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4DIAG, SAPIENZA Università di Roma, via Ariosto 25, Rome 00185, Italy

Plants sense their environment by producing electrical signals which in essence

represent changes in underlying physiological processes. These electrical signals,

when monitored, show both stochastic and deterministic dynamics. In this

paper, we compute 11 statistical features from the raw non-stationary plant elec-

trical signal time series to classify the stimulus applied (causing the electrical

signal). By using different discriminant analysis-based classification techniques,

we successfully establish that there is enough information in the raw electrical

signal to classify the stimuli. In the process, we also propose two standard fea-

tures which consistently give good classification results for three types of

stimuli—sodium chloride (NaCl), sulfuric acid (H2SO4) and ozone (O3). This

may facilitate reduction in the complexity involved in computing all the features

for online classification of similar external stimuli in future.
1. Introduction
Plants produce electrical signals, when subjected to various environmental

stimuli [1–7]. These electrical signals in essence represent changes in under-

lying physiological processes influenced by the external stimuli. Thus,

analysing such plant electrical signals may uncover possible signatures of the

external stimuli embedded within the signal. The stimuli may vary from differ-

ent light conditions, burning, cutting, wounding, gas or liquid [8], etc. This

opens up the possibility to use such analysis techniques to turn a green plant

into a multiple-stimuli sensing biological sensor device [9]. If such an associ-

ation between the external stimuli and the resulting plant electrical signal

could be made, then it may serve the purpose of holistic monitoring of environ-

mental constituents at a much cheaper cost (because of abundance of plants),

thereby eliminating the need to install multiple individual sensors to monitor

the same external stimuli. In this work, we attempt to explore the possibility

of classifying three external stimuli—sodium chloride (NaCl), sulphuric acid

(H2SO4) and ozone (O3), from the electrical signal response of plants as the

first step towards that goal. Here, we chose heterogeneous stimuli that repro-

duce some of the possible environmental pollutants, e.g. H2SO4 is a major

component of acid rain. Ozone is a tropospheric air pollutant and is the main

component of smog. Salinization often results from irrigation management

practices or treatment of roads with salt as the de-icing agent and can be

linked to environmental soil pollution. These three stimuli—NaCl, H2SO4,

O3—are specifically chosen to study the change in plant physiological response

to represent the effect of environmental pollution.

Electrical signals were collected from a number of tomato (Solanum lycopersicum)

and cucumber (Cucumis sativus) plants using NaCl, H2SO4 and O3 as stimuli in

controlled settings. Multiple experiments were conducted for each stimulus to

ensure the repeatability of the electrical signal response each time. We then
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Table 1. Different stimulus, plants species and number of data points (each capturing 11 statistical measures of 1000 samples) used for the present study.

stimulus plant species used concentration and application no. data points

ozone (O3) tomato/cucumber 16 ppm for a minute, every 2 h 1881

sulfuric acid (H2SO4) tomato 5 ml of 0.05 mol H2SO4 in the soil once 496

sodium chloride (NaCl)—5 ml tomato 5 ml of 3 mol NaCl solution in the soil once 812

sodium chloride (NaCl)—10 ml tomato 10 ml of 3 mol NaCl solution in the soil once 612
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extracted 11 statistical features from these plant signal time

series in order to investigate the possibility of accurate detection

of the external stimulus through a combination of these features

and simple discriminant analysis classifiers. We believe this

work will not only form the backbone of using plants as

environmental biosensors [9,10] but also open up a new field

of further exploration in plant signal behaviours with meaning-

ful feature extraction and classification similar to the studies

done using other human body electrical responses such as

electrocardiogram (ECG), electroencephalogram (EEG) and

electromyogram (EMG) [11].

Although there have been few recent attempts on signal

processing, feature extraction and statistical analysis using

plant electrical responses [12–18], there has been no attempt

to associate features extracted from plant electrical signals to

different external stimuli. The focus of our work is to address

this gap. Here, we analysed the statistical behaviour of raw

electrical signals from plants similar to previous studies on

raw non-stationary biological signals which exhibit random

fluctuations such as EMG/EEG, adopting a similar approach

to develop a classification system [19–22]. The present paper

reports the first exploration of its kind, aiming at finding

meaningful statistical feature(s) from segmented plant electri-

cal signals which may contain some signature of the stimulus

hidden in them, to different extents.

As a first exploration, this work focused on the ability to

classify the stimuli by only looking at a small segment of raw

plant electrical responses. The questions that arise in order to

explore this possibility of classification are: (i) which features

give a good discrimination between the stimuli and (ii) which

type of simple classifier will give a consistently good result?

The simplicity of the classifier is an important issue here

because our ambition is to run it on resource-constrained

embedded systems, such as sensor nodes in future. In order

to tackle the first question, we start by using 11 statistical fea-

tures that have been used in other biological signals (e.g.

EEG, ECG and EMG) [11]. We here explore which feature

alone (univariate analysis) or feature combinations (bivariate

analysis) consistently indicate towards that particular signa-

ture of the stimulus. In order to answer the second

question, we will start with a simple discriminant analysis

classifier and then its other variants to observe the average

classification rate.
2. Material and methods
2.1. Stimulus and experimental details
Here we try to develop a classification strategy to detect three

different stimuli viz. O3, H2SO4, NaCl. Four sets of experiments

were conducted with H2SO4, NaCl 5 ml and 10 ml each as stimuli,
as shown in table 1. For each stimuli mentioned above, a between-

subjects design for experiments was set up where four different

tomato plants (similar age, growing conditions and heights) were

used with each plant being exposed to the stimulus only once.

Thus, for 12 experiments, 12 tomato plants were used. For ozone

as the stimulus, six cucumber plants and two tomato plants were

used for eight experiments with each plant being subjected to

only one experiment but multiple applications of the stimulus.

For each plant, we used three stainless steel needle

electrodes—one at the base (reference for background noise sub-

traction), one in the middle and the other on top of the stem as

shown in figure 1. The electrodes were 0.35 mm in diameter

and 15 mm in length, similar to those used in EMG from

Bionen S.A.S. and were inserted around 5–7 mm into the plant

stem so that the sensitive active part of the electrodes (2 mm)

were in contact with the plant cells [8]. The electrodes were con-

nected to the amplifier–data Acquisition (DAQ) system in a

same way as in [8]. Plants were then enclosed in a plastic trans-

parent box with openings to allow the presence of cables and

inlet/outlet tubes, and exposed to artificial light conditions

(LED lights responding to the plant’s photosynthetic needs,

mimicking a day/night cycle of 12 h). Each experiment was con-

ducted in a dark room to avoid external light interferences. The

whole set-up was then placed inside a Faraday cage to limit

the effect of electromagnetic interference as shown in figure 1.

After the insertion of the electrodes into the plant, we waited

for approximately 45 min to allow the plant(s) to recover before

starting the stimulations. Electrical signals acquired by the

electrodes were provided as input to a two-channel high impe-

dance (1015 V) electrometer (DUO 773, WPI, USA) while data

recording was carried out through four-channel DAQ (LabTrax,

WPI) and its dedicated software LABSCRIBE (WPI; http://www.

wpiinc.com/blog/2013/05/01/product-information/data-trax-

software-for-labscribe/). The sampling frequency was set as

10 samples s21 for all the recordings. For the treatments with

liquid, sulfuric acid (5 ml H2SO4, 0.05 M) or sodium chloride

(5 or 10 ml NaCl 3M), a syringe placed outside of the Faraday

cage and connected to a silicone tube inserted into the plant

soil, was used to inject the solution as shown in figure 2a. O3,

produced by a commercial ozone generator (mod. STERIL,

OZONIS, Italy; http://www.sepra.it/products-linea-generatori-

serie-steril250mgo3h-da-aria-6.html) was injected into the box

through a silicone tube (1 min spray every 2 h, 16 ppm), while

a second outlet tube threw the ozone from the box to the chemi-

cal hood as shown in figure 2b. The concentration of ozone inside

the box was monitored using a suitable sensor.
2.2. Data processing and segmentation
Each dataset was obtained after one (H2SO4, NaCl 5 ml and 10 ml)

or multiple (O3) applications of that particular stimulus. This

is illustrated in figure 3 where the application of stimulus is

marked by a vertical dotted line with the post-stimulus part of

the time series on the right side and the background or

pre-stimulus part indicated on the left side of the line. In the

http://www.wpiinc.com/blog/2013/05/01/product-information/data-trax-software-for-labscribe/
http://www.wpiinc.com/blog/2013/05/01/product-information/data-trax-software-for-labscribe/
http://www.wpiinc.com/blog/2013/05/01/product-information/data-trax-software-for-labscribe/
http://www.wpiinc.com/blog/2013/05/01/product-information/data-trax-software-for-labscribe/
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NaCl
(a) (b)

O3 - out O3 - in

H2SO4

Figure 2. Tube system for introducing pollutants inside the box. (a) For the treatments with H2SO4 or NaCl, a syringe placed outside of the Faraday cage and
connected to a silicone tube inserted into the plant soil was used to inject the solution at various concentrations. (b) Ozone was injected into the box through a
silicone tube, while a second outlet tube withdrew the ozone from the box to the chemical hood. (Online version in colour.)

Faraday cage electrodes into the
plant stem

LED light for aiding
photosynthesis

outlet for ozone
as stimulus

inlet for ozone as
stimulus

Figure 1. Experimental set-up showing a tomato plant inside a plastic transparent box, kept inside a Faraday cage. The placement of the electrodes on the stem is
also shown. (Online version in colour.)
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case of O3, multiple applications of the stimulus is shown by

multiple markers.

As a general observation, from figure 3 we can see that there

are sudden spiking changes in the signal after the application of

H2SO4 and ozone as stimulus. However, for the NaCl 5 ml and

10 ml stimuli, the changes in the electrical signal response are rela-

tively slow. Thereafter, for each experiment, we divided the data

such that we have a post-stimulus part of the signal as well as

the background (pre-stimulus) part. In the case of O3 where mul-

tiple stimuli were applied, we divided the data such that the signal

duration between consecutive applications of the stimuli was a

separate post-stimulus response. This way, we ended up having

several post- and pre-stimuli datasets for all four stimuli. Next,

each of these datasets was segmented into blocks of fixed

window length of 1000 samples (100 s) which is shown in figure 3.

The reason for this data segmentation is to facilitate batch

processing of large volumes of data acquired during continuous

monitoring. We extracted 11 statistical features from these small

chunks of 1000 samples and wanted to explore whether the fea-

tures from such small chunks give enough information to the

classifier to discriminate which stimulus that particular data

chunk (time period) belonged to. Again, a successful classification
of the stimulus from the features of such a small signal block will

enable a fast decision time. This is due to smaller buffer-size for

batch processing compared to the whole length of the signal acqui-

sition thereby making it easier for possible online implementation

in future. As this is the first exploration of its kind, we confine the

study to 1000 samples only, for extracting statistical features that

provide sufficiently good classification accuracy but there is

scope for further exploration of an optimum window length to

classify the stimulus. The classifier was trained using only the

blocks of samples belonging to the post-stimulus part of

the plant signal. The pre-stimulus part was also divided into simi-

lar segments in order to study the effect of the background for

different plants under different experimental conditions.

The stimulus-induced plant signals have both determinis-

tic and random dynamics, i.e. local and global variations in

amplitudes and different statistical measures of smaller data

segments [6,9,10,23,24]. The research question that we attempted

to answer through the present exploration is—is it possible to

identify the stimulus by only looking at the statistical behaviour

of small segments of the plant’s electrical response? A successful

answer to this question would pave the way for conceptualizing

an electronic sensor module in the future for classifying the
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Figure 3. (a,b) The vertical dotted lines mark the application time of the four stimuli. (c,d ) Separating the plant electrical signal into background and post-stimulus
parts and then dividing them into smaller blocks of 1000 samples, as shown by dashed circles. (Online version in colour.)
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environmental stimulus. This sensor module can be fitted on the

plant for batch processing of segmented plant signals, statistical

feature extraction and classification, without much memory

requirement in future applications.

2.3. Statistical feature extraction from segmented time
series

Here, we started with 11 features that are predominantly used in

the analysis of other biological signals [25]. Different descriptive

statistical features like mean (m), variance (s2), skewness (g), kur-

tosis (b) as given in (2.1) and interquartile range (IQR ¼ Q32Q1,

i.e. the difference between the first and third quartile) were

calculated as

m ¼ E[xi], s2 ¼ E[xi � m]2, g ¼ E
xi � m

s

h i3

and b ¼ E
xi � m

s

h i4

: (2:1)

In the calculation of four basic moments in (2.1), xi is the seg-

mented raw electrical signals each of them containing 1000

samples and E[.] is the mathematical expectation operator.

Apart from these five, the remaining six features taken are:

Hjorth mobility, Hjorth complexity, detrended fluctuation
analysis (DFA), Hurst exponent, wavelet packet entropy and

average spectral power which are briefly described below.
2.3.1. Hjorth’s parameters
The Hjorth mobility and complexity, described in [26], quantify a

signal from its mean slope and curvature by using the variances of

the deflection of the curve and the variances of their first and

second derivatives. Let the signal amplitudes at discrete time instants

be an at time tn. The measures of the complexity of the signal is based

on the second moments in the time domain of the signal and the sig-

nal’s first and second derivatives. The finite differences of the signal

or time derivatives can be viewed as follows:

dn ¼ a0n ¼ anþ1 � an, where n ¼ 1, 2, . . . , (N � 1)

and d0n ¼ a00n ¼ a0nþ1 � a0n, where n ¼ 1, 2, . . . , (N � 2):

)

(2:2)

The variances are then computed as [27]

s2
a ¼

1

N

XN

n¼1

a2
n, s2

d ¼
1

(N � 1)

XN�1

n¼1

(an � an�1)2

and s2
dd ¼

1

(N � 2)

XN�2

n¼1

(dn � dn�1)2: (2:3)
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These variances (2.3) are used to calculate the Hjorth mobility

(mH) and the Hjorth complexity (cH) [27] as

mH ¼
sd

sa
and cH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

dd

s2
d

 !
� s2

d

s2
a

� �
:

vuut (2:4)
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2.3.2. Detrended fluctuation analysis
The DFA has been introduced in identifying long-range corre-

lations in non-stationary time-series data. By using a scaling

exponent (a), one can describe the significant autocorrelation

properties of signals also with a provision of capturing the non-

stationary behaviour [28,29]. The different values of a represent

certain autocorrelation properties of the signal [28,29]. For a

value of less than 0.5, the signal is described as anti-correlated.

A value of exactly 0.5 indicates uncorrelated (white noise) signal,

whereas a value greater than 0.5 indicates positive autocorrelation

in the signal. When a ¼ 1, the signal is indicated to be 1/f noise

and a value of 1.5 indicates the signal to be random walk or

Brownian noise [28,29].

2.3.3. Hurst exponent
The Hurst exponent (H ), a dimensionless estimator similar to DFA, is

used as a measure of the long-term memory of a time-series data xi

[30,31]. The value of the Hurst exponent lies between 0 and 1, with

a value between 0 and 0.5 indicating anti-persistent behaviour. This

denotes that a decrease in the value of an element will be followed

by an increase and vice versa. This characteristic is also known as

mean reversion, which is explained as the tendency of future values

to return to longer term mean values. The mean reversion phenom-

enon gets stronger for a series with an exponent value closer to zero

[30,31]. When the value is close to 0.5, a random walk (e.g. a Brownian

time series) is indicated. In such a time series, there is no correlation

between any element and predictability of future elements is difficult

[30,31]. Lastly, when the value of the exponent is between 0.5 and 1,

the time series exhibits persistent behaviour. This means the series has

a trend or there is a significant autocorrelation in the signal. The more

closer the exponent value gets towards unity, a stronger trend is

indicated for the time series [30,31].

2.3.4. Wavelet entropy (wentropy)
The time series may be represented in frequency and/or time-

frequency domains by decomposing the signal in terms of basis

functions such as harmonic functions (as in Fourier analysis) or

wavelet basis functions (with consideration of non-stationary be-

haviour), respectively. Given such decomposition, it is possible

to consider the distribution of the expansion coefficients on this

basis. Quantification of the degree of variability of the signal

could be done using the entropy measure, where high values indi-

cate less ordered distributions. The wavelet packet transform

based entropy (WE) measures the degree of disorder (or order)

in a signal [32–34]. A very ordered underlying process of a dyna-

mical system may be visualized as a periodic single frequency

signal (with a narrow band spectrum). Now the wavelet trans-

formation of such a signal, will be resolved in one unique level

with a value nearing one, and all other relative wavelet energies

being minimal (almost equal to zero) [32–34].

On the other hand, a disordered system represented by a

random signal will portray significant wavelet energies from

all frequency bands. The wavelet (Shannon) entropy gives an

estimate of the measure of information of the probability dis-

tributions. This is calculated by converting the squared

absolute values of the wavelet coefficients si of the ith wavelet

decomposition level as

WE ¼ �
X

i

s2
i log (s2

i ): (2:5)
2.3.5. Average spectral power
The average spectral power (P) is the measure of the variance of

signal power, distributed across various frequencies [35]. It is

given by the integral of the power spectral density (PSD) curve

jX(e jv)j2 of the signal x(t) within a chosen frequency band of

interest (bounded by the low and high frequency—vl, vh,

respectively) as

P ¼
ðvh

vl

jX(e jv)j2dv: (2:6)
2.4. Adopted classification scheme
All of the above-mentioned extracted features are first normalized to

scale them within a maximum (1) and minimum (0) value and to

avoid any unnecessary emphasis of some of the features on the clas-

sifier weights owing to their larger magnitude than the others.

Among all the 11 features, their relative importance in each of the

binary classification set has been obtained by computing the Fisher’s

discriminant ratio (FDR) [36]. The FDR is a measure to explore the

discriminating power of a particular feature to separate two classes

and are computed as (m1 � m2)2=(s1
2 þ s2

2) [36], where, m1 and m2

are the mean ands1 ands2 are the standard deviation of the features

in the two classes, respectively, and therefore should not be con-

fused with that of the raw signal in (2.1). Higher ranking, based

on FDR, will be assigned to those features that have higher differ-

ence in the mean values and small standard deviation implying

compact distantly located clusters. Owing to the application of

multiple-stimulus, the FDR-based feature ranking is applied for

each of the stimulus pairs, in this work [36].

The classifiers implement algorithms which help in dis-

tinguishing between two or more different groups or classes of

data. Different classification algorithms are obtained by first

training the class labels (stimulus applied in this case) of a certain

portion of the known (training) groups and then using the

trained model to predict the class labels for a group of unknown

(test) dataset. Once it is found that the testing phase is successful

(high accuracy in identifying the stimulus) using the trained

model, the algorithm can be used to identify which class

unknown data belongs to. In cases, where the distinction is

easily achievable, discriminant analysis classifiers such as

linear discriminant analysis (LDA) could be effective. Where

such distinctions are not that straightforward, nonlinear classi-

fiers such as kernel-based techniques such as support vector

machine (SVM) can be applied. Cases where only two groups

need to be identified, binary classification are generally carried

out. This is a much simpler process than multiple class classifi-

cation. The choice of a classifier (discriminant or complex

kernelized SVM) may be determined sometimes by looking at

the distribution plot of the features of the two groups. If the dis-

tribution plots show two well-separated means, we can conclude

that a simple linear or other discriminant analysis-based classi-

fiers should be able to classify the data to a sufficient extent.

Unnecessarily involving a complex nonlinear classification tech-

nique often gives high classification accuracy on the training

dataset, but is prone to over-fitting. In this study, we focus on

five different discriminant analysis classifiers which are based

on least square method for training the classifier weights rather

than the computationally heavy optimization process involved

in SVM. Among five discriminant analysis variants, the QDA

uses a quadratic kernel with the feature vectors. The Diaglinear
and Diagquadratic classifiers are also known as naive Bayes clas-

sifier using a simple linear and quadratic kernel and use the

diagonal estimate of the covariance matrix (neglecting the

cross-terms or feature correlations). The Mahalanobis classifier

uses a different distance measure than the standard Euclidean

distance [36]. We used different discriminant analysis classifiers

owing to their simplicity to see the characteristic changes
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traced in the features owing to these stimuli. Two types of

approach could be taken in classification (i) choice of meaningful

statistical features followed by simple classifier and (ii) simple

features followed by a complex classifier. The former case is pre-

ferable to the latter as it may help in understanding the change in

statistical behaviour of the signal which might be indicative

towards some consistent modification of the underlying

biological process.

Cross-validation schemes are often used to avoid the introduc-

tion of any possible bias owing to the training dataset [36]. Here

we use the leave one out cross validation (LOOCV) where, if

there are N data points, then (N 2 1) number of samples are

used for training the classifier and the one held-out sample is

used to test the trained structure. Thereafter, the single test

sample will be included in the next training set, and again a new

sample from the previous training set will be set aside as the

new test data. This loop will go for N times, until all the samples

have been tested and the average classification accuracy for all

the N instances are calculated [36].
3. Results
The classification results of five discriminant analysis classifier

variants, using 11 statistical features from plant electrical signal

response to four different stimuli viz. H2SO4, NaCl of 5 ml and

10 ml and O3 are presented in this section. We also investigate

which stimuli are best detected by looking at the classification

accuracy, thereby suggesting the ability of the plant to detect

few particular stimuli better than the others.

3.1. Need for subtracting the background information
of individual features

Figure 3 shows the four plant electrical signal responses

to four different stimuli beginning at different amplitude
levels. This means the background signal (even before the

application of the stimuli) is different in all four different

cases. This may bias the final classification result owing to

the already separated background information within the

multiple features considered. Owing to the effect of different

backgrounds, we can see a clear separation between the

stimuli for some features such as Hjorth mobility, Hjorth

complexity and skewness, in figure 4, where histogram

plots for each of the features for each stimulus are plotted

without any background subtraction.

This encourages us to look at only the incremental values of

the features under different stimuli. The incremental values

are obtained by subtracting the mean of every feature

extracted from the background from the corresponding fea-

ture extracted from the post-stimulus part of the signal. The

histogram plots of the incremental values of the individual

features, after the background is subtracted, are given in

figure 5 which shows a lesser separability in the stimuli

which were as expected. We now use these incremental

values of the features to see how good they are in providing

a successful classification (using five different discriminant

analysis classifier variants) between any two stimuli (six

binary combinations of four stimuli). As an example,

although the histogram plots in figure 5 shows clear separ-

ation of the distributions for NaCl and O3 using skewness

as feature owing to their peaky nature, the frequency of

occurrence of the histograms show that the distributions

have wider spread which has been reflected by the moderate

rate of classification reported in the next subsections using

that particular feature.

3.2. Correlation of features to avoid redundancy
Between all the features, a correlation test was carried out

to find out their inter-dependence. The result of this test,



Table 2. Correlation coefficient between 11 statistical features extracted from plant electrical signals (after subtracting the mean of the pre-stimulus features
from the post-stimulus ones).

features m s2 IQR g b mH cH H a WE P

f1 ¼ m 1.00 0.09 20.03 20.06 0.07 0.04 0.03 20.11 20.22 0.70 0.26

f2 ¼ s2 * 1.00 0.83 0.01 0.10 20.05 20.23 20.10 0.21 0.02 0.07

f3 ¼ IQR * * 1.00 20.04 0.02 20.08 20.31 0.01 0.53 20.12 0.05

f4 ¼ g * * * 1.00 0.29 0.00 20.06 20.09 20.07 20.08 0.00

f5 ¼ b * * * * 1.00 20.01 20.23 20.14 20.03 0.14 0.06

f6 ¼ mH * * * * * 1.00 0.34 20.07 20.10 0.06 0.02

f7 ¼ cH * * * * * * 1.00 20.12 20.28 0.06 0.09

f8 ¼ H * * * * * * * 1.00 0.64 20.15 20.16

f9 ¼ a * * * * * * * * 1.00 20.29 20.06

f10 ¼ WE * * * * * * * * * 1.00 20.09

f11 ¼ P * * * * * * * * * * 1.00

Table 3. Average accuracy (averaged across all six binary stimuli combinations and all five classifier variants) and best accuracy (averaged across four ‘one versus
rest’ stimuli combinations) for classification using individual features.

ranked features scatter matrix
average accuracy for all binary
stimulus combinations (%)

best accuracy for all ‘one versus rest’
stimulus combinations (%)

F1 mean (m) 0.8453 70.87 73.01, Mahalanobis

F2 wentropy (WE) 0.2858 69.79 62.26, Mahalanobis

F3 Hjorth complexity (cH) 0.1022 66.61 60.82, Mahalanobis

F4 interquartile range (IQR) 0.2838 65.07 63.62, LDA/Diaglinear

F5 variance (s2) 0.0453 63.57 65.58, LDA/Diaglinear

F6 average spectral power (P) 0.1385 60.51 61.58, Mahalanobis

F7 DFA (a) 0.1989 60.14 61.28, Mahalanobis

F8 kurtosis (b) 20.0637 58.06 62.64, Mahalanobis

F9 Hjorth mobility (mH) 0.0064 57.45 61.44, Mahalanobis

F10 skewness (g) 20.5731 54.55 62.09, Mahalanobis

F11 Hurst exponent (H ) 0.0321 52.38 61.40, Mahalanobis
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given in table 2, is obtained by checking the Pearson

correlation coefficient values between all feature pairs.

A correlation value of (approx. +1) indicates a strong

positive/negative correlation between a pair, whereas a

value closer to zero indicates the feature pairs are indepen-

dent and are thus more informative about the underlying

process. A good classification strategy should ideally

involve uncorrelated features, in order to avoid redundancy

in training the classifier. In this work, we proceeded by

initially taking all features into account and then ignored

the ones with high correlation.

3.3. Classification using univariate and bivariate
features

The classification results were obtained in two ways—using

univariate and bivariate features, to make the analysis intuitive

and simple to infer. That is, instead of taking all the features

together to get a multivariate classification (which may give

good classification accuracy but are less intuitive and reliable
owing to increases in complexity and dimension of the pro-

blem), we just explored the results with 11 individual

features and 55 possible feature pairs.

Table 3 presents the results, obtained using indivi-

dual features, averaged across all six stimuli combinations

and all five different classifier variants. We have also pre-

sented the relative multi-class separability score given by

the scatter matrix (S) in (3.1) for each feature in terms

of the within-class (Sw) and between-class (Sb) scatter

matrix [36].

S ¼ trace(S�1
w Sb)

and Sw ¼
Pc
i¼1

PiSi, Sb ¼
Pc
i¼1

Pi(mi � m0)(mi � m0)T,

m0 ¼
Xc

i¼1

Pimi, i ¼ 1, 2, . . . , c:

9>>>>>>=
>>>>>>;

(3:1)

Here, Pi is the a priori probability for the present four-class

problem (c ¼ 4) and has been considered as 1/4. Also, the



Table 4. Accuracy using top five individual (univariate) features (F2 – F6)
and averaged across five classifiers (average separability between different
stimulus combinations).

stimuli NaCl 5 ml NaCl 10 ml H2SO4 O3

NaCl 5 ml — 57.20% 64.02% 65.94%

NaCl 10 ml * — 63.17% 67.29%

H2SO4 * * — 73.03%

O3 * * * —
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mean and covariance matrices for each of the classes are

denoted by fmi, Sig and m0 is the global mean vector. The

scatter matrix extends the concept of class separability

using FDR from binary classification to multi-class problems.

The scatter matrices value in table 3 provide an insight

into how good the separation between the four classes

(stimuli) are using the individual features. From table 3, we

can see that the signal ‘mean’ on its own has the best classi-

fication result for the six binary combinations of four

stimuli. However, as we have extracted the features from

the raw non-stationary plant electrical signals, the mean is

not a very reliable feature to base any conclusions on, because

it can be influenced by various artefacts and noise during

measurement or from various environmental factors (e.g.

sudden gust of breeze could shake the electrodes connected

to the plant body). The next five best features (best average

accuracies given in table 3), when taken individually, are

wavelet packet entropy, Hjorth complexity, IQR, variance

and average spectral power, respectively. From now on, we

will only consider these features as the top five features. In

table 3, we also report the best achievable accuracy along

with the best classifier using each of the single features to dis-

criminate the four stimulus within a ‘one versus rest’ strategy.

This highlights the possibility of isolating one particular class

from the other classes using a single feature, with a certain

degree of confidence.

So far we have seen the averaged results of classification

for six binary stimuli combinations using individual features.

We next find the best classified stimuli combination using

only the top five individual features and using the five variants

of the discriminant analysis classifiers, as mentioned above. As

a result, we obtained five classification accuracies (for five indi-

vidual features) for every classifier for each of the six binary

stimuli combinations. That results in 25 classification accu-

racies for each of the six binary stimuli combinations. These

25 results were averaged for each stimuli combination and

given in table 4 which shows the best discrimination possible

is for H2SO4 and O3 with classification accuracy over 73%.

Additionally, discrimination between NaCl (both concen-

trations) and O3/H2SO4 also shows promising results with

accuracy over 65% and 63%, respectively.

The average classification results presented in table 4

encourage us to look at the best results achieved using individ-

ual features, for each stimuli combination, so that we can see

whether there is a consistent feature giving good classification

results. This is shown in table 5 from where it is evident that F3

(Hjorth complexity) gives the best result for three different

binary stimuli combinations with an accuracy over 74%. Over-

all, the best accuracy is achieved for classification between

H2SO4 and O3, with an accuracy of more than 94% using F2

(Wentropy) and QDA classifier. Although in table 4, the dis-

crimination between NaCl and O3/H2SO4 are shown in

terms of the average accuracy, which might seem to be rela-

tively low (63 or 65%), the best cases for such a

discrimination can be found in table 5 (accuracies of more

than 78% and more than 72%, respectively) between the

same set of stimuli. Also from figure 5, we can see that

though skewness shows good discrimination between H2SO4

and other stimuli, from table 3 we can see that the average

classification accuracy using skewness as an individual feature

is very low. This is due to the fact that skewness on its own did

not give good classification results between other remaining

stimuli combinations.
3.4. Classification using feature pairs
Next, we looked at the effect of all possible feature pairs using

11 individual features (totalling 55 independent feature pairs)

on the classification results between six different stimuli

combinations. These classification accuracies are shown in

figure 6 along with the difference in accuracy (error) when

the background is not subtracted as discussed in earlier sec-

tion. The features mentioned as f1,2, . . . , 11g in figure 6 are

the features designated byf f1, f2, . . . , f11g, respectively, in

table 2. As we ignored mean as a feature in the previous sec-

tion, we explored the effect of taking binary combinations of

the next five individual features (F2 through F6, as mentioned

in table 3) on the classification accuracy. The results obtained

using each of these bivariate features (pairs), using all the five

classifier variants were averaged and given in table 6, which

are found to be better than the averaged results obtained

using just univariate features as given in table 4.

By this exploration, we wanted to find out whether there is

any improvement on the classification accuracy when a feature

pair is used rather than just an individual feature. From

table 6, we can see that classification accuracy is improved for

all stimuli combinations except NaCl 5 ml versus H2SO4. We

can also observe from table 6 that the top two best accuracies

are obtained for stimuli combinations of NaCl 10 ml versus O3

and H2SO4 versus O3. Now, let us look at the best feature

pair(s), among all 55 bivariate feature pairs, as given in table 7.

We notice that a combination of F4 (IQR) and F5 (variance)

results in the best classification accuracies for four out of six

different stimuli combinations. For the remaining two stimuli

combinations, a feature pair of F4 and F6 (average spectral

power) gives the best classification accuracies.
3.5. Finding the most reliable combination of feature
or feature pair and classifier variant

So far, we have found that individual features F2, F3, F8

and F9 and feature pairs F4–F5 and F4–F6 produced the

best classification results for one or more (out of the six)

stimuli combinations. We now explore these features and fea-

ture pairs for all stimuli combinations. Table 8 gives the

results of classification when we used just F2, F3, F8 and F9

as an individual feature using all classifier variants for all

binary stimuli combinations. Similarly, table 9 gives the

results using the feature pairs F4–F5 and F4–F6 for all the

six stimuli combinations, using all the five classifier variants.

These results will help us choose the right classifier and

decide the feature or feature pair which provides the best

average accuracy for all the binary combinations of stimuli.
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Figure 5. Univariate histograms of each of the 11 features for four different stimuli (with background subtraction). (Online version in colour.)

Table 5. Best accuracy taking individual features for each stimulus combination (best separability between different stimulus combinations).

stimuli NaCl 5 ml NaCl 10 ml H2SO4 O3

NaCl 5 ml — 74.36% (F3, LDA classifier) 75.09% (F3, Mahalonobis classifier) 78.95% (F3, LDA classifier)

NaCl 10 ml * — 72.13% (F8, LDA classifier) 82.27% (F9, QDA classifier)

H2SO4 * * — 94.95% (F2, QDA classifier)

O3 * * * —

Table 6. Average accuracy obtained using top five feature pairs (bivariate) and
five classifiers (average separability between different stimulus combinations).

stimuli NaCl 5 ml NaCl 10 ml H2SO4 O3

NaCl 5 ml — 59.52% 58.21% 72.69%

NaCl 10 ml * — 64.66% 76.60%

H2SO4 * * — 74.60%

O3 * * * —
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From table 8, we note that using just F2 or F3 provides con-

sistently better average classification accuracies than using F8

or F9. It is also noted that although F2 provides a better classi-

fication for the stimuli combinations NaCl 10 ml versus O3 and

O3 versus H2SO4, F3 provides more consistent and better

results for the remaining stimuli combinations. While consid-

ering a single feature for discriminating the four stimuli, the

best average result (73%) could be obtained using the F2

(Wentropy) feature and Mahalanobis classifier, although it is

highly correlated with the signal mean (F1) as shown in table

2. As mean as a feature was ignored owing to its susceptibility

to artefacts, therefore, we also ignore Wentropy and instead

propose Hjorth complexity as the best individual feature for

achieving good average classification accuracy.

When using bivariate feature pairs, it is evident from table

9 that the top two classification accuracies (more than 73%) are

obtained using the F4–F5 combination and Diagquadratic and

QDA as classifiers, respectively. Both these top bivariate classi-

fication results (average accuracy of 69.65% across all stimuli

and classifiers) are better than that obtained in the univariate

case in table 8 (average accuracy of 62.98% across all stimuli
and classifiers). Although again from table 2, we realize that

the IQR and variance are highly correlated with each other

but as we are achieving a good result in terms of classification

using these two features, we note that calculating IQR and var-

iance from a block of 1000 samples of raw non-stationary plant

electrical signal, along with QDA or Diagquadratic classifier

will provide consistently good results in terms of classifying

which external stimuli caused the particular signature in the

plant electrical signal.



Table 7. Best accuracy for each stimulus combination using two features (best separability between different stimulus combinations).

stimuli NaCl 5 ml NaCl 10 ml H2SO4 O3

NaCl 5 ml — 63.18% (F4 – F6 with Diaglinear) 65.87% (F4 – F6 with linear) 82.69% (F4 – F5 with Diaglinear)

NaCl 10 ml * — 73.18% (F4 – F5 with Diagquadratic) 92.06% (F4 – F5 with Mahalanobis)

H2SO4 * * — 87.48% (F4 – F5 with Quadratic)

O3 * * * —

Table 8. Accuracy of different classifiers for six stimuli combinations (in %) using the best individual features.

individual
feature

classifier
variant

NaCl 5 ml
versus
10 ml

NaCl 5 ml
versus
H2SO4

NaCl 5 ml
versus O3

NaCl
10 ml
versus O3

NaCl 10 ml
versus
H2SO4

O3 versus
H2SO4

average
accuracy
(%)

F2 (wentropy) LDA 55.3 66.4 73.4 77.6 59.5 82.8 69.2

QDA 52.2 67.6 62 74 56.4 95 67.9

Diaglinear 55.3 66.4 73.4 77.6 59.5 82.8 69.2

Diagquadratic 52.2 67.6 62 74 67.3 95 69.7

Mahalanobis 55.5 73.1 73.7 78.2 63.8 94.4 73.1

F3 (Hjorth

complexity)

LDA 74.4 73.9 78.9 66 68.3 66.9 71.4

QDA 74.1 47.1 61.6 71.5 67.5 41.8 60.6

Diaglinear 74.4 73.9 78.9 66 68.3 66.9 71.4

Diagquadratic 74.1 47.1 61.6 71.5 67.5 41.8 60.6

Mahalanobis 74.4 75.1 62.4 51.1 69.4 81.5 69

F8 (kurtosis) LDA 57.1 66.5 57.6 60.5 72.1 66.1 63.3

QDA 47.8 38.4 69.3 47.1 71.8 22.5 49.5

Diaglinear 57.1 66.5 57.6 60.5 72.1 66.1 63.3

Diagquadratic 47.8 38.4 69.3 47.1 71.8 22.5 49.5

Mahalanobis 57.7 58.2 38.5 81.3 71.3 81 64.7

F9 (Hjorth

mobility)

LDA 60.4 73.9 68.5 66 56 35.8 60.1

QDA 49.7 47.7 76.4 82.3 48.7 81.6 64.4

Diaglinear 60.4 48.8 68.5 66 56 35.8 55.9

Diagquadratic 49.7 47.7 76.4 82.3 48.7 81.6 64.4

Mahalanobis 66.2 54.6 30.1 24.7 58.4 20.5 42.4
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Table 9. Accuracy of different classifiers for six stimuli combinations (in %) using the best feature pairs.

best feature set classifiers

NaCl 5 ml
versus
10 ml

NaCl 5 ml
versus
H2SO4

NaCl 5 ml
versus O3

NaCl
10 ml
versus O3

NaCl 10 ml
versus
H2SO4

O3 versus
H2SO4

average
accuracy
(%)

F4 – F5

(IQR-variance)

LDA 56.61 62.61 82.53 81.57 69.24 85.09 72.94

QDA 57.78 61.62 82.24 86.06 64.69 87.49 73.31

Diaglinear 63.17 53.8 82.7 83.47 62.06 80.33 70.92

Diagquadratic 60.34 58.43 82 86.08 73.19 81.98 73.67

Mahalanobis 62.17 50.23 80.24 92.07 53.64 78.91 69.54

F4 – F6

(IQR-average

spectral power)

LDA 56.88 65.87 71.61 70.06 67.94 81.27 68.94

QDA 57.82 57.01 73.89 81 65.19 78.48 68.9

Diaglinear 63.19 54.59 68.67 78.16 64.92 71.39 66.82

Diagquadratic 58.11 60.57 79.19 75.70 67.96 79.66 68.31

Mahalanobis 62.61 52.99 62.72 79.62 58.08 60.84 63.20
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Figure 7. Bivariate histograms of top feature pairs with highest classification accuracy for all the four stimuli (accuracy mentioned in title of each subplot). (Online
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We next explore some pairs of uncorrelated features for

classification by looking at the 12 next best average classi-

fication accuracies (obtained across all stimuli combinations

and using all five different classifiers) as shown through two-

dimensional normalized histogram (volume being unity) plots

showing the separation of the four stimuli in figure 7. Average

accuracy obtained (over all stimuli combinations and classifiers)

using particular feature pairs (denoted by f1, f2, . . . , f11, as

described in table 2) are also mentioned in the title of each sub-

plot in figure 7. It is observed that the second best average

classification accuracy is achieved using variance and skewness

as features that are almost uncorrelated (correlation of approx.

0.01 in table 2).
In figure 7, except the first subplot with f2– f3, the rest of

the combinations are almost uncorrelated and still give

good classification performance. Thus as a reliable measure

of analysis, it has been found that the variance and skewness
calculated from a block of 1000 samples of plant electrical

signal will be able to give an average (over all six stimuli com-

binations and using all five discriminant classifiers) accuracy

of 70% during binary classification of the stimuli. It is to be

noted that in the bivariate classification scheme, the mean

(F1) has not been considered as one of the features. Also,

the best bivariate accuracies were achieved involving the var-

iance (F2) along with all the other features (F4–F11) in figure 7,

while ignoring the F2–F3 combination owing to their high
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inter-dependence. As a summary, a better reliable classifi-

cation scheme is expected (approx. 67–70%) involving

bivariate features as shown in figure 7, with respect to the

univariate features as given in table 3 (less than 67%, ignoring

mean and Wentropy).

The results presented in this work only take into account the

experimental data for individual stimulus under a controlled

environment (laboratory). The next step can be to set up exper-

iments where multiple stimuli could be applied together on the

plant and its electrical signal response could be extracted for

further analysis and classification of the most influential stimuli.

Also, the robustness of the statistical features owing to possible

artefacts (movement of the leaf owing to wind, rainfall, etc.)

are to be explored in future in a more naturalistic environment,

outside the controlled laboratory set-up.
 rface
12:20141225
4. Discussion
In our exploration, the data from two channels per plant

(per experiment) were used to record the electrical response,

and then statistical features were calculated from both the

channels and pooled together. Here, the location on the

plant body for the data extraction was ignored, as the work

was primarily focused more on the possibility of classification

of applied external stimuli from the extracted plant electrical

signal. Similarly, the effects of a different species of plant to

study the four stimuli have also been ignored, except the

introduction of an additional species (cucumber) for the

ozone stimulus. The idea behind developing an external

stimuli classification scheme, based on plant electrical

responses is focused on generic plant signal behaviour and

not of a specific species. However, such isolation forms a

very good study and could be taken up as future work.

There might be some possibility of confounding effects

based on the position of the electrodes and plant species in

any classification scheme. But such confounding effects will

be minimal owing to the large number of data samples as

shown in table 1 and the use of cross-validation schemes to

test the performance of the discriminant analysis classifiers.

Also we did not use kernel-based nonlinear classifiers like

SVM which could over-fit these plant-specific characteristics

and still give good classification results, rendering the loss

of generalizing capability of the classifier.

Moreover, the present classification scheme is based on

the raw non-stationary plant signal. In bio-signal processing

literature [11], the use of a high-pass filter is recommended

to make a bio-signal stationary instead of extracting features
from the raw non-stationary signal. But there is also the possi-

bility with ad hoc filtering that some useful information in the

data may get lost as the cut-off frequency for plant signal pro-

cessing is not yet known. That is why we considered the

features from the post-stimulus signal to train the classifier

by removing any possible bias of the channel or plant

using incremental features, i.e. using the mean of the features

in the pre-stimulus part. The segmentation of the signal in a

block of 1000 samples also disregards the temporal infor-

mation of the stimuli, as we primarily tried to answer the

question of whether classification is indeed possible by look-

ing at any segment of the post-stimulus part of the signal.

Also, in a realistic scenario, we would not know when the

response to a particular stimulus started. So we need to

base our classification on the in-coming stream of live data.
5. Conclusion
Our exploration using raw electrical signals from plants pro-

vides a platform for realizing a plant signal-based biosensor

to classify the environmental stimuli. The classification

scheme was based on 11 statistical features extracted from seg-

mented plant electrical signals, followed by feature ranking

and rigorous univariate and bivariate feature-based classifi-

cation using five different discriminant analysis classifiers.

External stimuli-like H2SO4, O3 and NaCl in two different

amounts (5 ml and 10 ml) have been classified using the

adopted machine-learning approach with 11 statistical fea-

tures, capturing both the stationary and non-stationary

behaviour of the signal. The classification has yielded a best

average accuracy of 70% (across all stimuli and five classifier

variants using variance and skewness as feature pairs) and

the best individual accuracy of 73.67% (across all stimuli

and using variance and IQR as feature pairs in Diagquadratic

classifier). The very fact that, by looking at the statistical fea-

tures of plant electrical response, we can successfully detect

which stimuli caused the signal is quite promising. This

will not only open the possibility of remotely monitoring

the environment of a large geographical area, but will also

help in taking timely preventive measures for natural or

man-made disasters.
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