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Centrality measures such as the degree, k-shell, or eigenvalue centrality can identify a network’s most
influential nodes, but are rarely usefully accurate in quantifying the spreading power of the vast majority of
nodes which are not highly influential. The spreading power of all network nodes is better explained by
considering, from a continuous-time epidemiological perspective, the distribution of the force of infection
each node generates. The resulting metric, the expected force, accurately quantifies node spreading power
under all primary epidemiological models across a wide range of archetypical human contact networks.
When node power is low, influence is a function of neighbor degree. As power increases, a node’s own degree
becomes more important. The strength of this relationship is modulated by network structure, being more
pronounced in narrow, dense networks typical of social networking and weakening in broader, looser
association networks such as the Internet. The expected force can be computed independently for individual
nodes, making it applicable for networks whose adjacency matrix is dynamic, not well specified, or
overwhelmingly large.

N
etworks have become the premier approach to describing spreading processes such as epidemics or
information transfer because they express the heterogeneity of interactions characteristic of many
human activities1. Thirty years of innovation have refined our ability to identify nodes which are highly

influential to the outcome of almost any spreading process on a given network via features such as betweenness
centrality2,3, eigenvalue centrality4, degree5, or k-shell6. Yet highly influential nodes are rare by definition, and the
just listed measures are not informative for the vast majority of network nodes. These centrality measures only
rank nodes and are not designed to quantify spreading power6–8. While the rankings accurately identify the few
highly influential nodes, they can considerably underestimate the spreading power of non-hub nodes9. Nor do
these rankings explicitly incorporate the dynamics of spreading processes10,11. This leaves open the question of
quantifying the spreading power of the vastly more numerous non-highly influential nodes, and indeed under-
standing the nature of node spreading power itself. As highly influential nodes only rarely originate spreading
processes, be they pathogenic disease12,13, innovative ideas14, or chatter15, there is deep intellectual hunger and
practical utility in accurately measuring and understanding the spreading power of each individual node in a
network.

A node’s spreading power is the force with which it can push a spreading process to the rest of the network. This
definition can be made more precise by reference to the common epidemiological models of spread. In a
susceptible-infected (SI) spreading process without recovery, which inevitably reaches the entire connected
component of the network, the spreading power of the seed node predicts the delay before half (or some other
large percentage of) the network is reached. In a process with recovery to either the susceptible (SIS) or immune
(SIR) state, spreading power correlates to the probability that a node can seed an epidemic given that the ratio of
the per-contact transmission rate to the rate of recovery allows for, but does not guarantee, an epidemic. When
this ratio exceeds the critical range, the dynamics approach the SI system as a limiting case.

Several approaches to quantifying the spreading power of all nodes have recently been proposed, including the
accessibility16,17, the dynamic influence11, and the impact8. These extend earlier approaches to measuring centrality
by explicitly incorporating the dynamics of spread. The accessibility is a modified form of hierarchical degree
which controls for both transmission probabilities and the diversity of walks of a given fixed length17. The
dynamic influence, like the eigenvalue centrality, is the proportion of infinite walks starting from each node,
where walk steps are scaled such that the linear dynamics of the system are expected to converge to a non-null
steady state11. The impact sums, over increasing walk lengths, the probability of transmission to the end node of
the walk and that the end node has not been previously visited by a shorter walk8. These new spreading power
metrics have been shown to be distinct from previous centrality measures and more highly correlated with
epidemic outcomes8,11,18. Yet they retain the common foundation of the more usual approaches to centrality,
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counting walks on the network10,19–21. As the walks are counted using
powers of the adjacency matrix, spread is observed only in discrete
time.

Epidemiology, in contrast, studies the continuous-time dynamics
of the force of infection (FoI), defined as the current rate at which
susceptible nodes are becoming infected22. In network models, the
FoI is directly proportional to the current number of edges between
infected and susceptible nodes. The critical distinction between FoI
and walks is that the FoI is determined by the number of infected-
susceptible edges, independent of their distance from the seed node.
The critical distinction between continuous- and discrete-time is that
continuous-time allows resolution down to the first two transmis-
sions, a level not easily expressed in a discrete-time framework where
multiple transmissions may occur at each time step. The distinction
is acute, as the number of events per time step grows at a double-
exponential rate in scale-free networks23, the type of network most
representative of human structures24 and perhaps even life itself25.

The continuous-time epidemiological perspective suggests that
node spreading power can be accurately quantified by appropriately
summarising the distribution of the number of infected-susceptible
edges after a small number of transmission events arising from a seed
node in an otherwise fully susceptible network; that is, by the
expected FoI generated by that node. We here propose such a mea-
sure, named the expected force (ExF), and show that it outperforms
the accessibility, k-shell, and eigenvalue centrality in predicting epi-
demic outcomes in SI, SIS, and SIR spreading processes, in both
discrete- and continuous-time. The basis in local neighborhood
structure means the ExF is applicable even when the full adjacency
matrix is either unknown or inherently unknowable. The metric
naturally extends to weighted and directed networks. Most impor-
tantly, the expected force is able to illuminate the factors responsible
for node spreading power.

Results
Definition of the Expected Force. The expected force is a node
property derived from local network topology, independent of the
rest of the network or any specific spreading process. It is formally
defined as follows. Consider a network with one infected node i and
all remaining nodes susceptible. Enumerate all possible clusters 1, …,
J of infected nodes after x transmission events, assuming no recovery
(See Figure 1). Generally speaking, x 5 2 is sufficient and assumed for
the rest of this manuscript. Hence J includes all possible
combinations of i plus two nodes at distance one from i, and i plus
one node at distance one and one at distance two. The enumeration is
over all possible orderings of the transmission events. Two neighbors
of the seed (a and b) form two clusters ([i R a, i R b] and [i R b, i R
a]) or, if a and b also share an edge, four clusters. After two
transmissions without recovery, the FoI of a spreading process
seeded from node i is a discrete random variable taking a value in
(d1, …, dJ), allowing for the proportionality constant equal to the
transmission rate of the process. The expected force of infection can
be approximated by the entropy of the dj after normalisation

ExF ið Þ~{
XJ

j~1

�dj log �dj
� �

ð1Þ

where i refers to the seed node and �dk~
dk

SJ dj
, ;k g J.

The entropy is needed for generating the expected value due to the
extreme variability in the shape, number of modes, and number of
terms in the distributions of dj for different seed nodes. Complex
networks have scale-free degree distributions. The moments of scale-
free distributions are divergent, implying that the distribution of dj

may not have a mean value in the traditional sense. The entropy is a
standard tool for taming unruly distributions due to its close relation
to cumulant generating functions, motivating the use of Equation 1

to generate a quasi-expected value of the FoI. A loose analogy can be
made to the use of entropy in statistical physics to summarise the
macrostate of a system (e.g. the pressure of a gas) based on the
distribution of its microstates (the positions and momentums of
molecules in the gas). The analogy is that pressure is a combination
of the number and the heat of the molecules, likewise, a node’s
expected force is a combination of the number of possible transmis-
sion clusters it can form and the FoI generated by each cluster. An in-
depth discussion of the relationship between entropy, cumulants,
and statistical physics can be found in Touchette’s review26.

Setting x 5 2 is recommended but not required. Supplementary
investigations show that increasing the number of transmissions
beyond two adds very little information while increasing the compu-
tational cost (see Supplementary Note 1), in agreement with other
proposed spreading power metrics8,11 and consistent with the decay-
ing influence of longer paths in the calculations of the eigenvalue,
subgraph, and related centralities4,7,20,21. In certain cases, however, it
may be desirable to consider more transmission events. For example,
a node at the end of a chain of length two can only form one trans-
mission cluster of size two, hence its expected force is zero.
Comparing two such nodes requires setting x 5 3, in which case a
subscript can be used for clarity (e.g. ExF3).

One modification may be in order for SIS/SIR processes, inspired
by the following. Imagine a node with degree one connected to a hub.
While such a node will have a high expected force, its chance of
realizing this force depends entirely on transmitting to the hub before
recovery. Such nodes are common in dense social networks. For
example, 84% of the 225K nodes in an EU institution email network27

have degree one. In such networks, it may be helpful to account for
the dependence on the initial transmission by multiplying the ExF by
the log of the seed node’s degree after first rescaling the seed’s degree
by some factor a . 1.

ExFM ið Þ~log a deg ið Þð ÞExF ið Þ ð2Þ

The rescaling is motivated in that the log of one is zero, and the ExFM

is most informative in networks where many nodes have degree one.
The rescaling factor must be greater than one, and should also be
small to avoid overpowering the influence of the degree. In the rest of
this manuscript, we use a 5 2, the smallest integer which satisfies
these criteria. Supplementary Note 2 shows that computing the ExFM

for a ranging from 1.0001 to 16 does not substantively alter the
metric, as all such variations show correlations greater than 0.99 to
ExFM computed with a 5 2.

Straightforward calculation of the expected force has time com-
plexity O n2

1 � n2
� �

, where n1 and n2 are the number of neighbors at
distance one and two from the seed. It is difficult to analytically
compare a time complexity computed on individual nodes with time
complexities whose calculation is based on the entire adjacency
matrix. Further, since the metric relies only on local information, it
can be computed in a massively parallel fashion, or only computed
on nodes of interest. It also allows meaningful (partial) computations
even on massive graphs, i.e. those whose size overwhelms computer
memory. Nonetheless, some comparison to run-times of existing
metrics is required. We benchmark the median run time over fifty
Pareto networks of 1,000 nodes for all measures discussed here. Run
time on each network is measured as the median computation time
over ten runs on that network, with computation time measured at
sub-microsecond accuracy28. Computing the ExF for all non-hub
nodes takes 0.16 seconds. The k-shell is computed in 2% of that time
(0.003 seconds), and the eigenvalue centrality in 20% of that time
(0.03 seconds). Computing the accessibility takes several hundred
times longer. The benchmarking is then repeated with the same
protocol on 10,000 node Pareto networks. Increases in running time
for the k-shell (6x), eigenvalue centrality (9x), and expected force
(16x) have roughly linear correspondence to the tenfold increase in
the number of network nodes. Recall that the proven time complexity
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for the k-shell and expected time for the eigenvalue centrality are
both O(jVj 1 jEj), i.e. linear. As expected, the accessibility does not
scale well, with a ten-fold increase in network size leading to a 265
fold increase in median running time. Recall that it is computed by
taking powers of the adjacency matrix, i.e. something worse than
O(jVj2.4). Benchmarking was performed within the R29 programming
environment running on a commodity laptop computer. K-shell and
eigenvalue computations are computed via standard functions in the
Igraph package30. The accessibility is computed in native R29 code
using sparse matrix multiplication from the Matrix package 1.0-1031.
The expected force is computed in C code via an R interface.

Example code providing an implementation of the expected force
is available at https://github.com/glennlawyer/ExpectedForce.

Correlation to epidemic outcomes. We measure correlations
between expected force and epidemic outcomes on five families of
simulated networks chosen such that their densities and degree
distributions span a wide range of human contact structures, as
listed in Table 1. One hundred random networks of 1,000 nodes
are generated in each family. Further comparison is made using a
suite of twenty four real-world networks ranging from 1,133 to
855,800 nodes, as listed in Table 2. Epidemic outcomes are the
time to half coverage for SI processes and the epidemic potential
for SIS and SIR processes. These are observed by simulating
multiple epidemics in both continuous and discrete time from a
number of seed nodes in each network. Correlations are measured
between these outcomes and the expected force, ExFM, accessibility,
eigenvalue centrality, and the k-shell of the seed nodes. Motivations
for these choices and additional details are given in the methods.

The expected force is highly predictive of all epidemic outcomes
on all networks tested, simulated and real. Mean correlation to SI
process outcomes is 83% on simulated and 74% on real networks. For
processes with recovery, mean correlation is 91% on simulated and
82% on real networks. Standard deviations over the one hundred
simulated networks in each family are typically 0.02–0.03. The
95% confidence bounds on real networks are in the same range. In
all cases the ExF (or ExFM) significantly outperforms the accessibility
and the eigenvalue centrality (difference in mean correlations greater

than the standard deviation of the higher mean). It typically outper-
forms the k-shell, significantly outperforming it in 82 cases, showing
equivalent performance in 11 cases (difference in mean correlations
less than the standard deviation of the higher mean), and signifi-
cantly lower performance in 6 cases (simulated Internet networks
SIS-C, SIR-C, SIR-D; simulated Astrophysics networks SIR-D, simu-
lated Facebook networks SIR-D, ‘‘email-EUAll’’ network SI). The
performance of the k-shell was surprisingly strong, given that two
previous studies by independent groups have observed rather poor
performance for this metric11,18. The observed correlations on 100
simulated networks in each family are shown in violin plots
(Figure 2); the information is duplicated in tabular form in
Supplementary Table 5. Likewise, the measured correlations and
their standard errors for all real networks are shown in Figure 3,
given in tabular form in Supplementary Tables 6, 7 and 8, and plotted
individually in Supplementary Figures 1-6.

The expected force’s predictive power is robust to variation in
network structure. The theory behind the ExFM suggests that the
ExF might lose performance for SIS/SIR processes on denser net-
works, yet mean correlation for continuous time SIS processes is
barely changed between the loose Pareto/Amazon networks (0.93/
0.95) and the dense Astrophysics/Facebook networks (0.92/0.90). As
expected, the predictive power of the ExFM improves on the denser
networks (mean correlations: Pareto/Amazon 0.89/0.92, Astrophysics/
Facebook 0.94/0.95). The accuracy of the accessibility metric, in con-
trast, collapses for all spreading processes on the dense networks
(mean correlation over all spreading processes: Pareto/Amazon
0.74/0.90, Astrophysics/Facebook 0.28/0.20.) A previous analysis
which observed similar poor performance for the accessibility on
dense networks concluded that spreading processes seeded from
nodes with low accessibility are not capable of entering the epidemic
phase18. Our results show this is not the case, as these nodes have a
small yet observable epidemic potential which the expected force is
able to capture and quantify. Performance of the k-shell and the
eigenvalue centrality is also strongly influenced by network structure.
For SIS/SIR processes, both showed higher mean and sharply reduced
variance on the denser networks. In an interesting contrast, the k-
shell’s predictive power for SI processes is reduced in denser networks.

Figure 1 | Deriving the expected force from the possible outcomes of two transmissions. This network will be in one of eight possible states after two

transmissions from the the seed node (red). Two states are illustrated, where the seed has transmitted to the two orange nodes along the solid black

edges. Each state has an associated number of (dashed orange) edges to susceptible nodes (blue), the cluster degree. States containing two neighbors of the

seed (panel a) can form in two ways or, if they are part of a triangle, four ways. The eight network states associated with the pictured seed node arrise from

thirteen possible transmission clusters. The expected force of a seed node is the entropy of the distribution of the (normalized) cluster degree over all

(here 13) possible transmission clusters.
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The eigenvalue centrality’s performance also varies by spreading pro-
cess, showing its best performance on discrete time SIS models–
though again this variation is modulated by network density. Two
other independent groups have observed that relationships between
centrality rankings and epidemic outcomes are strongly influenced by
network structure and the parameters of the spreading processes8,9,
leading the authors of ref. 9 to conclude that these measures severely
underestimate the epidemic impact of structurally peripheral nodes.

Weighted graphs. The expected force generalizes to graphs with
weighted edges, where we assume the edge weights correspond to
per-edge transmission likelihoods. Use these weights to calculate the
probability of each way that each cluster could occur, and re-define
the cluster degree as the sum of all edge weights leading out from that
cluster. The extension to directed graphs is also straightforward; limit
the enumeration to edges leading from an infected to a susceptible
node.

We test this generalization by computing the weighted and
unweighted expected force on 1,000 node networks with Pareto
(1,2.3) degree distributions and edge weights chosen according to
one of the following three distributions: uniformly distributed
between one and three, uniformly distributed between one and ten,

and exponentially distributed with unit rate, weights rounded up to
the nearest integer. Fifty networks were simulated for each distri-
bution of edge weights. Correlation between the weighted and
unweighted ExF was greater than 0.99 for all network edge weighting
distributions tested. As expected from the tight correlation, the
weighted and unweighted ExF showed no meaningful difference in
predictive ability, which remained high. Observed correlations
between node expected force and epidemic potential in discrete-time
SIS processes were 0.88/0.89 6 0.03 (unweighted/weighted ExF)
under the uniform-3 scheme, 0.83/0.04 6 0.03 under the uniform-
10 scheme, and 0.80/0.79 6 0.05 under the exponentially distributed
weighting scheme.

Discussion
The expected force predicts all types of epidemic outcomes with high
accuracy over a broad range of network structures and spreading
processes. The low variance in observed correlations over multiple
simulated network and epidemic models shows that the measure is
robust, as do the tight confidence bounds on real world networks.
What, then, does it tell us about the nature of node spreading power?
The definition of the expected force implies that spreading power is

Table 1 | Simulated network families. The mean diameter, mean graph density, and empirical middle 65% quantile range of the largest
eigenvalue for the different network families. Pareto and Amazon co-purchase networks have a large, loose structure with low eigenvalue,
suggesting less inherent susceptibility to epidemics than the smaller and more dense collaboration networks; Google’s map of the Internet lies
in between. Means and standard deviations are computed over 100 simulated networks with 1,000 nodes

diameter density 65% quantile

Pareto 11.6 6 1.0 3.2 e-04 7.1–10.1
Amazon [42] 7.2 6 0.4 6.9 e-04 10.1–13.7
Internet [42] 7.0 6 0.5 9.4 e-03 25.2–35.2
Astrophysics [27] 5.5 6 0.6 2.1 e-02 54.5–61.9
Facebook [44] 5.5 6 0.5 2.4 e-02 65.2–73.7

Table 2 | Real world networks. The number of nodes, 90th percentile effective diameter, and density of the real networks. Networks were
downloaded from the Stanford Large Network Collection (SNAP), Alex Arena’s collection (AA), and the Max Planck Institute for Software
Systems website (MPI), which in turn credit the cited publication for the network

nodes diameter density source

PGPgiantcompo 10680 10.0 4.26 e-4 AA [46]
amazon0302 262111 11.1 0.26 e-4 SNAP [42]
amazon0601 403364 7.6 0.30 e-4 SNAP [42]
ca-AstroPh 17903 5.0 12.30 e-4 SNAP [27]
ca-CondMat 21363 6.5 4.01 e-4 SNAP [27]
ca-GrQc 4158 7.6 15.53 e-4 SNAP [27]
ca-HepPh 11204 5.8 18.74 e-4 SNAP [27]
ca-HepTh 8638 7.4 6.65 e-4 SNAP [27]
cit-HepPh 34401 5.0 7.11 e-4 SNAP [47]
cit-HepTh 27400 5.3 9.38 e-4 SNAP [47]
com-dblp 317080 8.0 0.21 e-4 SNAP [48]
email-EuAll 224832 4.5 0.13 e-4 SNAP [27]
email-Uni 1133 4.3 85.00 e-4 AA [49]
facebooklcc 59691 5.6 4.09 e-4 MPI [44]
loc-brightkite 56739 6.0 1.32 e-4 SNAP [50]
loc-gowalla 196591 5.7 0.49 e-4 SNAP [50]
p2p-Gnutella31 62561 6.7 0.76 e-4 SNAP [27]
soc-Epinions1 75877 5.0 1.41 e-4 SNAP [51]
soc-Slashdot0902 82168 4.7 1.49 e-4 SNAP [43]
soc-sign-epinions 119130 4.9 0.99 e-4 SNAP [52]
web-Google 855802 8.1 0.12 e-4 SNAP [43]
web-NotreDame 325729 9.4 0.21 e-4 SNAP [53]
web-Stanford 255265 9.7 0.60 e-4 SNAP [43]
wiki-Vote 7066 3.8 40.36 e-4 SNAP [52]

SNAP http://snap.stanford.edu/data/index.html.
AA http://deim.urv.cat/aarenas/data/welcome.htm.
MPI http://socialnetworks.mpi-sws.org/data-wosn2009.html.
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determined by both the degree of the node and the degree of its
neighbors, and that the relative influence of these two factors is
different for nodes of low versus high spreading power. Weaker
nodes gain what strength they have from their neighbors, whereas
more influential nodes get their strength from their large number of
connections. These relationships are accentuated by network
density.

This is a result of the combinatorics behind the enumeration
over transmission clusters. The number of paths with one edge
(p1) contributes quadratically to the number of transmission clus-
ters, while the number of two-edge paths (p2) contriutes linearly,
since J 5 p1 * (p1 2 1) 1 p2. Node degree is exactly p1. Neighbor
degree is at most p2. Weaker nodes tend to have lower degree,
hence neighbor degree contributes more heavily to their expected
force. The influence of network density comes in part from the
ExF’s sensitivity to network motifs such as triangles and squares.
Each triangle is traced by two paths with two edges, increasing the
proportion of p2 associated with node degree. More importantly,
the ExF is the entropy of the onward connectivity of each trans-
mission cluster. A triangle generates four such clusters, each of
which has identical cluster degree. Likewise, each square repre-
sents two clusters. These network motifs, which are more com-
mon towards the cores of dense networks, reduce the disparity of
the cluster degree distributions thus increasing entropy. The com-
binatorics become more complicated when the enumeration is
based on more than two transmissions, but these general patterns
remain. These relationships can be seen by plotting ExF against

the sums of the degrees of nodes at increasing geodesic distance
from the seed (Figure 4, Supplementary Table 3).

The approach taken by the expected force is fundamentally differ-
ent than that taken by most centrality measures. Centrality measures
typically set out to produce a ranking which identifies the most
influential nodes in the network, under the assumption that highly
influential nodes are those with the maximal sum of some type of
walk8,10,19–21. The choice of the appropriate type, scaling, and length of
walks contain implicit assumptions regarding network flows10, cohe-
sion structure19, and/or other topological characteristics20,21 of the
network. The k-shell is a slight exception, as it was originally inten-
ded to precipitate out the most cohesive regions of the network rather
than to explicitly rank nodes within cohesive regions32, yet it is now
recognized as one of the best centrality measures for identifying a
network’s most influential spreaders6. Spreading power metrics gen-
eralize the walk counting framework by explicitly including trans-
mission probabilities when scaling the walks8,11,16,17. The question not
asked is if the type, scaling, and lengths of walks best suited to iden-
tifying the most important nodes applies equally well to the rest of the
network. To the extent that the optimal choice of factors depends on
network topology, then the difference in topology between core and
periphery suggests that choices well suited to the core are less appro-
priate for the remainder of the network.

Both the combinatorics behind the expected force and the walk
counting behind most centrality measures agree that influential
nodes are those which combine high degree with a preponderance
of influential neighbors. The ExF has high rank correlation with both

Figure 2 | Correlation of spreading power metrics to epidemic outcomes on simulated networks. Violin plots show the distribution of observed

correlation values for each spreading process outcome in each network family. The expected force and ExFM (orange shades) are consistently strong, with

mean correlations greater than 0.85 and small variance. The other measures (k-shell, eigenvalue centrality, and accessibility, blue-green shades) show both

lower mean values and higher variance, as seen in the position and vertical spread of their violins. Each violin summarizes correlations computed on 100

simulated networks. Spreading processes (x axis) are suffixed to indicate simulations in continuous (-C) or discrete (-D) time. The epidemic outcome for

SI processes is the time until half the network is infected. For SIS and SIR processes it is the probability that an epidemic is observed.
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the eigenvalue centrality and the k-shell (0.62–0.92 across the simu-
lated network families, see Supplementary Note 3). Likewise, the ExF
has 60–90% agreement with the eigenvalue centrality on the top ten
network nodes and 100% agreement with the k-shell. The difference
between walk counting and the expected force is that the expected
force adopts the relative influence of different walks and walk lengths
based on local connectivity, whereas approaches based on functions
of the adjacency matrix apply a fixed protocol. The eigenvalue cent-
rality is weighted node degree, where the weights are the importance
of the neighbors4,7. But the eigenvalue centrality is strictly a global

measure, unable to distinguish more subtle variations in local struc-
ture7,21. The k-shell erodes node degree to match the number of
neighbors with similar degree. Since this discards remaining
information on the individual degree of nodes within a common
shell, the accuracy of its predictions is heavily influenced by the
number of shells in the network. The accessibility combines node
and neighbor degree into a measure of the number of nodes likely to
be reached by walks of a given length17. But this approach has dif-
ficulties quantifying nodes in dense, small diameter networks, which
accentuate differences between core and peripheral topology.

Figure 3 | Correlation of spreading power metrics to epidemic outcomes on real networks. Point and error bar plots show the observed correlation and

95% confidence interval between each measure and spreading process outcome on the 24 real networks. The expected force and ExFM (orange shades)

show strong performance, consistently outperforming the other metrics (k-shell, eigenvalue centrality, and accessibility when computed, blue-green

shades). The epidemic outcome for SI processes is the time until half the network is infected. For SIS and SIR processes it is the probability that an

epidemic is observed. The suffix ‘‘-D’’ indicates spreading processes simulated in discrete time. Individual panels are given as separate (larger) figures in

Supplementary Figures 1-6.
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The expected force offers additional advantages over existing
spreading power and centrality measures in that its calculation
depends only on the local topology. This allows epidemic outcomes
on the whole network to be predicted with high accuracy even when
only a small portion of the network is known. It is rare for the full
structure of a real network to be fully known; typically the network
structure is inferred from indirect, incomplete, and often biased
observations. Specification of an adjacency matrix is even more dif-
ficult when the underlying network is dynamic. These limits have
practical implications. Estimates of eigenvalue centrality fluctuate
depending on which nodes are sampled33. Both the pagerank34 and
the k-shell35 are highly sensitive to pertubations in network topology,
making them unreliable for incomplete or noisy systems.

Reliance on a local neighborhood is consistent with established
theory showing that topological information content falls off quickly
with distance. Bonacich demonstrated in 1987 that the eigenvalue
centrality can be expressed in terms of sums over walks of length k,
k 5 1 … ‘, establishing that the influence of walks must decay at least
exponentially in k to guarantee convergence4. More recent work shows
that almost all centrality measures, including those based on matrix
resolvents, can likewise be expressed as infinite sums over walks, and
that decay rates faster than exponential are often motivated20,21. The
fall-off in information can also be shown by the following example.
Consider a long linear chain of nodes which ultimately connects to a
network hub. Let b be the transmission/recovery ratio in a process
with recovery and Di the distance from the ith node of the chain to the
hub. If the spreading process reaches the hub, an epidemic is almost
certain. The probability of this occuring is at best bDi . For b , 0.1, this
probability is estimatable to three of four decimal places using only
local information. More generally, since epidemic spread is almost
instantaneous on scale free networks23,36, the expectation is that the
time-step which takes a process outside the local neighborhood of its
origin brings it to the majority of the network.

Reliance on a local network does, however, lead to one weakness in
the expected force. A network may contain large but disparate com-
munities. Here, a node serving as a bridge between two communities
might be able to spread a process to the entire network with more

force than a node far from the bridge, even when the second node has
more (local) spreading power than the bridging node. The expected
force’s local nature makes it blind to these larger topological con-
straints on spread.

This work defines the epidemic outcome in SIS/SIR processes as the
probability that an epidemic occurs. This is in contrast to the measure
typically used, the mean number of infected nodes (i.e. refs. 6, 8, 9, 11,
17, 18, 37). We are not convinced that the mean is a good summary
statistic. In over 20,000 simulated continuous-time SIS spreading pro-
cesses, no processes which went extinct reached more than 20 nodes,
while processes which did not go extinct reached the majority of the
network. It has been argued that such bifurcation in outcomes is pre-
dicted by theory38. Given that the distribution of the number of infected
nodes is characterized by two well separated modes, the mean is best
seen as an indirect estimate of the likelihood of the higher mode. It is
this likelihood which we directly measure as the epidemic potential.

The expected force predicts epidemic outcomes from local features
of specific nodes on a specific network, with only passing reference to
the nature and parameters of the spreading process. Seminal work has
approached the question from the other side. Given the parameters of
a SIR spreading process and a class of networks characterized by its
degree distribution, exact solutions for typical values of a number of
epidemic outcomes are available37, and their time course can be
expressed as paired ordinary differential equations39. Node spreading
power can be thought of as explaining that portion of the variance
around these typical values which is due to the choice of seed node.

The expected force is strongly correlated to epidemic outcome, out-
performing existing metrics of node spreading power and centrality.
The measure depends only on local network topology, allowing its use
in dynamic as well as static networks. For most nodes, the most
important determinant of their spreading power is the sum of their
neighbors’ degree. As node power grows, so does the importance of the
node’s own degree. This relationship is accentuated in denser networks.

Methods
Comparisons. The predictive power of the expected force is compared to one
spreading power metric and two centrality measures. Spreading power metrics are a
recent theme in the centrality literature specifically designed to quantify the spreading

Figure 4 | Spreading power is a factor of a node’s first and second order degree. Plotting expected force (x-axis) versus node degree (orange), the sum of

the degree of all neighbors (blue), and the sum of the degree of all neighbors at distance 2 (green) shows that for nodes with low ExF, the neighbor’s

degree has strong correlation to ExF, while for nodes with high ExF their own degree is more closely correlated. The result is accentuated in denser

collaboration networks in comparison to more diffuse Pareto networks. Correlation between ExF and neighbor degree is 0.94 6 0.01 in collaboration

networks, and drops to 0.84 6 0.02 in Pareto networks (mean taken over 50 networks; See Supplementary Table 3 for the correlations over all network

structures).
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power of all nodes. They have consistently been shown to have better correlations
with epidemic outcomes than previous centrality measures8,11,18. The accessibility is
chosen to represent them as it is the most general, most powerful, and most
theoretically developed existing spreading power metric. In contrast, the authors of
the dynamic influence write that their metric is only accurate when the actual
transmission probability is close to the assumed optimal value contained in their
method11. The impact is not defined for SI models, has a different definition for SIS
than for SIR models, and directly depends on the transmission probability of a specific
spreading process8.

Comparison is also made to traditional centrality measures. With the under-
standing that almost all of these are based on sums of walks of various lengths10,19–21,
and that the best choice for walk length is influenced by network topology8,9,19, we here
make comparison to measures which represent both ends of the spectrum. The
eigenvalue centrality counts the number of infinite walks, and degree counts walks of
length one. We here compare to the k-shell instead of degree, as the k-shell can be
thought of as the minimal degree of a node32, and is a better measure of node
influence6. No comparison is made to subgraph centrality as it is computationally too
expensive to compute for large graphs30. No comparison is made to pagerank because
its rankings are highly dependent on the damping factor, including frequent rank
reversals after small changes40,41, and as it is also unstable in the face of small pertu-
bations in network topology34.

The crux of the comparisons is this: For each network, a set of seed nodes is
selected. Then, for each seed node, the outcome of each spreading process is noted.
The correlation between the observed outcome and each metric is measured over all
seed nodes for the given network. The eigenvalue centrality and the k-shell are
computed using the Igraph package version 0.6.530. We implement the latest version
of the accessibility17 in R, following python code supplied by the authors and using
sparse matrix multiplication from the Matrix package version 1.0-1031.

Seed nodes for the simulated networks are selected as follows. For each network,
the ExF is computed for all non-hub nodes, with hubs defined as nodes whose degree
is greater than 60% of the maximum degree node in the network. The range of
observed ExF values is split into 15 equal width bins. Five seed nodes are selected
uniformly at random from each bin, giving approximately 75 seed nodes for each of
the hundred simulated networks in each of the five network families. The reason for
the binning is that in scale free networks, the distribution of any centrality measure is
strongly biased towards low values. Selecting seed nodes across the full range of the
ExF ensures that nodes with high and medium ExF are also included in all tests. That
hubs have maximal spreading power is already firmly estalished, and also the reasons
why; they also have the highest ExF values. Further, under this definition, less than
0.1% of nodes are hubs.

Epidemic simulations and outcomes. Spreading processes without recovery will
eventually cover the entire network. The epidemic outcome is the time to half
coverage (tthc); the time until exactly half the nodes in the network are infected. This
is measured at each seed node by simulating 100 spreading processes and fitting the
observed tthc from all simulations to a gamma distribution. Simulations are run in
continuous time, with the time of the next transmission event drawn from an
exponential distribution with rate equal to the current number of infected-susceptible
edges. The exponential distribution, which models the distribution of waiting times
until the next event in a Poisson process, is standard for such simulations as it is
memoryless. These simulations are conducted only in continuous time as discrete
time does not provide sufficient resolution for SI processes.

Spreading processes with recovery are of interest when the ratio of transmissibility
to recovery for the process b is in the critical range which allows for but does not
guarantee an epidemic. The epidemic outcome is a node’s epidemic potential (EPo),
the probability that a given node can seed an epidemic. The EPo is measured by
simulating 100 outbreaks per seed node and counting the number which result in at
least half of the network nodes becoming infected. Continous-time simulations model
the time of the next transmission as in the SI model just described, except the
transmission rate parameter scales the current number of infected-susceptile edges by
some b in the critical range (see below), and the time of the next recovery from a unit
rate exponential distribution weighted by the number of infected individuals. In each
round of the discrete-time simulations, transmission occurs along each infected-
susceptible edge with probability r 5 2log(1 2 b) (to convert the continous time rate
into a discrete time probability) and nodes recovering at the end of the round.

The critical range for b can be defined empirically using the criterion that if b is in
the critical range, then a large majority of nodes will have EPo g [2%, 98%]. We here
set b independently for each network to a fixed multiple of 1/l, where l is the largest
eigenvalue of the adjacency matrix. Similarity in network structure allows the same
multiple to be used for both the Pareto and Amazon networks, likewise the
Astrophysics and Facebook networks. Though the Internet lies between these two
other classes, the multiples from the social networks yields good results. This pro-
ceedure resulted in at least 96% of nodes in continuous-time simulations with EPo in
the critical range; in discrete time the relevant figure is 76% or better. Supplementary
Table 4 gives the multiples used and the percentage of nodes fulfilling the criterion for
all simulated networks and spreading processes.

The networks. The five families of simulated networks are defined by their degree
distributions, one theoretical (Pareto), and four derived from the following real-world
human contact networks: the Amazon co-purchase network from May 200342, the
graph of the Internet from the 2002 Google programming contest43, the collaboration
network from ArXiv Astrophysics between 1993 and 200327, and Facebook wall posts

from the New Orleans network44. The Pareto and Amazon networks are characterized
by large diameter and low density. The Astrophysics and Facebook networks are two
orders of magnitude more dense and have correspondingly smaller diameter.
Google’s map of the Internet lies in between the other two families. The networks can
also be characterized by the largest eigenvalue of their adjacency matrix, as theory
suggests that the critical disease transmission probability dividing epidemic from
extinction regimes is the inverse of this value11, which further implies that a network’s
inherent susceptibility to disease spreading is reflected by this eigenvalue. Again, the
selected network families cover a wide range of inherent susceptibility to disease. The
networks used for the simulations are characterised in Table 1. Simulations are
conducted using giant components of 1,000 nodes. Networks with a Pareto (1,2.3)
degree distribution are simulated using the Chung Lu protocol, a versatile and general
method for constructing random graphs with given expected degree sequence45. The
remaining networks are simulated by randomly sampling 1,000 values from the
degree sequence of the actual graph without replacement and generating a graph from
these values using the Igraph function ‘‘degree.sequence.game’’ which generates
undirected, connected simple graphs matching the input degree sequence30.

Simulated networks allow testing on multiple networks of the same type. This is
critical, in that the templates used to create the simulations are themselves static
snapshots of dynamic processes. Multiple simulations give some indication of the
underlying probability space of the network family. The disadvantage is that the
simulated networks model only the degree distribution of the base network, ignoring
higher order structure such as communities. In our defense, we note that even
defining network community structure remains an open problem, let alone replic-
ating it. Further, certain measures of community structure suggest that the size and
composition of commmunities is a factor of network size43 implying that it is
impossible for a simulated network with 1K nodes to replicate the community
structure of i.e. the 876K nodes in Google’s map of the internet.

Real world networks were selected and downloaded from the Stanford Large
Network Repository (SNAP) and Alex Arenas’s collection according to the following
criteria: having between 1,000 and 1,000,000 nodes in the largest connencted com-
ponent, representing one clear network structure, and, in the case that the same
network is sampled at multiple timepoints, the latest timepoint meeting the other
criteria. Twenty one networks from SNAP and two from Alex Arena passed these
criteria. The simulated Amazon networks are derived from the earliest Amazon co-
purchase network in SNAP. For completeness, this network is also included in the
suite of real networks. The Facebook network was downloaded from the Max Planck
Institute for Software Systems. For the purpose of testing, networks are treated as
undirected graphs with multiple and self-edges removed. All twenty four real net-
works are characterized in Table 2, which includes the internet address of the
collections.

The size of the real world networks required some slight modifications to the
overall approach. Seed nodes are 1,000 nodes selected uniformly at random.
Epidemics with recovery are simulated only in discrete time. As can be seen from the
results on the random networks, discrete time simulations provide approximately the
same mean outcome as continuous time, and only slightly higher variance. The
transmission/recovery probability ratio b is determined independently for each
network by binary search over possible values until one is found such that a minimum
of 80% of tested nodes have EPo between 0.05 and 0.95. When the network has more
than 25,000 nodes, the tthc is measured as the time of the 1,000th transmission rather
than the time when half the network is infected. Finally, the R software package does
not gracefully handle the multiplication of matrices larger than 25Kx25K, even with
the Matrix package31. Hence the accessibility was not computed for networks with
more than 25k nodes.
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