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In the past two decades, brain science and robotics have made gigantic

advances in their own fields, and their interactions have generated several inter-

disciplinary research fields. First, in the ‘understanding the brain by creating

the brain’ approach, computational neuroscience models have been applied

to many robotics problems. Second, such brain-motivated fields as cognitive

robotics and developmental robotics have emerged as interdisciplinary areas

among robotics, neuroscience and cognitive science with special emphasis on

humanoid robots. Third, in brain–machine interface research, a brain and a

robot are mutually connected within a closed loop. In this paper, we review

the theoretical backgrounds of these three interdisciplinary fields and their

recent progress. Then, we introduce recent efforts to reintegrate these research

fields into a coherent perspective and propose a new direction that integrates

brain science and robotics where the decoding of information from the brain,

robot control based on the decoded information and multimodal feedback to

the brain from the robot are carried out in real time and in a closed loop.
1. Introduction
Not only scientists but also robotics engineers have been attracted to the eluci-

dation of information processing in the brain. The human brain, which is a

complex dynamical system with deep hierarchy and huge degrees of freedom,

possesses 1011 neurons [1]. Big projects that have recently started in the USA [2]

and the EU [3] ultimately aim to record from all the neurons in the brain, exper-

imentally controlling them and simulating their working by computer. Even if

we could record the neural activities of all the neurons, experimentally control

their activities and simulate neural circuit behaviours, we would still be far

from understanding the brain’s information processing unless we understand

the computational principles that underlie the problems solved by it [4].

Robotics is a research field in engineering that could be integrated with brain

science to elucidate the computational principles relevant to brain information

processing [5].

The interdisciplinary fields between brain science and robotics can be classified

into the following three types: (1) computational neuroscience in a narrow sense

that models the various levels of events and information processing in the brain.

This includes representative neural network models [6–11]; (2) brain-motivated

robotics, where researchers build an artificial system that reproduces the brain’s

information processing and generally explore brain-like computations [12]. Differ-

ent subfields have different emphasis on machine-learning, nonlinear dynamics,

neuroscience, cognitive science [13], developmental psychology [14] and so on.

But all of them possess some relevance to brain science. Imitation learning,

which is partially inspired by a neuroscience study [15], has become one of the

most popular approaches in brain-motivated robotics and is now widely studied

[12,13,16–18]. In recent years, developmental robotics have also been intensively

studied [14,19]; (3) a brain–machine interface (BMI), which is sometimes called

a brain–computer interface (BCI), connects the brain with such external devices

as spellers [20] or prosthetics [21]. A BMI can be defined as an interface that
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connects the brain and a computer/robot based on some

computational neuroscience theories [22–26]. Typically, a com-

putational model is used to extract necessary information from

the brain based on signals, including neural firing, local field

potentials, electroencephalography, near infrared spectroscopy

and functional magnetic resonance imaging (fMRI) signals. The

‘decoded’ information [27] from the brain is fed to a robotic arm,

for example, and visual and/or tactile feedback to the brain

closes the loop between the brain and the robot. BMIs are

used not only to compensate and substitute for lost or damaged

sensory-motor functions including communications but also to

recover and repair such functions [22–26,28–33]. Furthermore,

there are multiple ongoing projects that are aiming to recover

the biped walking functions of spinal-cord injury and stroke

patients [29,31,34,35].

The application of computational neuroscience models

to robots opened up an approach called ‘understanding the

brain by creating the brain’[5,36], which was emphasized in

the Japanese promotion of neuroscience about two decades

ago [37]. To fully validate the computational feasibility and

the efficacy of some theories, we need to apply them to real-

world problems; we need an artificial brain and body. The

former might be realized as computer software, but the latter

necessitates robots as physical substitutions for the body.

Actual sensory-motor control and decision-making problems

are obliged to deal with a huge amount of d.f., the low signal-

to-noise ratios of sensory signals and motor outputs, real-time

constraints on computation and feedback, and complicated

nonlinear events that are difficult to model mathematically,

such as contact dynamics and friction. Using robots forces us

to deal with all these difficulties, while computer simulations

tend to overlook such difficult boundary conditions and under-

estimate the complications of the computational problems

solved by the brain. Computational neuroscience studies and

brain-motivated robotics studies are investigating how the

brain can acquire action policies to control its own body,

which has a gigantic number of degrees of freedom, while

receiving environmental information from a huge number of

sensory inputs. Note that the term ‘policy’, which was

originally borrowed from reinforcement-learning literature

[11], corresponds to ‘control law’ or ‘control rule’ in control

engineering studies. These computational neuroscience and

brain-motivated robotics can be considered ‘creating the

brain’ approaches. On the other hand, BMI studies focused on

decoding brain activities to control external devices or extract-

ing brain activities to feed the information back to subjects so

that they can modulate their brain activities. BMI research para-

digms can be considered ‘interacting with the brain’

approaches.

Recent advances suggest that these previously divergent

fields between robotics and brain science can be reintegrated

into novel methodologies with higher impacts on science and

technology. For example, an electroencephalogram (EEG) BMI-

based neurorehabilitation system for stroke patients has been

developed [33], where the BMI rehabilitation approach is

regarded as an integrated system of the above brain-motivated

robotics and BMI elements. The decoded neurofeedback

(DecNef) method is another concrete example of the integration

of the previously divergent way of understanding brains,

because it integrates computational neuroscience and BMI disci-

plines to experimentally induce spatial voxel patterns in a

limited brain region, facial preference and colour. DecNef has

already realized the perceptual learning of specific orientation
gratings [38], the associative learning for the manipulation of

facial preference [39] and the creation of the phenomenal

consciousness of colour [40].

The main purpose of this review is to motivate future

research directions to reintegrate the above three research

fields that straddle robotics and brain science. These three

interdisciplinary research fields have made gigantic advances

over the past two decades, mainly in parallel. However, more

recently, we see more and more interesting research examples

that reunite these previously divergent directions, as exempli-

fied above. We argue here that the future of computational

neuroscience in a broader sense is the integration of all three

disciplines: computational neuroscience, brain-motivated

robotics and BMI. In this review, we introduce efforts to

bridge and combine them by postulating a new research direc-

tion that fully integrates them. Within this paradigm, a brain

and a robot are bi-directionally coupled by decoding [27]

and physical interaction. A human volunteer wears a whole-

body exoskeleton robot. Her/his brain activity is measured

and decoding is carried out in real time. The decoded brain

information is used to influence the robot control algorithms

to realize brain-to-robot information transmission. Because

the robot is attached to a human body, robot motion generates

multi-modal sensory feedback to the brain by implementing

robot-to-brain information transmission. This system could

compensate for lost functions, perform therapeutic treatments

of disorders or induce significant spatio-temporal neural

activity and brain plasticity. A schematic diagram of this unified

direction is depicted in figure 1. We provide several theoretical

arguments why this experimental paradigm is a powerful

approach to reunite the three interdisciplinary research fields

between brain science and robotics. Such reunification provides

better understanding of the brain using the combined brain-

related methodologies and technologies. Simultaneously,

future systems developed within this reunification will be

very useful in BMI-based neurorehabilitation or revolutionary

therapeutics for psychiatric disorders. We then discuss the

current research trends in which computational theory is used

for brain decoding in BMI and an exoskeleton robot is used

for neurofeedback to the brain.

We first review our proposed approach by introducing our

computational neuroscience models and brain-motivated

humanoid-motor-learning studies and then introduce our

BMI exoskeleton robot studies. We discuss our novel unified

view of creating the brain and interacting with it approaches

by introducing our new humanoid exoskeleton studies and

our recently developed DecNef method. For the brain-

motivated humanoid-motor-learning studies, we explored

the creating the brain approach by developing a series of

humanoid robots [36,41], including CB-i, a human-sized

humanoid robot (figure 2a) [42]. As a new generation of

humanoids, we are developing exoskeleton robots that can

physically interact with the human body to assist user move-

ments (figure 2b) [43,44]. An important technical element of

DecNef is the real-time neurofeedback of decoded information

to the brain. Therefore, as we explained above, a humanoid

exoskeleton can be used as an output device to provide a

rich set of feedback signals to the body and ultimately to

the brain.

The rest of this paper is organized as follows. In §2, we

introduce our computational neuroscience models to under-

stand the functional brain mechanisms. We explore modular

and hierarchical architectures as possible approaches to deal



(1) computational neuroscience (3) brain machine interface (BMI)

(2) brain-motivated robotics

decoded neurofeedback (DecNef)

creating the brain approaches interacting with the brain approach

Figure 1. We categorize brain-related theories, models and methodologies into three disciplines: (1) computational neuroscience, (2) brain-motivated robotics and
(3) BMI. Computational neuroscience and brain-motivated robotics are ‘creating the brain’ approaches. On the other hand, BMI methods are ‘interacting with the
brain’ approaches. The future of computational neuroscience in a broader sense is the integration of all three disciplines. Integration could take the concrete form of
a human volunteer wearing a humanoid exoskeleton controlled by brain activity measured, and rich information fedback to the volunteer’s body and brain while
covering a wide range of sensory modalities based on DecNef [38] methodology. This system might compensate for lost functions, perform therapeutic treatments of
disorders or induce significant spatio-temporal neural activity and brain plasticity. (Online version in colour.)
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Figure 2. (a) Human-sized humanoid robot, CB-i [42]: height: 1.55 m, total weight: 85 kg. The robot is equipped with 51 d.f.: 2 � 7 d.f. legs, 2 � 7 d.f. arms,
2 � 2 d.f. eyes, 3 d.f. neck/head, 1-d.f. mouth, 3 d.f. torso and 2 � 6 d.f. hands. It has similar configurations, range of motion, power and strength as a human
body to reproduce better natural human-like movements, particularly for locomotion and object manipulation. (b) Exoskeleton robot (XoR) [43]. Height: 1.5 m,
weight: 30 kg. XoR has 10 d.f. and six active joints, each of which uses a hybrid actuator composed of an air muscle and an electric motor. It is designed to
assist lower limb movements of human users. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141250

3

with high-dimensional systems. In §3, we review our previous

research activities using humanoid robots to understand the

brain’s motor learning mechanisms. In particular, in §3.2, we

discuss possible approaches to understand how the brain can

acquire behavioural policies using extremely high-dimensional

brain activities while simultaneously receiving a huge amount

of sensory inputs. In §4, we introduce our newly developed

BMI exoskeleton robot and investigate how its movements

can affect the subject’s brain activities. Finally, in §5, we
discuss the possible applications of an exoskeleton robot in

the DecNef framework.
2. Creating a brain by computational
neuroscience models

Here, we introduce computational neuroscience models to

cope with high-dimensional state-space problems. Policy

learning in high-dimensional state space is extremely difficult
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from a computational modelling point of view. To derive an

optimal control policy for nonlinear dynamics, dynamic

programming [45] and reinforcement learning [11] are used

as the standard policy-learning algorithms. In them, a tre-

mendous number of learning iterations are required to find

a policy in high-dimensional state space; this difficulty is

called the ‘curse of dimensionality’.

In §§2.1 and 2.2, we discuss possible approaches to under-

stand how the brain copes with this policy-learning problem

in high-dimensional state space.
J.R.Soc.Interface
12:20141250
2.1. Modular learning approaches
One possible solution for handling large-scale problems is to

divide and conquer. As a concrete approach, we introduce

the modular selection and identification control (MOSAIC)

model, which was originally proposed for supervised learning

[46,47] and then extended to reinforcement learning [48]. The

most advanced form of the reinforcement MOSAIC [49] has

three different sets of expert networks, each of which is special-

ized for each subproblem. One of these network sets is

composed of the predictors of state transitions, which are for-

mally called internal forward models. An internal forward

model receives the information of the current state and the cur-

rent motor command and then predicts the next time-step state.

The two other sets approximate actual rewards and reinforce-

ment learning controllers that compute motor commands for

optimal control. The responsibility signal for the internal for-

ward model network is determined by the prediction error in

the dynamics, and the responsibility signal for the other two net-

works is determined by the approximation error in the reward

and in the reward-prediction error; these signals are used to

weight the outputs from the experts. The signals also gate the

learning of each expert network by regulating the learning rate.

Switching and weighting by approximation and pre-

diction errors are key features of MOSAIC. The medial

prefrontal cortical areas might play an important role in detect-

ing environmental changes by accumulating prediction error.

The lesions of monkey medial prefrontal cortex affect the

length of the accumulated reward-prediction error in contextual

switching behaviour [50]. The responsibility signal could be

interpreted as the posterior probability of the Bayesian infer-

ence, assuming multiple linear systems have Gaussian noise.

In a human imaging study [51], ventromedial prefrontal activi-

ties in a stochastic reversal task were correlated with the

Bayesian update errors of probability, which are the differences

between the posterior and prior probabilities. Circumstantial

support of hierarchy and modularity in the context of reinforce-

ment learning was mainly obtained from neuroimaging and

lesion studies. The activities of many brain areas, including

those of the prefrontal cortex, the orbitofrontal cortex, the pre-

motor cortex, the supplementary motor area, the cerebellum,

and the basal ganglia, are correlated with such important vari-

ables in reinforcement learning as accumulated reward, learned

behaviour, short-term reward and behavioural learning, even in

a simple Markov decision process with monetary reward [52].

Furthermore, although activity in the human putamen is corre-

lated with reward prediction that depends on selected actions,

which is consistent with a study in monkeys [53], activity in

the caudate is correlated more closely with reward-prediction

error [54–56]. Topographic representations with different par-

ameters of the discount factor for reward prediction were

found in the medial prefrontal and insular cortexes, and
topographic representations for reward-prediction error were

found in the basal ganglia [57].

As described above, exploring how our proposed model

can be implemented as a neural system is crucial for compu-

tational neuroscience to understand how the brain deals with

real-world control problems.

2.2. Hierarchical learning approaches
The other common strategy to cope with the high-dimensional

policy-learning problem is to add hierarchy to the algorithms

[58,59]. In the upper part of such a hierarchy, an approximate

optimal solution could be found in a reasonable time because

the state space that describes a body and an external world is

coarsely represented by a reasonable number of discrete regions,

cells or neurons (e.g. up to 1 million neurons, a reasonable

number for one function). In the lower layer of this hierarchy,

the state space is finely represented and the approximate sol-

ution that is obtained in the upper layer can constrain the

possible range of the exploration space. Thus, the problem

could be solved within a reasonable amount of time and with

the required accuracy. In most studies, coarse representations

have been specified in the upper hierarchy or used to pre-

determine the motor primitives and/or the subgoals. This

recourse is similar to assuming the existence of a homunculus

[1], which refers to the somatosensory and motor body maps

in the brain, as those factors are all predetermined. However,

using predetermined primitive representations is unacceptable

from the viewpoint of neuroscience [60]. Most studies have

dealt with discrete-state and discrete-time examples, such as a

maze, which is artificial from the neuroscience viewpoint. One

rare exception that adopted continuous time and continuous

state-space examples was a standing-up task carried out by a

multi-joint robot [61], which is categorized as an under-actuated

system and considered a difficult system to control as the

number of actuators is fewer than the number of degrees of

freedom of the robot.

For real-world problems, it is unrealistic to design a hard

hierarchy of modules (subgoals) that strictly controls how to

switch reward predictions and subgoals between higher and

lower hierarchical layers. This limitation suggests that in actual

animal reinforcement learning, heterogeneous reward predic-

tions are softly combined, depending on their time-varying

significance instead of such a hard hierarchy [62]. The most

important aspect of this soft hierarchical architecture is that

reward prediction made by limbic and cognitive loops is propa-

gated to motor loops by spiral projections between the striatum

and substantia nigra. This mechanism allows reward prediction

error, coarsely represented by the cognitive loop, to guide the

learning of more detailed reward predictions in motor loops,

which incorporate more detailed information, such as motor

commands. This soft hierarchical structure shows a useful

approach to propagate reward information from the upper to

the lower layer of a hierarchical policy-learning mechanism.

In §3, we explore how these modular and hierarchical

architectures can be applied to actual humanoid robot control.
3. Creating a brain by brain-motivated
humanoid-motor-learning methods

An optimal control algorithm for a particular body dynamics

may not be optimal for other body dynamics. If a humanoid

robot is used for exploring and examining neuroscience
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Figure 3. Demonstrations of 14 different tasks by humanoid robot DB: imitation learning was involved in ‘Katya-shi’ (Okinawan folk dance) [63]: (a), three-ball
juggling [5] (b), devil-sticking (c), the air-hockey demonstration [64,65] (d ) uses not only imitation learning but also a reinforcement-learning algorithm with reward
(a puck enters the opponent’s goal) and penalty (a puck enters the robot’s goal) and skill learning. Demonstrations of pole-balancing (e) and a visually guided arm
reaching towards a target ( f ) used a supervised learning scheme [66], motivated by our approach to cerebellar internal model learning. Demonstrations of adap-
tation of vestibulo-ocular reflex [67] (g), adaptation of smooth pursuit eye movement (h) and simultaneous realization of these two kinds of eye movements with
saccadic eye movements (i) were based on computational models of eye movements and their learning [68]. Demonstrations of drumming ( j ), paddling a ball (k),
sticky-hand interaction with a human [69] (l ), manipulating a box [70] (m) and a tennis swing [71] (n). (Online version in colour.)
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theories rather than for engineering, it should be as close as

possible to a human body. Therefore, we first developed a

humanoid robot Dynamic Brain (DB) (figure 3), which has

30 d.f. and human-like size and weight. It is equipped with

an artificial vestibular organ (gyro sensor), which measures

head velocity, and four cameras with vertical and horizontal

degrees of freedom. Two of the cameras have telescopic

lenses corresponding to foveal vision, and the other two

have wide-angle lenses corresponding to peripheral vision.

The photographs in figure 3 illustrate 14 of the more than 30

different tasks that can be performed by the DB [5]. Most of

the algorithms used for these task demonstrations are approxi-

mately based on the principles of information processing in the

brain, and many contain some or all of the three learning

elements: imitation learning [12,17,72–74], reinforcement

learning and supervised learning.

Subsequently, we developed a full-body humanoid robot

called CB-i (figure 2a) with the ‘Humanoid Robots as a Tool

for Neuroscience’ approach [75]. CB-i was designed for full-

body autonomous interaction with balance control and biped

walking. Both posture control and biped locomotion are chal-

lenging research topics for a human-like and autonomous

humanoid robot. Our exploration focused on biologically

inspired control algorithms for locomotion using three different

humanoid robots (DB-chan [72,76,77], Fujitsu Automation

HOAP-2 [48] and CB-i [78]) as well as a small humanoid

robot provided by the SONY Corp. [79].
After the above brief introduction of our previous brain-

motivated robotics studies, in §3.1, we present our attempts to

apply the modular and hierarchical architectures introduced

in §§2.1 and 2.2 to humanoid robot platforms.
3.1. Modular learning approach for humanoid motor
learning

As introduced in §2.1, the MOSAIC architecture is biologically

plausible as a human motor-control model. However, two dif-

ficulties must be overcome to apply the MOSAIC model to the

control of a real humanoid robot: (1) the MOSAIC model does

not explicitly consider the existence of noise input to sensory

systems and (2) as it assumes full observation, it cannot deal

with partially observable systems. To deal with these pro-

blems, we proposed an extension of the MOSAIC architecture

(figure 4) [80]. Each module of MOSAIC has a forward

model, and we can adopt them to construct a state estimator.

State estimators can also provide a reasonable model of the

sensorimotor function of the central nervous system, as pre-

viously suggested [81]. A state estimation strategy using

switching linear models is also considered a useful approach

for estimating the hidden variables of complicated nonlinear

dynamics [82,83]. The modified method, called an extended

MOSAIC with state estimators (eMOSAIC), can deal with obser-

vation noise and partially observable systems [80]. Based on
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Figure 4. Extended MOSAIC with state estimators (eMOSAIC) [80]. Each module is composed of a state estimator, a responsibility predictor, a value function
estimator and a controller. Nonlinear and non-stationary dynamics are approximated by switching the linear models, and a nonlinear cost function is approximated
by switching the quadratic models.

Figure 5. Generated humanoid squatting movement using eMOSAIC model [80]. Our humanoid robot maintained its own balance when making a fast squat
movement with a frequency up to 1.5 Hz. (Online version in colour.)
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Figure 6. (a) With the eMOSAIC model, humanoid robot maintained its balance by coping with the sudden environmental change caused by additional payload.
(b) With only a single module controller, humanoid robot fell over [80]. (Online version in colour.)
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these advantages, our proposed control framework can be

applied to real humanoid robots.

Feedback linearization [84] and gain scheduling control [85]

are popular approaches to controlling nonlinear dynamics.

However, these methods require either a precise model or

prior knowledge of the task and plant structures. On the

other hand, for non-stationary systems, adaptive control [86]

can be used. However, this method can only handle gradual

environmental changes.

We applied eMOSAIC to control our humanoid robot,

CB-i (figure 2a), which has highly nonlinear dynamics, to

demonstrate that our proposed model can be used in a real

environment. Figure 5 shows that a humanoid robot can main-

tain its balance while performing a squatting task using the
eMOSAIC model. Figure 6 shows that a humanoid robot can

maintain its balance even when sudden environmental changes

are caused by an additional payload.

3.2. Hierarchical architecture for humanoid motor
learning

In §2.2, we introduced computational models that use

hierarchical architectures to cope with the policy-learning pro-

blem in high-dimensional systems. From here, we introduce

our idea that the brain modulates the low-dimensional attractor

dynamics embedded in high-dimensional state space, where

the state space is represented by neural activities (figure 7).

The low-dimensional internal dynamics can be task specific
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Figure 7. Proposed approach to understanding how brain deals with high-dimensional policy-learning problem. We assume low-dimensional limit cycles are rep-
resented by super high-dimensional neural activities. Low-dimensional fluctuated trajectories are generated around the limit cycle by noisy inputs. Limit cycle is
modulated to explore directions only related to reward signals. (Online version in colour.)
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Figure 8. Schematic diagram of our biped learning scheme. The CPG gen-
erates periodic patterns for biped locomotion. Detected sensory signals are
sent to the CPG and the learning system, which only updates the policy
and outputs the modulation command to the CPG when the periodic trajec-
tory passes through the defined Poincare sections. (Online version in colour.)
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and modulated through the policy-learning process. In this

review, as a target task, we generate biped walking movement

by humanoid robots with a central pattern generator (CPG)

model [87] that is used as the bottom-layer controller to generate

the low-dimensional internal dynamics. Figure 8 shows our

idea of a hierarchical learning framework. In this section, we

introduce a two-layered hierarchical model, where the bottom

layer represents the CPG and the upper layer learns to modulate

the CPG’s periodic pattern to improve the control performance.

In §3.2.1, we introduce our CPG model and present feature

extraction mechanisms for connecting the upper learning and

bottom CPG modules in §3.2.2.

3.2.1. Central pattern generator as internal dynamics
As presented in figure 8, we used a CPG model as the

bottom-level controller of our proposed hierarchical frame-

work. Here, we introduce our CPG model composed of

coupled phase oscillators, where the CPG is believed to

exist in vertebrates [88,89]. As it has been emphasized that

humanoid robots have inverted pendulum dynamics, where

the top is at the centre of mass (COM) and the base is at

the centre of pressure (COP) (figure 9), we proposed using

the COP to detect the phase of the inverted pendulum

dynamics. Using the inverted pendulum approximation to

a humanoid model is a popular approach in biped controller

design [91,92]. In the proposed biped controller [87], we used

simple periodic functions (sinusoids) as desired joint trajec-

tories and showed that the synchronization of the desired

trajectories at each joint with inverted pendulum dynamics

can generate stepping and walking. In addition, as our nom-

inal gait patterns are sinusoids, our approach does not

require careful design of the desired gait trajectories.

To evaluate the proposed approach in real environments,

we applied our proposed biped control method to CB-i.

Figure 10 shows its successful walking patterns. The robot

walked by using only a simple sinusoidal trajectory, which

was composed of at most two sinusoidal basis functions at

each joint, modulated by the detected phase from the COP [87].
3.2.2. Feature extraction for policy improvement
For constructing a hierarchical system, feature extraction

mechanisms for connecting the upper learning and bottom

CPG modules are necessary. In this section, we introduce

our approach to extract low-dimensional feature space for

policy updates using kernel dimension reduction (KDR)

[93]. As the bottom-level CPG controller can generate the
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periodic movements, we only consider the robot state at a

Poincaré section [94] for policy updates [90].

Low-dimensional feature space needs to contain the infor-

mation to predict state variable y, which represents reward

function r(y), where the policy parameters are updated to

increase the accumulated reward in the reinforcement learn-

ing framework [11]. We then formulate the problem to find

latent state z [ Rn as

P(ykþ1jxk, uk) ≃ P(ykþ1jzk, uk), (3:1)

where x [ Rm denotes the state vector in the original state

space [90]. u is the output of a policy. We consider a projec-

tion of the state to low-dimensional feature vector z ¼ Bx

such that n , m, where B is a projection matrix. Then in

our feature extraction framework, we consider three sets of

state variables: (1) those used to represent the reward function

in the original state space: y; (2) the original state variables: x
and (3) those in the feature space after projection: z.

The relationship in equation (3.1) implies that low-dimensional

feature space zk maintains the Markov property for state y.

We used the dimension reduction method, KDR, to derive

projection matrix B.

We applied our proposed method to improve the walking

performance of a simplified model of CB-i, which has 13 d.f.,

excluding the three translational degrees of freedom of the base

link (figure 9a). Therefore, we need to consider a 26-dimensional

state space as the original state space that includes the time

derivative of each degree of freedom. We applied KDR for the

original 26-dimensional state space to find the proper projection
to a one-dimensional feature space. The number of dimensions of

the feature space is predetermined.

We modulated the amplitude of the hip-pitch sinusoidal

joint angles movement to generate forward movement for

the biped walking task [90]. The walking task’s target is to

increase the angular velocity of pendulum _c
pitch

(figure 9d )

at section _c
roll ¼ 0 (figure 9c). We used the stochastic Gaus-

sian policy model [95] in which exploratory outputs are

generated to sample data for policy improvement. The

mean and variance parameters of the Gaussian policy were

updated using a policy gradient method [96]. Figure 11

shows the acquired walking performance.
4. Interacting with brain through brain –
machine interface exoskeleton robots

In the previous section, our discussion focused on a possible

learning algorithm that modulates a low-dimensional limit

cycle embedded in high-dimensional state space. In this

section, we turned our focus to introducing our hardware

development that modulates user brain activities through

physical interaction with our wearable exoskeleton robot.

As many countries are facing the problem of aging popu-

lations, the development of an exoskeleton robot to assist

user movements is becoming an important research topic

[21,97–99]. These exoskeleton robots can be used as assistive

or prosthetic devices for stroke and spinal-cord injury

patients in rehabilitation programmes [100,101]. In recent

years, it has been found that using brain activity to control



Figure 11. Acquired walking pattern [90]. Thick (red) line represents starting position. We showed one snap in three walking steps. (Online version in colour.)
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a robotic assistive system is also useful to help stroke patients

recover their motor functions [33]. This rehabilitation

approach is called BMI rehabilitation [102].

For BMI rehabilitation, we have developed an EEG-

exoskeleton robot system, where an exoskeleton robot is

connected to an EEG measurement device that users can control

with their brain activities [44]. To activate an exoskeleton robot

based on the user’s brain activity, we simultaneously need to

consider the influence of the exoskeleton robot movement to

the brain activity related to somatosensory inputs as there is

physical interaction between the robot and the user. Here, we

first introduce our study that investigates whether movement

intention can be extracted from EEG signals even when the

user movement is assisted by the exoskeleton robot. We then

introduce our attempt that used an EEG-exoskeleton robot to

assist stand-up movements while it was controlled by the

user’s brain activity.

4.1. Influence of afferent input induced by an
exoskeleton robot

Previous BMI-based robot control studies have dealt with EEG-

based neuroprosthesis control [103]. On the other hand, we are

focusing on the possibility of interference between the brain

activities associated with passive and active movements

(figure 12).

In particular, we monitored event-related (de)synchroniza-

tion (ERD/ERS) to control an EEG-exoskeleton system. The

ERD/ERS phenomenon is not only related to active movements

or motor imagery but also to passive movements (up arrow in
figure 12) that highlight that the feet’s passive movements pro-

duce a significant ERD/ERS over the entire sensorimotor cortex

[105,106]. This raises the question whether the somatosensory

afferent input, induced by the periodic leg perturbation, inter-

feres with the decoding ability of a BMI system based on the

ERD/ERS of the sensorimotor area (horizontal arrow in

figure 12). Specifically, we investigated whether the periodic

perturbation of lower limbs produces a significant decrease in

the classification performance of the actual left- and right-

hand finger movements.

We decoded the left and right sensorimotor hand area

due to the reliability of the contralateral ERD/ERS spatial dis-

tribution [107] and the fact that this approach is exhaustively

discussed in the literature [108,109]. Furthermore, the motiv-

ation for using real movements instead of motor imagery is

that the latter cannot be mechanically measured or visually

assessed by experiment operators. Actually, the patterns of

m and b de/synchronization associated with actual move-

ments resemble those of motor imagery, but they just differ

in magnitude [110].

In this experiment, our custom-made 1 d.f. exoskeleton

robot (figure 13) [104] was used as an assistive robot

(figure 13a). The simple exoskeleton robot is actuated using a

pneumatic-electric hybrid strategy [43]. The advantage of

using a pneumatic actuator is that it can exert a very large

torque (maximum of 70 Nm) while generating insignificant

electromagnetic noise from the point of view of the EEG

system. An electric motor also generates parallel small

torque (maximum of 5 Nm) to make fast and precise correc-

tions to the torque generated by the pneumatic actuator. For
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Figure 13. Robot used during our experiment [104]: (a) PAM and electric actuators exert parallel torques to move the leg (1 d.f. design); (b) Experimental set-up;
(c) Thermoplastic polymer leg support anchored to robot and holding up subject’s leg. (Online version in colour.)
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Figure 14. EEG-exoskeleton experiment [44]. Subject controlled EEG-exoskeleton system to follow the stand-up/sit-down directions indicated on the display using
motor imagery. Gravity compensation of the lower limb model composed of exoskeleton and human lower limbs was activated when the EEG decoding was ‘stand-
up.’ (a) Stand-up state. (b) Sit-down state. (Online version in colour.)
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this specific experiment, the robot was mounted on a custom-

made support to allow subjects to sit near to it (figure 13b).

A leg-shaped thermoplastic polymer was anchored to the

robot to secure the legs of subjects (figure 13c).

Our study investigates the main effect of the leg afferent

input, induced by a lower limb assistive robot, on the decod-

ing performance of the ERD/ERS of the sensorimotor hand

area. We experimentally compared a finger-tapping decoding

performance under conditions of with and without leg

perturbation caused by the exoskeleton robot movements.

Our experimental results suggest that the classification

performance is always above chance, and we observed no

intra-subject significant differences between the with and with-

out-perturbation conditions if we used our proposed decoding

procedure [104].
4.2. Electroencephalogram-exoskeleton system
Now we introduce our EEG-exoskeleton system. To decode

brain activities from EEG signals, we used a logistic regression

method with spectral l1-norm regularization, which can lead to

good generalization performance [111]. We considered assist-

ance for the stand-up movement, which is one of the most

frequently made movements in daily life and a standard task

movement in rehabilitation training.

We decoded brain activities using the above classification

method based on the logistic regression after pre-processing

the measured EEG data. The covariance matrix of the pro-

cessed data was used as the input variable for the classifier.

We updated the covariance matrix of the processed EEG

signal with a fixed period. According to the classifier’s

output, the stand-up or sit-down movements of the exoskele-

ton robot were generated by the torque control method for

the exoskeleton robot [44].

Figure 14 shows the results of the EEG-exoskeleton

control. A subject tried to control the EEG-exoskeleton
system using motor imagery to follow the movement

directions that appeared on a display, where the directions

indicated stand-up/sit-down movements. This neurofeedback

training procedure resembles a bio-feedback training method

[112] or a BCI training approach [113]. The user successfully

controlled the exoskeleton robot using his brain activities.
5. Discussion: integrating the three fields by
decoded neurofeedback

Finally, in this section, we discuss how the future of compu-

tational neuroscience in a broader sense could lead to the

integration of all three disciplines, including computational

neuroscience, brain-motivated robotics and BMI, based on

DecNef methodology.

One of the most critical assumptions in neuroscience and

brain science is that the human mind (including conscious-

ness) is caused by the brain’s neural activity [114]. Most

studies of human learning/memory/cognition have concen-

trated on examining the correlations between behavioural

and neural activity changes rather than establishing cause-

and-effect relationships. Even in animal studies, the most fre-

quently used technique is examining the temporal correlation

between neural activities and certain hypothetical compu-

tational variables proposed by the experimenters. The lack

of experimental tools for examining cause-and-effect relation-

ships between brain activity and the mind in systems

neuroscience has severely constrained its progress and appli-

cability to such practical problems as robotics or clinical

issues [36]. To bridge this gap between major concepts and

current technology, we developed a new technique that

manipulates neural codes [38] by applying a novel online-

feedback method that uses decoded fMRI signals. We call

this new technique DecNef. We developed DecNef by spatial
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activity patterns in a specific brain area that can be non-inva-

sively controlled by real-time fMRI neurofeedback [38]. We

induced visual perceptual learning without visual stimulus

presentation or conscious awareness of tasks. The experiment

consisted of the following four stages. The first and the fourth

are psychological performance tests for the visual discrimi-

nation of three orientation gratings. In the second stage, a

decoder, actually a machine-learning algorithm called multi-

nomial sparse logistic regression (MSLR) [115], was trained to

compute the likelihood of the multi-voxel fMRI patterns that

are classified into one of the three orientations used in the

above visual discrimination task. Ten years ago, Kamitani &

Tong [27] showed that the orientation of seen visual gratings

could be ‘decoded’ from primary visual cortex fMRI multi-

voxel patterns. Our DecNef study, which was based on this

pioneering study, used MSLR instead of a support vector

machine and fMRI signals from the first and secondary

visual cortices. The third stage was real-time neurofeedback

training that used the above MSLR decoder for orientation

to compute visual neurofeedback signals. Participants

manipulated their brain activities to obtain maximum monet-

ary rewards. One out of three orientations was allocated to

each subject as the target orientation. Six seconds of brain

activity were decoded to compute the target orientation’s

likelihood, which was visually displayed as the size of a

green disc 6 s after the brain manipulation. The total

amount of monetary reward was proportional to the likeli-

hood, and thus the summation of the disc size across all

trials was given to the subject at the conclusion of each day

of training. DecNef is essentially a reinforcement-learning

paradigm [11] that is guided by monetary reward. It is also

related to ‘neural operant conditioning.’ After 5 or 10 days

of DecNef training, when the performances of the first and

fourth stages of the experiment were compared, subjects only

significantly improved their discrimination performance of

the target orientation gratings, but not for the other orientations.

Consequently, brain activity as multi-voxel fMRI patterns

was experimentally induced without visual stimulus presen-

tation or awareness of the working of the experiment and

caused visual perceptual learning. Brain activity was a cause;

a behavioural change was the result in this DecNef example.

In a more general framework, DecNef can be described as

follows. First, a decoder is constructed that classifies fMRI

multi-voxel patterns according to such specific brain information

as visual attributes, emotional states or normal and pathological

states in psychiatric disorders. In the induction stage, volunteers

unconsciously control their brain activity to produce a desirable

pattern while being guided by a real-time reward signal com-

puted as decoder output. Thus, the three important elements

of fMRI DecNef are the decoding of information from fMRI

brain activity, real-time neurofeedback of the decoded infor-

mation and unconscious reinforcement learning by the

participants. DecNef was recently further advanced to manip-

ulate facial preferences [39] or to induce artificial synaesthesia

[40]. The basal ganglia was the only brain region that was acti-

vated in all three of the above DecNef studies in the induction

phase of neurofeedback training; this result is consistent with

the reinforcement learning interpretation of DecNef.

Neurofeedback training based on a real-time fMRI has

attracted considerable attention for its potential advantages

in therapeutic treatment. Most fMRI neurofeedback methods

focus on up- or downregulation of a single region-of-interest

activation [116–118]. But these have recently been extended
by DecNef to control spatial activity patterns within a speci-

fic ROI, as explained above [39]. fMRI–DecNef can be used

as a non-invasive BMI system for treating abnormal central

decision-making functions in psychiatric disorders [119].

Fukuda et al. [120] also demonstrated that fMRI neurofeed-

back can further modulate spatio-temporal activation patterns

across multiple ROIs as well as intrinsic networks. This effect

was preserved over a surprisingly long period (more than

two months after 3 days’ training). Disturbances in intrinsic net-

works have been reported for a number of neurological and

psychiatric diseases. Consequently, the connectivity neuro-

feedback method could be applied not only as a causal tool

for basic neuroscience to alter functional networks but also as

a revolutionary therapeutic method by directly curing the

pathological connectivity patterns of neurological and psychia-

tric diseases. DecNef or connectivity neurofeedback [120] might

provide revolutionary cures for such psychiatric diseases

as autism spectrum disorders for which neither pharma-

cological nor cognitive/behavioural therapies have proved

statistically effective.

DecNef can also be regarded as an extended and specific

type of BMI. The neurofeedback itself is one component in a

methodology frequently used in BMI. However, DecNef is an

extended version of neurofeedback and uses sophisticated

decoding and reward feedback, which are not necessarily

always involved in BMI. Previous examples of DecNef did

not use robots as effectors. BMI directly connects brain activity

and an artefact outside the brain for such purposes as sensory

substitution, motor compensation and enhancement, neuro-

rehabilitation, suppression of neural circuit maladaptation,

and cures of brain lesions and neurological and psychiatric

disorders. A BMI usually consists of some of the following elec-

trical, mechanical, and computing elements: a brain activity

measurement system (electrodes, amplifier, AD converter,

etc.), a computer for decoding brain information and/or con-

trolling stimuli to the brain, an effector system (prosthetic

limbs, rehabilitation robots, computer cursors, etc.) and a

neural stimulation system. DecNef’s current form does not

depend on the effector or neural stimulation systems, but as out-

lined below, the future DecNef might also use them to enhance

the reward/penalty effects of the DecNef and make training

more efficient. In most BMIs, except the sensory substitution

BMI, the brain information is first extracted by a decoder from

the measured brain signals. This information is transformed

and fed back to users in some sensory modality with/without

reward signals, and finally BMI users learn to change their brain

networks based on synaptic plasticity. Currently, most neuro-

feedback signals in BMI and DecNef are given in sensory

modalities, such as the visual, auditory and somatosensory

information of a restricted body part. Reward signals are very

important in these neurofeedbacks, especially for DecNef,

because DecNef and many BMIs use reinforcement learning

as basic working principles. The most compelling neurofeed-

back device would be an exoskeleton humanoid robot, as it

can provide a rich set of sensory as well as kinaesthetic infor-

mation of all body parts (figure 15). While decoding from a

user brain, we can manipulate an XoR to control the spatio-tem-

poral activity patterns of the user’s brain to a larger extent than

with the currently available narrow neurofeedback channel.

One future direction of our work is studying various uses of

XoR in neuroscience in addition to BMI rehabilitation. The

main target of a combined exoskeleton/DecNef is to exper-

imentally control brain activity patterns either for scientific
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purposes or therapeutic interventions. However, inducing plas-

ticity in the brain by DecNef and exoskeleton robots can also

improve the control performance of exoskeleton robots by

brain activity. We especially need to investigate how the inter-

action between the human body and the mind with XoR and

its control algorithms can produce emotional information that

fuel reinforcement learning.
6. Conclusion
We introduced our novel ‘creating the brain’ and ‘interacting with

the brain’ approaches to understand functional brain mechan-

isms. In our brain-motivated humanoid motor learning

method, we introduced our attempts to understand how the

brain deals with high-dimensional reinforcement-learning pro-

blems. In our proposed hierarchical learning system, we

assumed that low-dimensional limit cycles are represented by
super high-dimensional neural activities. The low-dimensional

fluctuated trajectories are generated around the limit cycle by

noisy inputs. The limit cycle is modulated to explore the direc-

tions that are only related to reward signals. We also introduced

a newly developed exoskeleton robot that can be considered a

novel robotics tool for neuroscience. As a future direction, we

will develop an integrated system of the brain, body and an exos-

keleton robot where the robot is controlled by the brain activities

to understand how the brain works in natural situations.
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