or complete letters (second half of task). Each half lasts 1.5 minutes, and during each 

one-second response window, the stimulus is presented for only 300 milliseconds (leaving 

700 milliseconds of blank screen).

The Penn Letter N-Back Test measures working memory (WM), the ability to keep and 

refresh goal-related information. Participants attend to a continual series of letters that flash 

on the screen (one at a time) and press the spacebar according to three different rules (called 

the 0-back, 1-back, and 2-back). During the 0-back condition, the participant must simply 

respond to a currently present target (“X”). During the 1-back condition, he/she must press 

the spacebar when the letter on the screen is the same as the previous letter. During the 2-
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back condition, he/she must press the spacebar when the letter on the screen is the same as 

the letter before the previous letter (i.e. 2 letters back). In all trials, the inter-stimulus interval 

(ISI) is 2.5 seconds, and the stimuli (letters) themselves are presented for 0.5 seconds each. 

The participant practices all three principles before testing.

2. Episodic memory—The Penn Word Memory Test (PWMT) measures episodic 

memory for verbal material (VMEM). In the first part of this test, participants are shown 20 

words (for one second each) that they will be asked to identify later. During the recognition 

phase, participants are shown a series (one at a time) of 40 words, 20 of which are the 

stimuli they were asked to memorize, and the other 20 are distractors (matched for length, 

imageability and concreteness). For each word, the participant must decide whether he/she 

has seen the word in the memorization phase on a four-choice scale (“definitely not,” 

“probably not,” “probably yes,” or “definitely yes”).

The Penn Facial Memory Test (PFMT) measures episodic memory for faces (FMEM). The 

task is identical to the Penn Word Memory Test (above), except that the participant is asked 

to memorize faces instead of words. PFMT distractor faces are matched for age, ethnicity, 

and gender.

The Visual Object Learning Test (VOLT) measures episodic memory for shapes (SMEM). 

The task is nearly identical to the PWMT and PFMT (above), except that the participant is 

asked to memorize 10 Euclidean shapes instead of 20 words or faces.

3. Complex cognition—The Penn Verbal Reasoning Test (PVRT) measures language-

mediated complex cognition ability (LAN). The task involves a series of analogy problems 

patterned after Educational Testing Service factor-referenced test kit.

The Penn Matrix Reasoning Task (PMRT) measures nonverbal reasoning ability (NVR) 

using matrix reasoning problems as used in the Raven’s Progressive Matrices Test (Raven, 

1989; Raven, 2000; Raven, Raven, & Court, 2000) and the Matrix Reasoning subscale of the 

WAIS-III (Raven, Raven, & Court, 2003).

The Penn Line Orientation Test (PLOT) measures the complex reasoning domain of spatial 

ability (SPA). The participant is shown two lines on the computer screen that differ in length 

and orientation, and must press a button to rotate one of the lines until its orientation (angle 

relative to a horizontal line) is the same as the other (non-rotating) line.

4. Social Cognition—The Penn Emotion Identification Test (EMI) measures the social 

cognition domain of emotion identification - specifically, the ability to decode and correctly 

identify facial expressions of emotion. Participants are shown 40 faces (one at a time), and 

must determine whether the emotion expressed by the actor’s face is happiness, sadness, 

anger, fear, or none at all. There are 4 female 4 male faces for each emotion (4 × 2 × 5 = 40).

The Penn Emotion Differentiation Test (EMD) measures the social cognition domain of 

emotion intensity differentiation - the ability to decode the intensity of facial expressions of 

emotion. Participants are shown two faces at a time, both expressing the same emotion, and 

must determine which of the two faces expresses the emotion more intensely. Differential 
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intensity was obtained by morphing a neutral face to one of four emotions (happy, sad, 

anger, fear).

The Penn Age Differentiation Test (AGD) measures the social cognition domain of the 

ability to decode the age of a face. Participants are shown two faces at a time, both neutral, 

and must determine which of the two faces is older. The stimuli were constructed from 

young faces morphed into old faces, providing graded levels of difficulty.

Data analysis

Accuracy and speed values were recorded and entered into a relational database (Oracle), 

Raw accuracy and speed values were transformed to their standard equivalents (z-scores) 

based on means and SDs for the entire sample (z-scores for median response time were 

multiplied by −1 to produce Speed values where, as for accuracy, higher scores reflect better 

performance). Unstandardized descriptive statistics are shown in Table 2. All confirmatory 

and exploratory factor analyses were performed with Mplus (Version 7; Muthén & Muthén, 

2012) using maximum likelihood (ML) estimation. Because all variables in the present study 

were continuous z-scores that departed from normality only minimally, the robust ML 

estimator (MLR) was not used. The specific scores being analyzed reflect efficiency, which 

is the sum of an individual’s standardized accuracy and speed scores. For example, if an 

individual had an accuracy score of 2.50 (very accurate) and a speed score of −2.50 (very 

slow), his/her efficiency score would be 0.

Results

Confirmatory factor analysis

Methodologically, the most rigorous step in evaluating the latent structure of a battery is to 

estimate a confirmatory model based on theory. Researchers often base confirmatory 

analyses purely on their own exploratory analyses; however, given that the CNB was 

designed explicitly to measure four neurobehavioral domains, we began by testing a theory-

based, 4-factor confirmatory model. Note that in contemporary psychometric studies, it is 

unusual to present a confirmatory analysis before presenting any exploratory analyses. In 

this case, however, the hypothesized structure of the battery is based on a very specific 

neuropsychological theory. Thus, the goal of the CFA presented in this section is truly to 

confirm previously articulated claims about brain networks related to specific domains of 

cognitive performance. That is, the order in which an investigator presents confirmatory and 

exploratory analyses is a matter of preference, and depends on what he/she is trying to 

“confirm.” Presenting confirmatory analyses after exploratory analyses implies that one is 

trying to confirm the exploratory analyses themselves; whereas, presenting confirmatory 

analyses first implies one is trying to confirm an a priori theory. Here, we take the latter 

approach, because the hypothesized CNB structure is based in neuropsychological theory.

Figure 1 shows the standardized results of the four-factor confirmatory model where factors 

are free to correlate - a “correlated factors model.” The fit of the model is acceptable by 

conventional standards (Hu & Bentler, 1999). The comparative fit index (CFI) is 0.95, the 

root mean square error of approximation (RMSEA) is 0.055 ± 0.0002, and the standardized 
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root mean residual (SRMR) is 0.030. Fit indices for this model and all subsequent models 

presented can be found in Table 6. Additionally, all loadings are moderate or strong and in 

the hypothesized direction. The inter-factor correlations are also strong, suggesting an 

underlying general factor that influences all responses. Indeed, the high correlation (0.94) 

between executive functioning and complex cognition suggests that perhaps only three 

factors are necessary to explain the correlations among the CNB scores. This is because 88% 

(0.942) of executive functioning is explained by complex cognition (and vice versa), 

suggesting they are mostly the same construct. Therefore, we sought to explore the structure 

further.

Preparation for exploratory analyses: How many factors?

Before exploring the latent structure of a battery, one must estimate the number of factors 

necessary to explain a satisfactory amount of the covariance among the items (or tests, in 

this case). In the CFA described above, it was not necessary to use any empirical methods to 

determine the number of factors, because that number (4) was determined by theory.

If the main goal is to explore the data, several numeric methods exist for estimating the 

optimal number of factors (see Hoyle & Duvall, 2004). The method often regarded as most 

rigorous is parallel analysis (Horn, 1965; Peres-Neto, Jackson, & Somers, 2005), which 

compares the progressive eigenvalues of the data being analyzed to the eigenvalues of 

randomly-generated data of the same dimensions. The rationale is that one should not 

extract factors beyond the point of explaining variance that could be explained by random 

chance. Figure 2 shows the parallel analysis results (in a scree plot) for the CNB efficiency 

data using both principal components and maximum likelihood factor extraction. As can be 

appreciated from Figure 2, the first factor explains a relatively large amount of the 

covariance, indicating that it might be reasonable to treat all twelve scales as belonging to a 

single dimension. However, the parallel analysis suggests that four factors are necessary to 

account for a sufficient amount of covariance, which is indicated by the fact that four factor 

analysis eigenvalues (triangles) lie above the lower dotted line.

Another common method used to determine the appropriate number of factors is to estimate 

a full range of solutions (e.g. 1 – 4 factors) and examine them for feasibility and 

interpretability. In practice, this is probably the most common method for selecting an 

exploratory factor solution, because estimating one additional model (changing only the 

number of factors) is easy and fast with current software. Also, it can often be useful to see 

multiple solutions; indeed, when evaluating the structure of a battery, it would probably be 

unwise to inspect only one exploratory solution.

Exploratory factor analysis of Efficiency scores

Despite the acceptable fit of the confirmatory model above, it is possible that exploratory 

analysis will reveal further subtleties about the structure of the CNB. Table 3 shows the 

unidimensional, 2-, 3-, and 4-factor exploratory solutions of the CNB efficiency scores using 

an oblique rotation (direct oblimin with default δ = 0). A common way to evaluate factor 

solutions is to examine their fit indices, and, with the exception of the unidimensional 

solution, all solutions in Table 3 are at least bordering on acceptable fit. Specifically, the 
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CFI’s of the 1-through 4-factor solutions were 0.86, 0.93, 0.97, and 0.99, respectively; their 

RMSEA’s were 0.087, 0.070, 0.049, and 0.036, respectively; and their SRMR’s were 0.050, 

0.033, 0.021, and 0.012, respectively.

The poor fit of the unidimensional solution suggests that the parameter estimates should be 

interpreted with caution. Inspection of the modification indices (Sorbom, 1989) reveals 

several correlated residuals, which is what one expects if there are additional factors that 

need to be modeled. Such correlated residuals indicate that the unidimensional loadings are 

inflated. Note that modification indices are normally used in confirmatory (not exploratory) 

factor analysis; however, because the unidimensional CFA is identical to the unidimensional 

EFA, one can obtain modification indices in this special case of EFA. With the above 

cautions in mind, however, one should at least note the two largest and two smallest 

loadings - specifically, Emotion Differentiation and Language had the largest (0.71 and 

0.64, respectively), and Attention and Working Memory had the smallest (0.40 and 0.48, 

respectively).

When two correlated factors are extracted, the Executive measures (ABF, ATT, and WM) 

and Complex Cognition (LAN, NVR, and SPA) tests remain together as Factor 1, and the 

Episodic Memory tests (VMEM, FMEM, and SMEM) “break away” to form their own 

factor. Notably, without exception, all three Social Cognition tests (EMI, EMD, and AGD) 

cross-load on both factors. Note also that EMD favors the Executive/ComplexCog factor, 

whereas EMI prefers the Memory factor. The three-factor solution is very similar to the two-

factor solution, except that the three Social Cognition tests break away to form their own 

factor. Note, however, that EMI still prefers the Memory factor, which is consistent with the 

finding that memory impairment in clinical populations is associated with emotion-

recognition deficits (Gur et al., 2006; Hargrave, Maddock, & Stone, 2002; Kohler et al., 

2005).

Finally, when four factors are extracted, the solution almost perfectly matches the theory 

used to construct the Penn CNB. The only clear exception is the moderate loading of 

Abstraction and Mental Flexibility (ABF) on the Complex Cognition factor rather than its 

intended factor (Executive Functioning). It appears that the Penn Conditional Exclusion 

Test, which measures ABF, requires complex cognition in addition to executive control. It 

also allows the test-taker more time to contemplate the answer than the CPT (ATT) or 

Letter-N-Back (WM). A second notable cross-loading is the 0.28 loading of LAN on factor 

1 (Executive). This finding is consistent with evidence implicating working memory and 

attention in reading (Casco, Tressoldi, & Dellantonio, 1998; Daneman & Carpenter, 1980; 

Vidyasagar, 2004). Finally, the cross-loading of SMEM on factor 3 (Complex Cognition) is 

consistent with the established association between spatial memory and IQ (Passolunghi & 

Lanfranchi 2012; Shang & Gau 2011). The general conformity of the four-factor solution to 

the theory used to design the CNB adds support to the confirmatory results reported above. 

Especially important is the finding that, despite the very large correlation between the 

Complex Cognition and Executive Functioning factors (see Figure 1), they do split into two 

factors (although imperfectly) when explored using oblimin rotation.
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Exploratory factor analysis of Accuracy and Speed scores

The analyses reported above combined accuracy and speed, to form measures of 

“efficiency.” Such measures are most comparable to previous studies using traditional 

batteries, where accuracy and speed are confounded. It could be informative, however, to 

examine the factor structure of the CNB accuracy and speed measures separately to answer 

two important questions. First, do the accuracy and speed scores produce factor patterns that 

are interpretable enough to warrant separate accuracy and speed scales capable of predicting 

outcomes above and beyond the efficiency scores? This would suggest a need for further 

investigation. Second, do the patterns of accuracy and speed scores match those of the 

efficiency scores, i.e., the structures shown in Table 3 follow inevitably from combining 

accuracy and speed, or do they differ, i.e., the structures in Table 3 are the result of speed 

and accuracy interacting differently for each test? This issue is related to the question of how 

accuracy and speed interact with each other. For example, accuracy and speed might be 

negatively correlated, implying a speed-accuracy trade-off, or their relationship might 

depend on the type of test, in which case it would be unlikely that the structures of speed or 

accuracy alone will mimic the structure of efficiency. We do not directly address the 

question of how accuracy and speed relate, especially because such an investigation would 

require analysis within individuals. However, the results provide some hints.

Table 4 shows the unidimensional, 2-, 3-, and 4-factor exploratory solutions of the CNB 

Accuracy scores using an oblique rotation (direct oblimin with default δ = 0). As in the case 

of the Efficiency scores (Table 3), one should first examine the fit indices of the four 

solutions. With the exception of the unidimensional model, all solutions in Table 4 fit at 

least moderately well. Specifically, the CFI’s of the 1-through 4-factor solutions were 0.87, 

0.94, 0.98, and 0.99, respectively; their RMSEA’s were 0.075, 0.055, 0.034, and 0.028, 

respectively; and their SRMR’s were 0.045, 0.031, 0.016, and 0.011, respectively. Because 

of the poor fit of the unidimensional model, its loadings should be interpreted with caution 

as likely to be inflated. Nonetheless, it is worth noting that the two largest loadings are for 

Language (0.68) and Nonverbal Reasoning (0.65), and the two smallest are for Emotion 

Identification (0.31) and Attention (0.34).

When two correlated factors are extracted, the social cognition variables (EMI, EMD, and 

AGD) clearly form their own factor with no cross-loadings over 0.20. The 0.60 correlation 

between the factors, however, indicates that a strong general factor (“accuracy”) underlies 

all scale scores. Note also that EMI loads substantially weaker on F2 than the other two 

social cognition variables that define F2.

When three correlated factors are specified, the memory measures (VMEM, FMEM, and 

SMEM) form their own factor (F2), the social cognition scales remain together (F3), and F1 

is defined by the remaining six tests. These remaining six tests defining F1 were designed to 

measure the neurobehavioral functions of executive control (ABF, ATT, and WM scales) 

and complex cognition (LAN, NVR, and SPA tests). This suggests that, of the four 

neurobehavioral functions, the two that are most similar to each other are executive control 

and complex cognition. Only two cross-loadings were >0.20: EMI loads 0.25 on the 

memory factor (F2), and SMEM loads 0.28 on the executive/cognition factor (F1). Finally, 
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note that the correlations among the three factors remain moderate-to-high, suggesting a 

general factor underlying all test scores.

The 4-factor solution shown in Table 3 is less interpretable than the other three solutions, 

because F4 does not have any strong loadings and does not correlate highly with any of the 

other factors. It also remains nearly identical to the 3-factor solution, which suggests that the 

3-factor solution is probably optimal. We evaluated that possibility using post hoc 

confirmatory analyses.

We estimated the same four models as above using the CNB Speed scores. Table 5 shows 

the unidimensional, 2-, 3-, and 4-factor exploratory solutions of the CNB Speed scores using 

direct oblimin rotation with default δ = 0. As in the case of the Efficiency and Accuracy 

scores, the unidimensional model (CFI = 0.82; RMSEA = 0.098; SRMR = 0.061) is 

insufficient to explain the relationships among the Speed scores, and its loadings should 

therefore be interpreted with caution. It is noteworthy, however, that the highest and lowest 

loadings in the unidimensional Speed model do not come close to matching those in the 

Accuracy model. Whereas LAN and NVR were the best indicators of how accurate 

participants would be overall, FMEM, EMD, and AGD were the best indicators of how fast 

they would be (loadings = 0.71, 0.68, and 0.68, respectively). Further, whereas ATT and 

EMI were the worst indicators of how accurate participants would be overall, WM and NVR 

were the worst indicators of how fast they would be (loadings = 0.26 and 0.33, respectively).

When two Speed factors are extracted, the fit (CFI = 0.89; RMSEA = 0.085; SRMR = 

0.039) begins to approach acceptable levels (using liberal criteria). It also makes intuitive 

sense: the tasks requiring constant vigilance (ATT, WM, and MOT) form their own factor, 

while all other tasks remain together. Note also that the correlation between the two speed 

factors (0.38) is much lower than when two accuracy factors are extracted (0.63; see Table 

4), indicating that the two speed-related processes are relatively separate.

When three Speed factors are extracted, the fit (CFI = 0.95; RMSEA = 0.059; SRMR = 

0.024) becomes acceptable by typical standards. The structure remains mostly the same as in 

the 2-factor solution, except that the three Memory tasks break away from the non-high-

vigilance tasks to form their own factor. This could indicate that the speed with which 

participants are willing to commit to a memory-related response involves a process that is 

somewhat unique from the process involved in committing to other low-vigilance tasks 

(such as Emotion Differentiation). Note, however, that factors 2 and 3 are highly correlated 

(0.69), indicating that, the difference is not substantial.

Finally, the 4-factor solution in Table 5 has the same combination of excellent fit yet poor 

interpretability as the 4-factor model of Accuracy (Table 4). That is, despite the excellent fit 

of the model (CFI = 0.99; RMSEA = 0.040; SRMR = 0.015), the fourth factor contributes 

very little: it is weak (max loading = 0.33) and is not correlated to the other three factors 

(max intercorrelation = 0.18). Thus, interpretation of the 4-factor solution is probably not 

worthwhile beyond pointing out that the three factors from the 3-factor solution remain 

strong in the 4-factor solution.
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Post hoc confirmatory bifactor analysis

We began our investigation of the CNB structure with a theory-based confirmatory model of 

Efficiency scores (Figure 1) in which the four neurobehavioral domain factors were allowed 

to correlate. Such a model is appropriate for testing the theoretical basis of the battery, but if 

one wishes to use the measurement model within a larger structural equation model—e.g. a 

model in which the latent CNB factors predict an external outcome—the correlations among 

the factors can become problematic. Thus, in an effort to provide future investigators with a 

confirmatory model that does not come with the drawback of inter-factor correlations, we 

sought a model that controls for these correlations, allowing the sub-factors to be 

orthogonal. This can be accomplished by modeling a general (overall) factor along with the 

neurobehavioral function sub-factors.

A convenient way to model a general factor and the individual neurobehavioral function 

factors is to use a bifactor model (Holzinger & Swineford, 1937; also see Reise, 2012; 

Reise, Moore, & Haviland, 2010). In a typical bifactor model, each variable (in this case, 

test score) loads on two factors, one general and one specific. All factors are orthogonal, 

such that the specific factors (in this case, neurobehavioral domains) explain only the 

covariance not explained by the general factor. Likewise, the general factor (overall 

performance) explains the covariance among all twelve test scores independent from the 

covariance explained by the specific neurobehavioral domains. That the specific factors are 

orthogonal after controlling for the general factor is a key strength of the bifactor model, 

because it allows one to test the relationships between the general factors and important 

external variables (e.g. gray matter density of a specific brain region of interest) without the 

“contamination” caused by general performance. Obtaining such an independent measure of 

a specific type of neurocognition is crucial in testing the validity of a battery.

The exploratory analyses of Efficiency scores indicated that one test (ABF) does not load on 

the factor for which it was intended (Executive Functioning), but rather loads with the three 

Complex Cognition tests. Given this discovery, we can build a better-fitting confirmatory 

model (post hoc) that we can later use to test the structural validity of the CNB. Such an 

approach might seem puzzling, given the good fit of the model in Figure 1, in which ABF 

loads on Executive Functioning, as theoretically intended. One might ask, why not keep the 

assignment of tests to neurobehavioral functions the same in the bifactor model as they were 

in the original correlated-traits model? This is a legitimate question, and if the exploratory 

analysis (Table 3) left any doubt as to where ABF should load, the best approach would 

probably be to assign tests to neurobehavioral functions as indicated in Figure 1. However, 

the exploratory analyses unambiguously indicate that ABF should load on Complex 

Cognition. Indeed, when a bifactor model is specified in which ABF loads on Executive 

Functioning, Mplus encounters computational problems that can be fixed only by placing 

constraints on the model.

Figure 3 shows the 4-factor bifactor model of the CNB Efficiency scores. The fit is 

acceptable (CFI = 0.96; RMSEA = 0.054 ± 0.002; SRMR = 0.029), and comparisons of the 

information criteria to those of the correlated traits model (Figure 1) favor the bifactor 

model. Specifically, the Akaike Information Criterion for the correlated traits and bifactor 

Moore et al. Page 10

Neuropsychology. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models are 362928 and 362745, respectively, and the Bayesian Information Criteria are 

363228 and 363080, respectively.

The overall conclusions to be drawn from these results are very similar to those suggested 

by the 4-factor correlated traits model. Specifically, a strong general factor (“Efficiency” or 

“Performance”) explains most of the covariance among all twelve scales, and the covariance 

not explained by that factor is explained by four neurobehavioral function factors. Here, 

however, the Abstraction and Mental Flexibility test (ABF) is now loading on the Complex 

Cognition factor rather than the Executive Control factor. Also, note that because an 

orthogonal factor cannot be identified with only two indicators, the loadings of Attention 

and Working Memory on the Executive Control factor had to be constrained to equality.

The bifactor model provides some unique insights into the CNB structure. First, Social 

Cognition factor in Figure 1 is dominated by EMD (loading=0.79), whereas in the bifactor 

model (Figure 3) it is dominated by AGD (loading = 0.50). This is because much of the 

variance explained by EMD in the correlated-traits model shifted to the general factor in the 

bifactor model, suggesting it is a strong indicator of the overall trait measured by the CNB 

(cognitive performance). A second insight provided by the bifactor model pertains to the 

general factor itself—indeed, the general factor loadings are excellent indicators of which 

tests are the “best overall.” Using this standard, Figure 3 suggests that the language 

reasoning and emotion differentiation scores are the best measures of general performance, 

followed closely by Emotion Identification. The worst indicator of general performance is 

Attention.

Finally, an important strength of factor modeling (especially bifactor modeling) is that it 

allows for informed calculation of sub-scale scores. Rather than relying exclusively on 

theory to create sub-scales, one can use the information gathered from factor analysis to, a) 

determine which items (or tests) should compose a score, and b) weight the items such that 

their relative contributions to the score variance appropriately reflect their correlations with 

the theoretical factor itself. The bifactor model is especially useful for calculating subscale 

scores, because its factors are orthogonal, i.e., an investigator could use them simultaneously 

in a predictive model (such as regression). The problem, however, is that factor scores must 

be well-determined in order to acquire the properties (e.g. orthogonality) of the factors 

themselves (see Grice, 2001), which is why indices of factor score determinacy are 

important.

The most common way to measure the determinacy of a factor score is to calculate the 

correlation (ρ) between that score and the theoretical factor used to calculate it. (See Grice, 

2001, for an explanation of why this correlation is not 1.00.) What is considered an 

“acceptable” value of ρ is subjective, but Gorsuch (1983, p. 260) recommends 0.80 as the 

minimum cutoff. By this standard, the general Efficiency bifactor score (calculated from the 

model in Figure 3) is usable (ρ = 0.89), but the Complex Cognition, Executive, Social, and 

Memory sub-scales are not (ρ = 0.54, 0.55, 0.62, 0.63, respectively). We therefore 

recommend that if an investigator wishes to use one overall score for the NB, he/she should 

use the general factor from the bifactor model, but if he/she wishes to calculate sub-scales, 

the correlated-traits model is preferable.
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Discussion

Traditional neuropsychological tests are not feasible in the context of large-scale genomic, 

epidemiologic and treatment studies in basic and clinical neuroscience, where massive data 

are collected electronically and entered into common databases for integration. Designers of 

such studies, even if they care deeply about measuring neuropsychological constructs, would 

not be able to contemplate the inclusion of any non-electronic component, let alone testing 

that takes place over hours and requires experts for scoring and interpretation. Thus, while 

obviously behavior is the product of brain function, and arguably the ultimate target of 

clinical neuroscience, there is a risk that neuropsychology will be left out of the genomic 

revolution that is now sweeping medical research. The web-based CNB, on the other hand, 

fits well in such studies because it is brief, electronic, can be administered across platforms 

on any web-enabled device, requires minimal training for administration, scores results “on 

the fly” and can feed data directly into an electronic data repository. Furthermore, unlike 

traditional neuropsychological tests where only the summary scores can be included in a 

database, computerized tests can be evaluated for quality assurance after acquisition and 

probed for item-wise effects on either accuracy or speed. These features have resulted in 

rapid and wide adoption of the CNB in large scale population-based and clinical studies as 

well as military research (Aliyu et al., 2006; Almasy et al., 2008; Grant et al., 2013; 

Greenwood et al., 2007, 2011; Gur et al., 2007a,b; 2012; Thomas et al., 2013).

Despite the widespread use of the CNB, its latent structure had not been thoroughly 

examined. The results of the present large-scale study support the theoretical approach to the 

CNB design, and offer some insights into uses and interpretations of CNB scores. The 

rationale used to develop the CNB is strongly supported, with two possible exceptions. 

Specifically, one of the tests (the Penn Conditional Exclusion Test) appears to be a better 

measure of complex cognition than of what it was intended to measure, executive 

functioning. Furthermore, two of the four neurobehavioral domains thought to compose 

overall cognitive performance are highly correlated and might not reflect separate abilities. 

This latter point might lead one to question whether a four-factor model is necessary over a 

three-factor model—i.e., one can reject the unidimensional model based on poor fit, but the 

acceptable fit of the three-factor model necessitates some further explanation as to why it is 

not preferred over the four-factor solution. Overall, the exceptions were neither surprising 

nor indicative of poor measurement. They may not necessitate post hoc theory adjustment, 

but instead lead to practical considerations, especially with regard to scoring sub-scales. In 

our case, abstraction and mental flexibility were hypothesized to tap the functioning of 

frontal lobe systems, and hence we expected performance to correlate with the other tests of 

executive functioning. However, the complexity of the test seems to require greater amount 

of complex reasoning than executive abilities. Perhaps easier abstraction and mental 

flexibility tests would be better at isolating the executive aspects of this domain.

The high correlation between the Executive Control and Complex Cognition factors (Figure 

1) indicates that a large portion (about 85%) of the variance in one can be predicted from the 

other. From a measurement perspective, this means there is no good reason to treat them as 

two separate factors. From a neuropsychological perspective, however, there is reason to 

expect Executive Control and Complex Cognition to be correlated because it is difficult to 
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solve a complex problem without applying executive functioning and some executive 

functions require complex reasoning. The high factor inter-correlation may also relate to an 

overlap in fronto-parietal brain systems needed to perform these tasks (Roalf et al., 2013).

The main practical conclusion is that an investigator wishing to calculate sub-scale scores 

for each domain of the CNB (rather than one global score) should combine the Executive 

Control and Complex Cognition domains. That is, even though the exploratory analysis (of 

efficiency scores) suggests there truly are two separate executive functioning and complex 

cognition factors, they are so highly correlated in the confirmatory model (Figure 1) that 

their two sub-scale scores would likely correlate to the point of redundancy. Regardless of 

whether the Executive Control and Complex Cognition domains are truly separate in terms 

of neural systems (as suggested by current neuropsychological theory), they should not be 

treated separately when calculating scores unless there is a hypothesis that one and not the 

other is correlated with a specific measure of brain function.

There are two important exceptions to the above point. First, even though general 

psychometric practice suggests that two highly correlated latent variables should not be 

treated separately, exceptions to the phenomenon—e.g. a person who scores very high on 

Executive Control but very low on Complex Cognition—can be highly informative. A 

useful example is height and weight, which are highly correlated and yet not redundant 

because a discrepancy between them is an important index of an abnormality. Similarly, 

cerebral blood flow is highly correlated with metabolism (Paulson, Strandgaard, & 

Edvinsson, 1989), but disturbances in this autoregulation are important indicators of brain 

dysfunction (Duffy, Howse, & Plum, 1975; Chapman, Meldrum, & Siesjö, 1977). Therefore, 

despite the high correlation between them, one can gain valuable information by measuring 

both.

The second argument in favor of creating sub-scales involves the bifactor model. One could 

justifiably separate the battery into four orthogonal factors if and only if the model is an 

appropriate bifactor model (Figure 3). Even in that case, however, one could not use the 

bifactor model to calculate scores (due to factor score indeterminacy; see Grice, 2001). 

Instead, one would have to put the bifactor measurement model within the context of a 

structural equation model, assuring that the specific factors within the bifactor remain truly 

orthogonal. Further, given the correlations among the factors and the ratio of first to second 

eigenvalues, the CNB can be thought of as measuring one global trait (perhaps general 

intelligence, also known as “g”). Again, however, if it is absolutely imperative that a 

researcher obtain four orthogonal latent variables from the CNB, that can be accomplished 

using a bifactor model with SEM.

Finally, if an investigator does want to calculate sub-scale scores, he/she should use the 

correlated-traits model (Figure 1) rather than the bifactor model. Recall that scores 

calculated using the bifactor model are too poorly determined to be used as valid measures 

of the factors they represent. The correlated-traits model, however, produces well-

determined factors: ρ for Complex Reasoning, Executive, Social, and Memory are 0.89, 

0.87, 0.90, and 0.87, respectively, which are beyond the recommended cutoff of 0.80 

(Gorsuch, 1983). The drawback of using the correlated-traits scores is that they are 
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correlated, and will therefore introduce nuisance collinearity when used simultaneously in a 

predictive model (such as regression). Thus, investigators wishing to use CNB performance 

to predict outcomes (or to be predicted by other external variables) face the following 

choices:

1. Use the bifactor model (which comprises orthogonal sub-factors and a general 

factor) within the context of a larger SEM model, rather than calculating scores to 

be used in that model.

2. Use the correlated-traits model to calculate scores, and use those scores in a 

separate predictive model, with the understanding that the scores will not be 

orthogonal.

Both options come with specific advantages and disadvantages discussed above. A 

worthwhile note of caution, also, is that calculation of factor scores is a very complex topic 

with multiple caveats. Because we present confirmatory models here, we assume scores will 

be calculated using the factor loadings as regression coefficients; however, this is only one 

of many methods, and readers are directed to Grice (2001) for review.

Future directions

The most important step in evaluating the psychometric properties of the CNB is to establish 

its validity. The excellent structural validity demonstrated here is important—indeed, it is 

necessary, because test scores cannot be valid unless they are reliable—but it is perhaps 

even more important to demonstrate that the CNB measures what it’s supposed to measure. 

By “validity,” in this case we mean true validity (see Borsboom, 2005)—i.e. an instrument 

is valid if and only if it measures what it is supposed to measure.

Often, the validity of an instrument is assessed by correlating its scores with several criteria 

(external variables), with the hope that it predicts the behaviors/outcomes it was designed to 

predict. Neurobehavioral measures like the CNB, however, are designed to probe 

neurobiological processes. Thus, a core strength of the CNB is that it was built with the aim 

of measuring the integrity of specific brain systems. Therefore, its true validity can be 

directly tested with functional neuroimaging (see Roalf et al., 2013).

Another convenient development in methodology that will help with the exploration of 

validity is the recent adoption by many researchers of the bifactor model itself (See Reise, 

2012). A strength of the bifactor model that was not exploited here is that it can be used 

within a structural equation model to test the relationships among tests and neurobehavioral 

functions independent of the general factor (Efficiency in this case; see Chen, West, & 

Sousa, 2006, for an example using quality of life variables).
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Figure 1. 
Confirmatory correlated-traits model of the CNB Efficiency scores.

Note: Results are standardized such that the variance of the latent variables is 1.00. All 

coefficient estimates are significant with standard errors of 0.01.
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Figure 2. 
Parallel analysis Scree plots of 12-variable CNB.
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Figure 3. 
Confirmatory bifactor model of the CNB Efficiency scores.

Note: Results are standardized such that the variance of the latent variables is 1.00. All 

coefficient estimates are significant with all standard errors of < 0.06.
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Table 1

Domain-Specific scales of the Computerized Neurocognitive Battery, by neurobehavioral function

Neurobehavioral
Function Domain Test

Mental Flexibility (ABF) Penn Conditional Exclusion Test (PCET)

Executive Control Attention (ATT) Penn Continuous Performance Test (PCPT)

Working Memory (WM) Letter N-Back (LNB) task

Verbal Memory (VME) Penn Word Memory task (PWMT)

Episodic Memory Face Memory (FME) Penn Face Memory task (PFMT)

Spatial Memory (SME) Visual Object Learning Test (VOLT)

Language Reasoning (LAN) Penn Verbal Reasoning Test (PVRT)

Complex Cognition Nonverbal Reasoning (NVR) Penn Matrix Reasoning Test (PMRT)

Spatial Ability (SPA) Penn Line Orientation Test (PLOT)

Emotion Identification (EMI) Penn Emotion Identification Test (PEIT)

Social Cognition Emotion Differentiation (EMD) Penn Emotion Differentiation Test (PEDT)

Age Differentiation (AGD) Penn Age Differentiation Test (PADT)
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Table 2

Descriptive statistics for Accuracy and Speed on the twelve Penn CNB tests.

Accuracy (total correct) Median RT (ms)

Test Median Mean SD Median Mean SD

AGD 43 41.68 7.16 2300 2423 700

FME 31 30.50 4.31 1904 1995 480

EMI 34 33.25 3.40 1882 1950 393

VME 38 36.82 3.34 1444 1510 323

LAN 11 10.72 3.04 5648 6197 2409

EMD 45 43.26 7.04 2911 3012 778

NVR 11 11.96 4.65 5776 6907 3823

SME 16 15.54 2.44 1736 1807 426

WM 18 17.54 2.61 517 548 140

ABF 2.04 1.91 0.73 2227 2409 929

ATT 53 50.99 8.24 483 494 68

SPA 9 9.35 4.37 8808 9381 3369

Note. Median accuracy score for ABF was calculated as [(# of categories learned) * (% correct responses)]; SD = standard deviation; RT = 
response time.
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Table 6

Fit indices of confirmatory and exploratory factor models of Efficiency, Accuracy, and Speed.

Fit indices

Analysis type Measure Factors CFI RMSEA SRMR

CFA Efficiency 4 .95 .055 .030

EFA Efficiency 1 .86 .087 .050

EFA Efficiency 2 .93 .070 .033

EFA Efficiency 3 .97 .049 .021

EFA Efficiency 4 .99 .036 .012

EFA Accuracy 1 .87 .075 .045

EFA Accuracy 2 .94 .055 .031

EFA Accuracy 3 .98 .034 .016

EFA Accuracy 4 .99 .028 .011

EFA Speed 1 .82 .098 .061

EFA Speed 2 .89 .085 .039

EFA Speed 3 .95 .059 .024

EFA Speed 4 .99 .040 .015

Bifactor CFA Efficiency 4 .96 .054 .029

Note. All models are correlated traits models, except the bifactor CFA model of Efficiency; EFA = exploratory factor analysis; CFA = 
confirmatory factor analysis; CFI = comparative fit index; RMSEA = root mean-square error of approximation; SRMR = standardized root mean-
square residual.
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