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Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration.
Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60%
of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed
by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in associa-
tion with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with 13CO2 for 10 days.
RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S
rRNA amplicon pyrosequencing to identify microorganisms enriched with 13C. Thirty operational taxonomic units (OTUs) were
labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with
the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the “Spartobacteria” and
Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting
different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a
greater proportion of the 16S rRNA sequences (�20%) than did those in the rhizosphere (�4%), indicating that a proportion of
the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the
time frame of the experiment.

The interaction between plants and microorganisms within the
root and in the rhizosphere is complex and poorly understood.

Early studies focused on specific plant growth-promoting bacteria
(1, 2) and more recently on characterizing the rhizosphere micro-
bial community (3). For example, studies with Arabidopsis thali-
ana, a model plant species, have shown that the root endophytic
microbial communities are highly specific (4, 5). In rice, the mi-
crobial communities associated with the rhizosphere and the
phyllosphere have been characterized by a metaproteogenomic
approach (6), and a metagenomic approach was used to charac-
terize the endophytic root community in rice (7).

A variety of factors act to shape the microbial community
within the roots and in the rhizosphere, including the volume and
nature of carbon substrates transported by the plant to the roots
(8) and highly evolved signaling and interaction mechanisms be-
tween plants and microbes and the plant immune system (9).
Plants actively recruit and sustain microorganisms in the root en-
vironment in part by the translocation of organic compounds
from the leaves to the roots and into the rhizosphere that serve as
growth substrates. In annual plants, this has been shown to ac-
count for 30 to 60% of net fixed carbon, 40 to 90% of which is
excreted by the root and ultimately sequestered or respired by the
root-associated microorganisms (10).

Rice is a major world food source, with 2012 production esti-
mated at 720 million tons (http://faostat3.fao.org/), which was
exceeded only by production of sugarcane and maize crops. Rice is
cultivated in flooded soil, which becomes predominantly anoxic,
leading to CH4 formation by methanogenic archaea (11). The
estimate for CH4 emission associated with rice cultivation from
1996 to 2001 was 112 Tg year�1 (12), making it the largest anthro-
pogenic source of atmospheric CH4 after production associated
with farming of ruminant livestock (13). CH4 is the most impor-
tant greenhouse gas after CO2, contributing about 30% to the total
net anthropogenic radiative forcing (13). Up to 60% of the CH4

released from rice field soil originates from fresh plant carbon in
the form of root exudates or decomposing root material (14). In
addition to supplying organic carbon to the soil that is respired to
CH4, the rice vascular system acts as a conduit for CH4 from the
soil to the atmosphere, which bypasses the oxic-anoxic interface
near the soil surface where aerobic methanotrophic bacteria con-
sume CH4 (15).

A variety of microorganisms can colonize the root (16, 17) and
rhizosphere (18, 19) and can use plant-derived compounds as a
growth substrate. The incorporation of plant carbon by bacteria
(19) and archaea (18, 20, 21) in the rice rhizosphere has been
studied. Also, the association between root longevity and fungal
colonization has been studied (22), indicating the particular im-
portance of these organisms in regulating nutrient cycles and me-
tabolizing root-derived organic compounds.

Stable isotope probing (SIP) is an approach that can be used to
identify the microorganisms consuming plant carbon. The prin-
ciple is that plants are cultivated in chambers supplied with 13CO2

and the microorganisms incorporating this plant carbon into bio-
mass become enriched with 13C. 13CO2 pulse-labeling experi-
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ments in grassland soils demonstrated that the incorporation of
photosynthesized 13C into soil microbial biomass occurs in less
than 24 h with an isotope half-life of 4.7 days and maximum in-
corporation into microbial RNA in 4 to 8 days (23, 24). Labeled
and unlabeled microbial RNA can be separated by density gradi-
ent centrifugation in order to identify the microbial communities
using plant carbon. This approach has been used to identify ar-
chaea (18, 21), bacteria (19, 25–27), and fungi (26) incorporating
root carbon, as well as to identify bacterial endophytes of plant
shoots (28). In particular, the combination of RNA-SIP with 454
pyrosequencing represents a powerful molecular tool for the sen-
sitive detection of labeled microorganisms (29).

Previous studies have characterized the microbial diversity in
the rice rhizosphere (6) as well as rice root endophytes (7). Other
studies have used a SIP approach to identify the archaea (18) and
bacteria (19) that incorporate rice plant carbon in the rhizosphere.
A follow-up to the SIP experiments was worthwhile since 16S
rRNA amplicon sequencing technology now enables a deeper and
higher-resolution analysis than was previously available. Building
on previous studies, our aim was to characterize and compare the
root and rhizosphere microbial communities of rice and deter-
mine which microbial groups consume plant carbon in these
compartments.

MATERIALS AND METHODS
Planted rice microcosms. Air-dried soil was collected in spring 2009 from
an experimental rice field at the Italian Rice Research Institute in Vercelli.
Soil samples were crushed and sieved (�2 mm) prior to use. Soil charac-
teristics have been previously reported (30). Rice seeds (Oryza sativa, Ja-
ponica group, cultivar Koral) were germinated for 10 days on moist filter
paper at room temperature and then transplanted into handmade nylon
root bags (25-�m mesh, 15 cm in width by 18 cm in height) containing 0.8
kg dry Vercelli paddy soil and inserted into pots containing a further 1.0
kg of soil. In total were 15 pots, corresponding to five treatments per-
formed in triplicate as described below. Each pot contained a single rice
plant. Pots were flooded with 940 ml of demineralized water and 45 ml of
fertilizer solution (31). The plants were incubated in a Conviron PGV36
phytochamber (Winnipeg, Canada) with a 12-h photoperiod, a light in-
tensity of 860 �mol m�2 s�1, 70% humidity, and a 28/22°C day/night
temperature cycle. Water levels in the pots were continuously maintained
at 4 to 5 cm above the soil surface during the entire growth of the plants.
Starting on day 45 after transplantation, when rice plants were in the late
vegetative growth stage, labeling chambers (18) were placed over the
plants. Pulse-labeling was performed seven times per day (ca. every 60
min) for 10 days. During the first 5 days, plants were in 5-liter chambers
and 15-ml CO2 pulses were administered; during the subsequent 5 days of
labeling, the plants were in 7-liter chambers and received 25-ml pulses of
CO2. In general, labeling conditions were similar to those used by Lu and
Conrad (18).

A schema depicting the treatments and analyses performed in the
study is shown in Fig. S1 in the supplemental material. Treatments were as
follows: microcosms pulsed with 13CO2 (13C, 99%; Cambridge Isotope
Laboratories, Inc., USA); microcosms pulsed with unlabeled CO2 (Messer
Group GmbH, Germany); microcosms pulsed with 13CO2 during the
dark phase (diffusion control); plants not in chambers and exposed to
ambient CO2 only (planted control); and finally, soil not containing rice
plants (unplanted control). The control diffusion (CD) treatment was
established to determine whether microorganisms in the root or rhizo-
sphere environments could be labeled by 13CO2 transported through the
plant. CO2 uptake was low for this control, and therefore, it was pulsed
only three times per day during the 10 days, in between which the cham-
bers were opened to remove background unlabeled CO2 that had accu-
mulated.

Destructive sampling was performed at the end of the incubation.
Rhizosphere soil, defined here as the layer of soil adhered to the root
surface, was gently removed by hand while wearing clean nitrile gloves.
Aliquots of rhizosphere soil were immediately placed in 2-ml screw-cap
tubes and frozen in liquid nitrogen. Roots, from which the rhizosphere
soil had been manually removed, were placed in small plastic bags and
frozen in liquid nitrogen. Frozen samples were subsequently stored at
�80°C until RNA extraction.

The isotopic signature of the rhizosphere soil and dried plant material
was determined in a NA 1110 CN elemental analyzer (CE Instruments,
Rodano, Italy), interfaced to a Delta Plus isotope mass spectrometer with
a ConFlo III interface (Finnigan MAT, Bremen, Germany) (32). Rhizo-
sphere soil samples were incubated with 1 M HCl at 65°C overnight before
the measurement. A similar analysis of the dried plant material was per-
formed by pulverizing with a mortar and pestle, before measurement.
These measurements were performed at the Institute for Soil Science and
Forest Nutrition (IBW) at the University of Göttingen (Göttingen, Ger-
many).

Gas and soil pore water analyses. Gas samples (CO2 and CH4) were
taken from the labeling chambers every hour during pulse-labeling using
a Shimadzu GC-8A gas chromatograph equipped with a flame ionization
detector and methanizer. Measurements of soil pore water were per-
formed daily by collection into Venoject blood collection tubes, as de-
scribed previously (31). Stable isotope 13C/12C ratios in gas samples and
soil pore water were determined using gas chromatography combustion-
isotope ratio mass spectrometry (GCC-IRMS). A GC-IsoLink with a Con-
Flo IV interface (Thermo Fisher Scientific, Bremen, Germany) was con-
nected with the Delta V Advantage isotope ratio mass spectrometer
(Thermo Fisher Scientific, Bremen, Germany).

RNA purification. RNA extractions were performed as described by
Ma et al. (33). The first bead-beating lysate with Tris buffer was discarded
since it was heavily contaminated with humus-like substances and con-
tained very little or no detectable RNA. The extracts from the two subse-
quent rounds of bead-beating with lysis buffer were pooled and processed
as described previously (33). Frozen roots were pulverized with a mortar
and pestle, and 0.5 g was extracted using the same protocol. Traces of
DNA were removed, and its absence was verified by PCR as described
previously (34). RNA integrity was checked by electrophoresis using Ex-
perion RNA High Sense chips (Experion; Bio-Rad) as shown in Fig. S2 in
the supplemental material and by spectrophotometry (NanoDrop 1000
spectrophotometer; Thermo).

Isopycnic centrifugation. The isopycnic centrifugation of the RNA in
cesium trifluoroacetate (CsTFA; GE Healthcare) gradients and RNA pu-
rification were performed as described previously (34). RNA was stored at
�80°C until cDNA synthesis.

Reverse transcription. RNA was converted to single-stranded cDNA
by reverse transcription using random hexamer primers as previously
described (34). The cDNA was stored at �20°C for further analyses.

454 pyrosequencing. Pyrosequencing was used to determine the mi-
crobial composition in the SIP fractions and from unfractionated RNA
from the diffusion and planted controls. PCR primers F515 and R806
were selected since they offer a wide coverage of bacterial and archaeal taxa
(35, 36). Individual PCRs were barcoded with 6-bp molecular barcodes
integrated in the forward primer and were unique for each sample. The
amplification mix contained 0.6 �M (each) primer, 1 �l of Taq Ac-
cuPrime (Invitrogen) with 5 �l of 10� AccuPrime PCR buffer II, and 1 �l
of cDNA (diluted 10 times) in a final volume of 50 �l. Cycling conditions
consisted of an initial denaturation at 94°C for 5 min, followed by 28
cycles of 94°C for 30 s, 50°C for 30 s, and 68°C for 30 s and a final extension
at 68°C for 10 min. Amplicons were purified using a PCR cleanup kit
(Sigma) and quantified using a Qubit 2.0 fluorometer (Invitrogen). Fi-
nally, samples were pooled in an equimolar concentration and analyzed
by using standard procedures in a Roche GS-FLX 454 automated pyrose-
quencer. Sequencing was performed at the Max Planck Genome Centre
(MPGC), Cologne, Germany. MPGC requires the use of a 16-bp adaptor
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for each forward primer and also for the reverse primer, i.e., forward
primer, 5=-adaptor � barcode � F515; reverse primer, 5=-adaptor �
R806. Table S1 in the supplemental material shows the sequences of bar-
codes, adaptors, and primers.

Bioinformatic analysis. The taxonomic assignment of pyrosequenc-
ing reads was performed with the mothur (37) software platform. All raw
sequences were first denoised to remove sequencing errors by flow gram
clustering using the shhh.flows command, and chimeric sequences were
removed using UCHIME (38). Classification was carried out using the
naive Bayesian classifier in mothur using the SILVA 16S rRNA reference
taxonomy. To assess significant differences in the phyla (in labeled and
unlabeled root samples), one-way analysis of variance followed by a Tukey
post hoc test was performed using the vegan package in R (http://www.r
-project.org/).

Sequences were assigned to operational taxonomic units (OTUs) us-
ing a cutoff of 97% sequence identity with UPARSE (39). The author’s
recommended parameters were used for the preprocessing and OTU as-
signment, with the exception that singleton OTUs were retained. An OTU
corresponding to Pseudomonas was identified as a probable contaminant
since its relative abundance was always high in the heavy gradient frac-
tions from controls with unlabeled CO2 (data not shown). Therefore, this
Pseudomonas OTU was removed from the data set. The number of reads
per replicate sample ranged between 1,053 and 4,383 (see Table S1 in the
supplemental material). The OTU table was used for statistical analysis.
Data transformation has been reported to be superior to subsampling to
control for differences in sampling intensity (40), and therefore, the data
set was normalized by a Hellinger transformation (41) using the de-
costand function (42). We also compared the results obtained by subsam-
pling the data set to the sample with the lowest number of reads using the
sub.sample command in mothur. The results of principal coordinate
analyses (PCoAs) were similar for the two strategies, but the resolution
was superior for the transformed compared with the subsampled data
(results not shown). Bray-Curtis distances were calculated using the veg-
dist function (42), and PCoA was performed using the vegan package
(version 2.0-10) in R (43) (http://www.r-project.org/). metastats (44) was
also performed based on the OTU table using the mothur implementa-
tions of the calculations. For this analysis, the OTU table was first sub-
sampled to the minimum number of sequences obtained for a sample,
using the sub.sample function in mothur. A phylogenetic analysis of sig-
nificantly (P � 0.05) overrepresented OTUs identified using metastats
was performed using the ARB phylogenetic program package (45). The
representative trimmed 16S rRNA sequences were aligned using SINA
(46) and added to the SILVA 115 reference tree (47) by parsimony using
the bacterial positional variability filter.

Nucleotide sequence accession numbers. The 454 pyrosequencing
reads (raw data) were deposited under the study number SRP043264 in
the NCBI Sequence Read Archive (SRA) with the following accession
numbers: SRX620410 to SRX620424 for root samples and SRX620425 to
SRX620439 for rhizosphere samples (see details in Table S1 in the supple-
mental material).

RESULTS
CO2 consumption and CH4 emission. The CO2 concentration in
the chambers decreased from ca. 3,000 ppm immediately after
injection to ca. 200 ppm after 45 to 60 min. The 13C/12C ratio of
pore water CO2 and CH4 increased during the 10 days of labeling
with 13CO2 (Fig. 1). The 13C atom% of plant biomass increased to
nearly 50% but rose only slightly (1.2 to 1.5 atom%) for the rhizo-
sphere soil (see Fig. S3 in the supplemental material). Control
diffusion samples (plants incubated with 13CO2 in the dark) did
not show a substantial increase of the 13C/12C ratios during the
labeling. The 13C contents of plant and soil carbon in microcosms
incubated with unlabeled CO2 were always 1.07 atom% (data not

shown). The pH in soil pore water was always between 6.8 and 7.3
and tended to be slightly higher in unplanted than planted pots.

16S rRNA sequencing. The microorganisms in the rhizo-
sphere and on rice roots were determined by barcoded 16S rRNA
amplicon pyrosequencing. Taxonomic assignments were made
using the naive Bayesian classifier in mothur with the SILVA 16S
rRNA reference taxonomy. For the root samples, 37 phyla were
identified across all samples (Fig. 2A). Differences in the relative
abundance of phyla between labeled and unlabeled fractions
could be seen for Proteobacteria and Verrucomicrobia. Proteobac-
teria were 72.64% � 5.66% in the 13CO2 heavy fraction, compared
with 59.60% � 2.20% in 13CO2 light. Verrucomicrobia were
5.18% � 0.84% in the 13CO2 heavy fraction, compared with
3.03% � 0.49% in 13CO2 light. These differences were significant
(analysis of variance [ANOVA], P 	 0.000 for Proteobacteria and
Verrucomicrobia). The abundances of Acidobacteria, Actinobacte-
ria, Chloroflexi, and Firmicutes were lower in the 13CO2 heavy
fraction than in the light fraction (Fig. 2A), indicating that these
phyla were not extensively labeled. For the rhizosphere samples,
38 phyla were observed, but no significant differences were found
between heavy and light gradient fractions (Fig. 2B).

The assignment and analysis of operational taxonomic units
(OTUs) enable a higher-resolution analysis of sequences associ-
ated with different samples and treatments than by taxonomic
analysis described above. A total of 3,928 and 4,312 OTUs for root
and rhizosphere samples, respectively, were obtained at a se-
quence similarity level of 97%. Principal coordinate analysis
(PCoA) for root and rhizosphere samples as well as control
planted samples indicated differences in community composition
or structure between treatments and samples (Fig. 3). There was a
clear difference between rhizosphere and root communities, as well as
between the labeled (13C, heavy) and the unlabeled (13C, light) frac-
tions of both roots and rhizosphere. There was no difference between
light and heavy fractions for the controls incubated with unlabeled
CO2. Also, the light fractions of the labeled treatments clustered with
the unlabeled treatments. The control planted samples also clustered
separately from the unlabeled control, indicating that factors associ-
ated with growth in a chamber or the elevated CO2 concentrations

FIG 1 Time course of 13C atom% in CO2 (A) and CH4 (B) in the soil pore
water. 13-1, 13-2, and 13-3, microcosms labeled with 13CO2; CD, control dif-
fusion (plants incubated with 13CO2 in the dark).
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FIG 2 Abundances of different bacterial phyla for root (A) and rhizosphere (B) samples from both heavy and light gradient fractions of labeled (13CO2) and
unlabeled (12CO2) microcosms and for the ambient CO2 planted control. Taxonomic classification of 16S rRNA amplicons was performed in mothur using the
SILVA 16S rRNA taxonomy.
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also influenced the microbial communities on the root and rhizo-
sphere; however, these differences were less than that between labeled
and unlabeled communities. A separate clustering of heavy gradient
fractions of the control diffusion samples distinct from the unlabeled
samples was not found (data not shown), suggesting that extensive
labeling of autotrophic microorganisms on the root or in the rhizo-
sphere via 13CO2 transport through the plant did not occur.

The statistical significance of OTU abundance differences be-
tween the microbial communities was determined by metastats
analysis. Thirteen OTUs (representing 16.41% of sequences on
the roots) were significantly higher in root than rhizosphere sam-
ples (where they represented 4.66%), as shown in Table 1. These
included Gaiellales, myxobacteria, methanotrophs, Rhizobiaceae,

and Opitutus bacteria (Table 1). On the other hand, 28 OTUs were
significantly enriched in rhizosphere samples (where they repre-
sented 24.27% of sequences) compared with root samples
(8.38%). These belonged mainly to Actinobacteria, Firmicutes,
Sphingobacteriales, and various Proteobacteria (Table 2).

We next focused on the OTUs that were identified by metastats
as being labeled, which meant having significantly higher (P �
0.05) relative abundance in heavy gradient fractions than in the
light gradient fractions of the 13C incubations. For the root sam-
ples, we observed that 17 OTUs had abundances significantly
higher in the heavy gradient fractions than in the light gradient
fractions. Included in this category was rice chloroplast rRNA
(OTU-22), which can be explained as a consequence of 13C incor-
poration into the plant biomass. Within these 17 OTUs, 7 be-
longed to the Opitutae and “Spartobacteria” classes of the Verru-
comicrobia and 8 OTUs belonged to Proteobacteria, comprising
mainly Comamonadaceae and Rhodocyclaceae. We added repre-
sentative sequences of these OTUs to a phylogenetic tree (Fig. 4),
which resulted in classification similar to that obtained by the
Bayesian classifier. For the rhizosphere samples, 13 OTUs were
significantly enriched in the heavy fractions compared with the
light gradient fractions (Fig. 4). These included sequences most
similar to Sphingomonas, Desulfobacterium, Geobacter, Paludibac-
ter, Clostridium, Acidobacterium, and an OTU from the phylum
Armatimonadetes. In general, the OTUs labeled on the roots and
in the rhizosphere belonged to different phylogenetic taxa.

DISCUSSION

Rice plants were labeled with 13CO2 for 10 days during their veg-
etative growth stage, which would have resulted in all plant bio-
mass synthesized during this period being labeled. At the end of
the incubation, the total plant biomass was labeled to approxi-
mately 50% 13C (see Fig. S3 in the supplemental material). The 13C
content of dissolved CO2 in the soil pore water increased during
the incubation (Fig. 1A). This labeled CO2 in soil would have
arisen from a number of processes, including plant respiration
and microbial respiration of root exudates. In addition, some
13CO2 in the soil pore water could have resulted from the direct
transport of labeled CO2 from the chamber through the plant

FIG 3 Principal coordinate analysis (PCoA) based on abundances of 16S rRNA pyrosequencing OTUs (97% sequence similarity). The legend indicates the origin
of the sample.

TABLE 1 Differentially abundant taxa significantly enriched in root
samples when compared with rhizosphere samples from unlabeled
microcosms (metastats, P � 0.05)

Taxonomya OTUb Root (%)
Rhizosphere
(%)

Bacteria
Actinobacteria: Gaiellales 1 0.20 0.03
Cyanobacteria

Subsection III 1 0.26 0.10
Anabaena 1 0.52 0.23

Fibrobacteres: Fibrobacterales 1 0.13 0.00
Proteobacteria

Alphaproteobacteria: Rhizobiaceae 1 0.65 0.13
Deltaproteobacteria

Anaeromyxobacter 2 4.37 1.21
Haliangium 1 0.49 0.03

Gammaproteobacteria
Methylomonas 1 4.53 0.52
Methylococcales 1 4.24 2.25

Betaproteobacteria: Denitratisoma 1 0.13 0.00
Verrucomicrobia: Opitutus 2 0.88 0.16

Sum 13 16.41 4.66
a Taxonomy was determined by the naive Bayesian classifier in mothur using the SILVA
16S rRNA taxonomy.
b OTU indicates the number of OTUs assigned to the taxon.
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since gases are continuously transported to the root to ensure
oxygenation (48). As a control for this passive transport, a setup
(referred to as “control diffusion” [CD]) was included whereby
plants were incubated with 13CO2 in the dark, during which time
gas transport would continue but photosynthesis would be absent.
The atom% 13C of pore water CO2 showed only a slight increase
above background level in this treatment, indicating that this di-
rect transport of 13CO2 from the chamber was minimal.

The 13C atom% in CH4 increased during the incubation with
13CO2, indicating that the production of 13CH4 exceeded that of
12CH4 (Fig. 1B). This increase was not observed in plants incu-
bated with labeled 13CO2 in the dark (CD) (Fig. 1B). CH4 is formed
by methanogenic archaea primarily via the hydrogenotrophic or ace-
toclastic pathways, whereby either CO2 or the methyl group of
acetate is reduced (49). Vercelli soil contains a wide diversity of
methanogenic archaea, including acetoclastic Methanosarcinaceae
and Methanosaetaceae as well as hydrogenotrophic Methanocel-
lales, Methanomicrobiales, and Methanobacteriales (11, 20). CH4 is
formed by both pathways in Vercelli soil (50), but on rice roots,
CH4 is formed mostly by the reduction of CO2 (51). Furthermore,
Lu and Conrad (18) showed that in particular Methanocellales

incorporate rice plant carbon in the rhizosphere, but Methano-
saetaceae and Methanomicrobiaceae are also active (52).

The pyrosequencing data set allowed us to evaluate differences
in the relative abundance of rRNA from microorganisms in the
roots and rhizosphere. Analyzing the relative abundance of rRNA
has several advantages over comparing rRNA gene abundances, as
discussed in the literature (53). One advantage is that rRNA abun-
dance is in many cases a good reflection of cellular activity. On the
other hand, rRNA abundance should not be confused as a proxy
for cellular abundance. In general, the groups identified in the
present study as having a higher relative rRNA abundance on
roots and in the rhizosphere included both aerobic and anaerobic
microorganisms (Tables 1 and 2); however, the root environment
was represented by a greater proportion of strict aerobes and the
rhizosphere included more organisms characterized by anaerobic
metabolism. This is consistent with the root environment being
more oxic and the rhizosphere becoming more anoxic with dis-
tance from the root (48). Gilbert and Frenzel (54) showed that O2

diffuses up to 0.62 mm from the root into the soil, meaning that
the rhizosphere will include both oxic and anoxic sites. The OTUs
that were identified as higher in the rhizosphere included strict
anaerobes, such as Methanosaeta, which is an acetoclastic metha-
nogenic archaeon. This is consistent with other studies that have
shown a higher abundance of Methanosaeta in the rice rhizo-
sphere than in the roots (55). Other strict anaerobes enriched in
the rhizosphere included the following: Clostridium, a genus pos-
sessing strictly anaerobic fermentative metabolism (56); Heliobac-
teriaceae, anaerobes with either photosynthetic or fermentative
metabolism (57); and Geobacter species, which are iron reducers
(58).

In contrast to the rhizosphere, the root environment was rep-
resented by a greater proportion of known aerobes, for example,
Gaiellales (59), Rhizobiaceae (60), Haliangium (61), and Methylo-
monas (62). The most abundant OTUs found to be higher in roots
than rhizosphere included one belonging to Methylomonas, a
member of the Methylococcaceae, and another OTU belonging to
an unidentified species in the Methylococcales (Table 1). The
Methylococcales are aerobic methanotrophs, which are a physio-
logical group of organisms that consume CH4 and are highly ac-
tive at oxic-anoxic interfaces (63, 64). An OTU corresponding to
Methylocystis, a methanotroph belonging to the Methylocystaceae,
was found to have higher relative abundance in the rhizosphere
(Table 2). These patterns for methanotrophs are consistent with
previous studies that have shown higher abundances of Methylo-
coccaceae on roots and a more balanced distribution of Methylo-
cystis between rice roots and the soil environment (65, 66). CH4

oxidation by methanotrophs is an important mitigating factor for
CH4 emissions from rice field soils and is estimated to reduce
emissions by approximately 20% (54). The activity of metha-
notrophs appears to be at least partly limited by O2 availability
(54), which is exacerbated by competition for O2 with hetero-
trophic microorganisms (67). It is remarkable that methanotroph
rRNA equates to more than 10% of the total on rice roots, sug-
gesting that these organisms are relatively successful at establish-
ing themselves on the root despite this competition.

RNA-SIP was used to identify microorganisms on the roots
and in the rhizosphere by incubating rice plants with 13CO2 (68).
We compared the 16S rRNA profiles in the labeled and unlabeled
gradient fractions by pyrosequencing analysis and identified the
OTUs that were overrepresented in the labeled fraction (Fig. 4).

TABLE 2 Differentially abundant taxa significantly enriched in
rhizosphere samples compared with root samples from unlabeled
microcosms (metastats, P � 0.05)

Taxonomya OTUb

Rhizosphere
(%) Root (%)

Archaea: Euryarchaeota: Methanosaeta 1 0.29 0.03
Bacteria

Actinobacteria
Modestobacter 1 0.20 0.00
Nocardioides 1 0.16 0.03
Gaiellales 1 0.29 0.13
Conexibacter 1 0.49 0.03

Bacteroidetes: Sphingobacteriales:
vadinHA17

2 0.98 0.26

Firmicutes
Bacillus 3 0.85 0.13
Planococcaceae 2 5.15 2.32
Clostridium 2 1.50 0.46
Heliobacteriaceae 1 1.70 0.65
Unclassified 1 0.13 0.00

Nitrospirae: Nitrospirales 1 0.20 0.03
Proteobacteria

Alphaproteobacteria
Beijerinckiaceae 1 0.29 0.03
Hyphomicrobium 1 0.20 0.00
Methylocystis 1 1.57 0.62
Rhodobium 1 0.98 0.29
Sphingomonas 1 0.16 0.03

Betaproteobacteria: Paucimonas 1 0.16 0.03
Deltaproteobacteria

Geobacter 1 7.70 3.00
Cystobacteraceae 1 0.20 0.00
Desulfobacca 1 0.82 0.29

Verrucomicrobia: OPB35 soil group 2 0.26 0.00

Sum 28 24.27 8.38
a Taxonomy was determined by the naive Bayesian classifier in mothur using the SILVA
16S rRNA taxonomy.
b OTU indicates the number of OTUs assigned to the taxon.
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Some of the results matched expectations. For example, we ex-
pected rice plastid rRNA sequences to be labeled (OTU-22), as this
is a reflection of plant biomass labeling. Second, a previous study
using a similar labeling strategy identified Azospirillum-like and
Burkholderiaceae-related microorganisms as major consumers of
rice carbon (19). We also found Azospirillum sequences to be la-
beled (OTU-94), and although we identified no Burkholderiaceae,
we identified several Betaproteobacteria OTUs. The study by Lu et
al. (19) used terminal restriction fragment length polymorphism
(T-RFLP) and small clone libraries to evaluate the labeling of
rRNA, which has lower resolution and sensitivity than the deep
sequencing that we have performed. The Azospirillum sequences
detected were closely related to Azospirillum oryzae, which was
isolated from rice (69). Field experiments with seeds inoculated

with Azospirillum demonstrated that the bacterium provided be-
tween 19 and 47% of nitrogen consumed by the plant and in-
creased rice yield by 22% (70). This relationship between Azospi-
rillum and rice is a classic mutualistic symbiosis where the
bacterium receives plant carbon and the plant receives fixed nitro-
gen. It is not possible to know the phenotype of the Azospirillum
species detected in this study, but its high 16S rRNA sequence
similarity to A. oryzae suggests that it is also an N2-fixing symbiont
of rice. OTU-58, closely related to Paludibacter propionicigenes
(Fig. 4), is another example of a labeled OTU previously shown to
be associated with rice. P. propionicigenes is a strict anaerobe iso-
lated from rice straw that ferments various sugars primarily to
acetate and propionate (71), which is consistent with the labeling
of OTU-58 in the rice rhizosphere.

FIG 4 Phylogenetic tree including representative 16S rRNA gene sequences of OTUs that were identified as being labeled (metastats, P � 0.05) in the root
compartment (green circles) and rhizosphere (red circles). The relative abundance of the OTUs in the heavy (labeled) and light (unlabeled) gradient fractions is
indicated in parentheses next to the OTU name. The GenBank accession numbers of reference sequences are indicated. The scale bar corresponds to 5% 16S
rRNA sequence divergence.
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In addition to labeling microorganisms that are closely related
to known rice symbionts, microorganisms not previously shown
to be associated with rice plants were also identified as using plant-
derived carbon on the roots and in the rhizosphere of rice. The
most abundant labeled taxon was OTU-3, corresponding to more
than 10% of the 16S rRNA sequences in the heavy fraction of the
root sample. OTU-3 corresponds to an uncultivated betaproteo-
bacterium, distantly related to Comamonas. Another cluster of
sequences, represented by OTU-1876, was more closely related to
Comamonas. Comamonadaceae are common in soils and in the
rhizosphere of terrestrial plants. In potato cultivars, Coma-
monadaceae were found to account for up to 25% of 16S rRNA
genes, whereas they were not detected in the bulk soil (72). In the
rhizosphere of wheat, they are believed to play a role in desulfon-
ation reactions, which could provide an important source of sul-
fur for plant nutrition (73).

The indication that Spartobacteria (e.g., OTU-110) were using
plant carbon in the root environment was unforeseen given that a
role in plant microbes has not been previously reported. Four
closely related OTUs belonging to Spartobacteria were identified
as significantly enriched in the labeled fraction of the root samples.
Spartobacteria are among the most abundant microorganisms in
soil and believed to have been underestimated in ecological stud-
ies due to mismatches with common 16S rRNA PCR primers (74).
“Chthoniobacter flavus” and related species are the only character-
ized isolates of this group (75, 76), and a representative genome
has been sequenced (77). This organism was shown to be aerobic
and to grow using many of the saccharide components of cell
biomass, such as xylan, starch, cellulose, pectin, and alginate (75).
The strain could not grow on amino acids or any organic acids
besides pyruvate. Since Spartobacteria are abundant aerobes in soil
that grow using plant saccharides, it is plausible that they have
evolved in association with plants as indicated here. More studies
are needed to identify the exact nature of their association with
plants and rice in particular.

Also within the Verrucomicrobia, four OTUs belonging to the
class Opitutae were identified in the labeled fractions (Fig. 4).
Three of these were identified in the root samples, and one was
identified in the rhizosphere. The closest cultivated representative
was Opitutus terrae, an organism that was isolated from rice soil
(78). It is a strict anaerobe that grows by fermentation or nitrate
reduction using a variety of plant saccharides. As with Spartobac-
teria, the apparent adaptation for growth using plant polysaccha-
rides by Opitutus makes it a good candidate for colonizing the
roots and rhizosphere of rice plants. Unlike the Spartobacteria
OTUs that were labeled exclusively in the root samples, OTU-122
was apparently labeled in the rhizosphere, which could be a reflec-
tion of its anaerobic metabolism.

As discussed above, some of the labeled OTUs are related to
microorganisms that have been previously implicated in the deg-
radation of plant material or isolated from plant roots or rhizo-
sphere soil. This implies that these microbial groups are wide-
spread and exist in diverse soil types and in association with
various crops. There were additional examples of labeled OTUs
that were most closely related to 16S rRNA recovered from rhizo-
sphere soil. For example, OTU-84, classified as belonging to the
Fibrobacteres, is closely related to a sequence (GenBank accession
number JX489861, Fig. 4) from an unpublished study examining
microbial diversity in the rhizosphere of cucumber plants. A sec-
ond example is that OTU-1976, which could not be classified at

the phylum level, is closely related to a sequence (GenBank acces-
sion number JN039008) recovered from the rhizosphere of Phrag-
mites australis. Again, these examples suggest that some of the
OTUs labeled in our rice experiment are related to microorgan-
isms associated with other plant species.

If labeled microorganisms used plant carbon for growth, the
corollary could be construed that unlabeled microorganisms do
not use plant carbon for growth; however, it is not this straight-
forward. Indeed some of the unlabeled microorganisms are likely
to specialize in using soil carbon and not fresh plant material, but
there are other scenarios. For example, some of the unlabeled
microorganisms might use plant carbon under conditions not
tested in this study. Alternatively, they might be active at another
growth stage of the rice plant or could be slow growing and have
lacked sufficient time to become labeled in this experiment. Also,
we used heavy and light gradient fractions differing in density by
about 0.03 g ml�1, which would require a relatively high level of
13C incorporation into RNA to cause a shift to the heavy gradient
fraction. This means that it would be unlikely to detect labeling of
microorganisms that simultaneously used both labeled plant car-
bon and another unlabeled soil carbon. As an example, metha-
notrophs were not labeled although CH4 was enriched to 5 to 15%
13C by the end of the experiment (Fig. 1). Therefore, it should be
noted that this study reveals more about the microorganisms that
were labeled than those that were not.

The results of this study highlight how little is known about
plant-microbe interactions, even for rice, which is an important
food crop. Future work should determine the nature of the inter-
action between rice plants and the microbial community on the
roots and in the rhizosphere. It will be important to determine
which of these microbial groups have plant growth-promoting
properties or enhance disease resistance of crops. Furthermore,
understanding the degradation pathway of rice plant material is
not only of academic interest, as it could aid in managing agricul-
ture practice to mitigate greenhouse gas formation during culti-
vation.
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