
rsif.royalsocietypublishing.org
Research
Cite this article: Maisto D, Donnarumma F,

Pezzulo G. 2015 Divide et impera: subgoaling

reduces the complexity of probabilistic

inference and problem solving. J. R. Soc.

Interface 12: 20141335.

http://dx.doi.org/10.1098/rsif.2014.1335
Received: 5 December 2014

Accepted: 13 January 2015
Subject Areas:
computational biology

Keywords:
subgoals, hierarchies, model-based

reinforcement learning, planning-as-inference,

active inference, problem solving
Author for correspondence:
Giovanni Pezzulo

e-mail: giovanni.pezzulo@istc.cnr.it
& 2015 The Author(s) Published by the Royal Society. All rights reserved.
Divide et impera: subgoaling reduces
the complexity of probabilistic inference
and problem solving

Domenico Maisto1, Francesco Donnarumma2 and Giovanni Pezzulo2

1Institute for High Performance Computing and Networking, National Research Council, Via Pietro Castellino,
111, 80131 Naples, Italy
2Institute of Cognitive Sciences and Technologies, National Research Council, Via S. Martino della Battaglia,
44, 00185 Rome, Italy

GP, 0000-0001-6813-8282

It has long been recognized that humans (and possibly other animals) usually

break problems down into smaller and more manageable problems using

subgoals. Despite a general consensus that subgoaling helps problem solving,

it is still unclear what the mechanisms guiding online subgoal selection are

during the solution of novel problems for which predefined solutions

are not available. Under which conditions does subgoaling lead to optimal

behaviour? When is subgoaling better than solving a problem from start to

finish? Which is the best number and sequence of subgoals to solve a given pro-

blem? How are these subgoals selected during online inference? Here, we

present a computational account of subgoaling in problem solving. Following

Occam’s razor, we propose that good subgoals are those that permit planning

solutions and controlling behaviour using less information resources, thusyield-

ing parsimony in inference and control. We implement this principle using

approximate probabilistic inference: subgoals are selected using a sampling

method that considers the descriptive complexity of the resulting sub-problems.

We validate the proposed method using a standard reinforcement learning

benchmark (four-rooms scenario) and show that the proposed method requires

less inferential steps and permits selecting more compact control programs com-

pared to an equivalent procedure without subgoaling. Furthermore, we show

that the proposed method offers a mechanistic explanation of the neuronal

dynamics found in the prefrontal cortex of monkeys that solve planning pro-

blems. Our computational framework provides a novel integrative perspective

on subgoaling and its adaptive advantages for planning, control and learning,

such as for example lowering cognitive effort and working memory load.
1. Introduction
The human problem-solving literature shows that an often-used strategy to

solve complex problems is subgoaling: splitting the original problem into smaller

and more manageable tasks whose achievement corresponds to ‘milestones’ or

‘subgoals’ of the original problem [1]. This strategy is ubiquitous while solving

problems of different kinds. For example, navigational planning problems can

be decomposed by using landmarks (e.g. known locations) as subgoals and

puzzles such as the Tower of Hanoi can be decomposed by using subgoals

such as ‘free up third rod’.

In cognitive neuroscience, there is a general consensus that subgoals are key

to complex planning and problem solving. Most theories of executive function

assume that goals and subgoals are maintained in prefrontal hierarchies and

permit exerting cognitive control during demanding activities [2–5]. It has

been reported that the monkey prefrontal cortex encodes a sequence of acti-

vation of subgoals and goals during a delay period prior to action [6,7].

Failure to find good task decomposition or to follow the right sequence of sub-

goals can produce poor planning performance, as frequently observed in

prefrontal patients solving the Tower of Hanoi [8].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.1335&domain=pdf&date_stamp=2015-02-04
mailto:giovanni.pezzulo@istc.cnr.it
http://orcid.org/
http://orcid.org/0000-0001-6813-8282

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335

2
Computational studies also provide many demon-

strations of the usefulness of subgoals. In the hierarchical

reinforcement learning (HRL) literature, it has been consist-

ently shown that, given the right decomposition, problems

can be learned and solved more efficiently, that is, in less

time and with less resources [9,10]. The most popular HRL

framework, called the ‘Options’ framework, explicitly uses

subgoals for building temporal abstractions that allow faster

learning and planning [11]. An Option can be conceptualized

as a sort of macro-action that includes a list of starting con-

ditions, a policy and a termination condition (subgoal). It is

well assessed in the HRL literature that Options and subgoals

bring several advantages in terms of faster learning and a re-

use of strategies across problems (or skill transfer) [12]. How-

ever, this is only true if the right subgoals are selected: the

selection of the wrong subgoals can be deleterious and

slow down learning and inference [13].

Subgoals are not only useful for learning but they might

also facilitate cognitive control. A recent series of studies

used information-theoretic notions to measure the amount of

information in working memory that (sub)goals can ‘save’

while at the same time allowing successful task completion.

In this formulation, the most useful subgoals are those

that allow controlling behaviour with less information in

memory; from a cognitive perspective, these advantages

might be linked to lower working memory requirements

during monitoring and control [14].

Finally, subgoaling is essential for planning and problem

solving. Most popular architectures for symbolic problem sol-

ving [1,15] and planning [16,17] include a subgoaling

component; and subgoaling is also used in a few connectionist

systems [18,19]. It is often assumed (especially in the human

problem solving/AI tradition [1,15]) that subgoaling proceeds

backward from the final goal states and serves to resolve

‘impasses’: if a goal-achieving action cannot be executed

because of a missing precondition, achieving the precondition

becomes the next system subgoal (and so on). Less investigated

is the case of the feed-forward (i.e. from the current to the goal

state) selection of subgoals during planning, which is recog-

nized as an important determinant of human problem

solving [20,21] and whose neuronal underpinnings have

been studied in monkeys [6,7] and humans [22].

We offer a model of subgoal selection that starts from a nor-

mative principle: we propose that during planning subgoals

should be selected that minimize the computational complex-

ity [19,23] of the problem at hand. In our proposed approach,

subgoaling proceeds in a feed-forward way with the objective

of maximizing the probability of the resulting sub-problems

(or programs, see later) by selecting those ones with minimum

algorithmic complexity and description length. Below we

describe the computational approach and successively we vali-

date it in two computational experiments, which focus on two

issues: (i) under which conditions using subgoals leads to

optimal behaviour and (ii) whether the specific subgoal-

ing mechanisms envisaged here can be linked to neuronal

computations in primates.
2. Material and methods
Our approach to subgoaling is framed within the planning as
probabilistic inference framework, where goal-directed planning

and problem solving are cast in terms of probabilistic inference
[24–26]. In this framework, planning is usually implemented

by imposing (‘clamping’) future goal states as observations,

and running a probabilistic inference until a solution is found

that goes from the current to the goal state [27]. In other

words, planning consists of selecting actions that bias the prob-

ability of future events towards desirable states. A variant of

this method consists of clamping future rewards rather than

goal states [28,29]. Here, we use a related method that stems

from Active Inference theory [30]: we set goals as (high) Bayesian

priors and not as future observations, with the advantage that

one has more flexibility on when (i.e. after how many steps) the

goal will be eventually achieved.

In the remainder of this section, we introduce the three key

components of the proposed method: (i) the probabilistic

model used for the inference, which describes the conditional

dependencies between the relevant stochastic variables (e.g.

states, actions and subgoals); (ii) the method we adopted

to assign ‘prior’ values to the subgoal variable; and (iii) the

probabilistic inference method.
2.1. Probabilistic model
The probabilistic model we adopt is the Dynamic Bayesian Net-

work (DBN [31]) of figure 1. In this representation, the nodes are

stochastic variables expressing the elements that influence the

planning process. They are

— S describes the agent’s states; for example, its position in a

maze. Here, we assume a discrete set of states, represented

as integer values in the range f0, . . . , ng, with n being the

total number of states.

— SG represents the subgoals (or subgoal states) used for plan-

ning. Potentially, every state S can be a subgoal used to

achieve the final goal; this implies that SG can assume the

same values as S: f0, . . . , ng. We assume that the final goal

state is a particular subgoal having the highest a priori
probability (see below).

— A represents the actions that an agent can execute to move

from a state to another state. In the two-dimensional mazes

we use for our simulations, the agent has five actions: fu, d,

l, r, 1g. The first four actions represent moving up, down,

left and right, respectively. 1 is a ‘rest’ action, or a transition

from a state to the same state.

— P represents the policies (or mappings between states and

actions) available to the agent [32]. Intuitively, policies

permit specification of sequences of transitions from (say) a

start and a goal state. The number m of policies available to

the agent vary depending on the number of states and

actions in the environment. We include also a rest policy p1

associated with each state the action 1.

— F describes the agent’s progress to the goal state, i.e. whether

it has finished or not. The allowed values of F are f0, 1, 2g. The

value is 2 if the agent has reached the final goal state (and is

an absorbing state preventing further inference); 1 if the agent

has just reached a subgoal state; 0 otherwise. The main role of

this variable is monitoring subgoal achievement and guiding

the transitions between subgoals [33].

Overall, the model corresponds to a two-layered DBN (where

the nodes are arranged on two layers corresponding to two con-

secutive slices of time indicated with subscripts, e.g. St and St21).

First-order and stationary Markov properties hold: the conditional

probabilities do not change as a function of t and every variable

depends exclusively on other variables expressed at the same or

the immediately preceding time step. In our simulations, the

DBN structure and parameters are assumed to be known. Note

that the transition P(pjSG, S) captures the concept of an Option

SGt

Ft

At
At+1

pt+1

SGt+1

St+1

Ft+1

St

pt

Figure 1. Graphical model (DBN [31]) used for the simulations. See the main
text for explanation.

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

p(SG)

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Figure 2. The four-rooms scenario used in Experiment 1. It includes 18 states
S ¼ fS1, . . ., S18g and is composed of four ‘rooms’ with a single connec-
tion among them (S7 and S12). Subgoal priors used in Experiment 1 are
shown in grey scales; S18 is the goal state. The probability values are:
0.03 for S7, S12, 0.04 for S1, S4, S5, S9, S10, S14, S15, S18, 0.06 for S6,
S8, S11, S13 and 0.08 for S2, S3, S16, S17.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12

3

in HRL, but is expressed in a probabilistic way; furthermore, here

the Options are not ‘cached’ but formed on-the-fly.
:20141335
2.2. How to generate algorithmic priors for subgoals
A key departure from current models using the planning-as-infer-
ence framework is that we address the problem of subgoal

selection. Here, subgoals are states that are inferred during the

inference and guide the selection of compact and effective

sequences of transitions from the initial state to the subgoal(s)

and ultimately to the final goal. By assuming that the state space

is discrete, such transitions can be considered as series of programs
necessary to execute a series of moves from the agent’s initial state

s0 to the first subgoal state sg1, to the second sg2, and so on (follow-

ing the instructions contained in some policy pj) until the agent’s

final goal state sgoal is achieved.

It is important to note that every program can formally be

transformed into a code, a binary string p of length |p| that

can be processed by a computing machine. Thus, following prin-

ciples of algorithmic probability theory [23,34] (see appendix A

for a discussion), one can associate a probability 2�jpj to every

binary program p, depending on the program length. By taking

into account every program returning the subgoal sg, built

with every possible combination between input states and pol-

icies, the algorithmic probability for a subgoal sg can be

computed, up to a normalization factor, by

P(sg)/
X

i

X
j

2�jp(si ,pj)j: (2:1)

The above-equation does not concern just subgoal states; it can

be applied to every state belonging to S, in order to generate an

a priori ‘algorithmic probability’ distribution (hereafter also

denoted as algorithmic priors) that assigns a prior to each state,

with highest priors given to the most strongly informative ones,

i.e. the subgoals, important for decomposing any multistep plan-

ning task. This approach is conceptually similar to the method

described in [35] that considers for each state ‘the amount of Shan-

non information that the agent needs to maintain about the current

goal at a given state to select the appropriate action’.

Algorithmic priors for subgoal states depend on how many

programs halt in those states and how long they are, and are

thus specific for a given environment. The computations required

to compute algorithmic priors for subgoals in a specific environ-

ment are very costly, but there are ways of alleviating this

problem. First, algorithmic priors can be computed with a sig-

nificantly reduced computational cost (see appendix B) in an

off-line way (in batch), once and for all, and can be successively

re-used for every inference in the same environment. Second,

there are effective approximations to the exact calculations. One

can uniformly sample a set of policies, to be used in the algorith-

mic probability formula, with a cardinality of some order less
than p and (given a sufficient number of samples) this procedure

approximates well the prior distributions calculated by enumer-

ating every potential policy. The fidelity of the priors depend on

the computational resources used to calculate them and can be

improved trial by trial making new observations, as evident in

the ‘cumulative’ nature of equation (2.1) and of equation (A 1)

in appendix A.

Finding subgoals that might be ‘a priori’ good is only the first

step of our method. A key distinction in the proposed approach

is between potentially useful subgoals and selected subgoals, the

former being a priori and independent of the agent’s current

goal and the latter dependent on it. To understand this differ-

ence, consider the 18-states ‘four-rooms’ planning problem

shown in figure 2, which is often used as a testbed in HRL scen-

arios [11]. Most studies have assessed that specific states such as

bottlenecks (in this case, the ‘doors’ S2, S3, S16 and S17) are often

useful subgoals and permit splitting the search space down into

more manageable subproblems [12,13,35]. Our proposed method

using equation (2.1) yields similar results, as represented by the

colour gradient of figure 2 (the darker the colour, the higher the

probability). In this perspective, although all the states can poten-

tially be subgoals, some of them (e.g. bottlenecks or doors) are

more likely candidates and have higher probability.

However, knowing the potentially useful subgoals is not suf-

ficient to solve a specific problem, because the best subgoals for

each specific planning problem depend on the start and goal

states and not only on a priori information on the environment.

Consider, for example, an agent solving the problem of plann-

ing how to go from S15 to S18 in the ‘four-rooms’ scenario of

figure 2. Potentially, all ‘doors’ are useful subgoals but given

the specific start and goal states the best choice would be passing

through S16 and S17, not S2 or S3. The inferential procedure

should thus preferentially find a plan that traverses these selected
subgoals and not the others. We describe next the inference

permitting to do so.

Algorithm 1: Planning inference (s0, sgoal, p(SG), Tmax)

Require: Agent’s initial state s0, goal state sgoal, subgoal algorith-

mic priors p(SG), maximum number of forward inferences Tmax.

Ensure: State sequence [s0,. . . ,sgoal], subgoal sequence Seq.

t ¼ 0

set S0 to the agent’s initial state s0

sample a subgoal sg0 from the prior distribution p(SG)

attained by using equation (2.1) on each state

select a policyp0 maximizing equation (2.2) sampled through

a Monte Carlo method

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335

4
determine the action a0 depending on p0 and s0

evaluate the termination condition state F0 according to

p(F0jsg0, s0)

while (Ft= 2 and t � Tmax) do

t ¼ t þ 1

determine the state st by means of p(Stja(t21), s(t21))

select the subgoal sgt maximizing equation (2.3) sampled

through a Monte Carlo method

select a policy pt maximizing equation (2.2) sampled

through a Monte Carlo method

determine the action at depending on pt and st

evaluate the termination condition variable Ft according

to p(Ftjsgt, st)

end while

2.3. Inferential procedure
The aim of the proposed planning as probabilistic inference scheme is

inferring a plan from the agent’s initial state s0 to its final goal state

sgoal, which are assumed to be known (say, from S1 to S18 in the

‘four-rooms’ scenario). Normally, in HRL this would correspond

to finding a suitable policy from S1 to S18. Rather, here we consider

the possibility that the plan actually consists of a series of smaller

plans, say, one from S1 to S16 and one from S16 to S18. In this

case, the inference would result in a first subgoal (S16) along

with a suitable policy permitting the transition from S1 to S16;

and a second subgoal (S18), which actually corresponds to the

final goal, along with a suitable policy permitting the transition

from S16 to S18. Importantly, here we use considerations of

algorithmic probability to select subgoals and policies; as a conse-

quence, the plan results in series of transitions across states with

highest algorithmic probability.

The inference uses the probabilistic model of figure 1 to itera-

tively sample (i.e. extract probabilistically) candidate subgoals

from the previously described a priori subgoal distribution (see

§2.2); the candidate subgoals are then retained or discarded

by considering the computational complexity of the resulting

sub-problems or programs. When a new subgoal is selected, it

becomes the starting point for a new iteration, until the final

goal is eventually found. The iterative sampling procedure

runs, for a maximum number of steps Tmax, through all the pro-

blem space and returns a sequence of subgoals and associated

programs that essentially solve the original problem by finding

sequences of smaller sub-problems (but in principle, a sample

might also generate a solution without subgoals, from the start

to the goal state).

The pseudocode of Algorithm 1 describes the procedure step-

by-step. Essentially, using the model of figure 1, the inference

uses the agent’s initial state s0 as a clamped (i.e. observed) state

on the node S at the time t ¼ 0, and the agent’s goal state sgoal

as the state with highest prior on the subgoal node SG.

Initially, at the time t ¼ 0, a subgoal sg0 is drawn over the a
priori algorithmic probability distribution described in §2.2.

Then, for each time t, the inference proceeds by finding out a

policy pt so that a program permitting a transition from st to

sgt can be built. Formally, this corresponds to drawing a policy

from the probability distribution p(Ptjst, sgt). Using Bayesian

calculus and assuming that there is no prior information about

policies (see appendix A, equation (A 2)), p(Ptjst, sgt) can be

approximated by the following expression:

p(Pt ¼ pjjst, sgt)/ p(sgt, stjPt ¼ pj)p(pj)

¼ p(sgtjst, pj)p(stjpj)p(pj): (2:2)

According to the above equation, the probability of selecting

a specific policy pj depends (in addition to its prior probability)

on the length of the program generated with pj that from the cur-

rent state st takes us to the currently examined subgoal sgt,
weighted by the st prior computed just over pj. Drawing from

the distribution defined in equation (2.2) would require to

reckon every distribution value and this would be very costly

and often infeasible for even moderately large state spaces. To

overcome this problem, we use a Monte Carlo sampling

method [36] to collect a set of policies accepted as realizations

of equation (2.2) by using the uniform distribution p(Pt) as a pro-

posal distribution (note that the sampling method can be

conducted using a parallel procedure). From this set we select

the policy p* ¼ argmaxj p(pjjst, sgt). Note, however, that alterna-

tive methods such as heuristic techniques or tree search might be

adopted to this purpose [37].

To sum up, the inference described so far starts from an

initial (clamped) state and returns a subgoal and a policy to

reach it. In other words, it builds an Option-like plan on-the-fly

that would (ideally) correspond to the shortest possible program

from the initial to the subgoal state. Once this program is estab-

lished, one can get the transition to the time t þ 1 off the ground.

The action at is directly determined for passing from the state st to

the next one stþ1.

Simultaneously, the node Ft monitors (sub)goal achievement

and guides the transitions SGt! SGtþ1 between subgoals [33]. If

st = sgt, the value of Ft is zero and the subgoal sgtþ1 is forced to

be the same as of the time t. When the current state st is equal

to the selected subgoal sgt, the rest policy p1 (i.e. a specific

policy associating with every state a ‘rest’ action 1) is selected

determining stþ1 ¼ st ¼ sgt.

Then, a new subgoal (SGtþ1) has to be chosen. To guide sub-

goaling towards the final goal state (rather than, say, away from

it), not only the inference ‘clamps’ the just-achieved subgoal as

the current state, but it also assumes that ftþ1 ¼ 2, that is, it

fictively assumes that the goal state is (has to be) observed. The

procedure then continues as explained earlier, until the final

goal state sgoal is reached (and ft ¼ 2).

All these operations are summarized by the following

distribution:

p(SGtþ1j ft, sgt) ¼
dsgk sgt

if ft ¼ 0
p(SGtþ1 j ftþ1 ¼ 2, sgt) if ft ¼ 1
dsgk sgoal

if ft ¼ 2,

8<
: (2:3)

where dab is 1 when a ¼ b while is 0 otherwise, and p(SGtþ1jftþ1 ¼

2, sgt) is estimated by a Monte Carlo process [36] applied to the

posterior probability distribution of SGtþ1:

p(SGtþ1 ¼ sgk j ftþ1 ¼ 2, sgt)/ p(ftþ1 ¼ 2 j sgk) p(sgk j sgt) (2:4)

considering that p(sgkjsgt) estimates the probability that sgk

succeeds sgt as subgoal and that the evaluation of the likeli-

hood p(ftþ1 ¼ 2jsgk) corresponds to computing the conditional

probability p(gjsgk) of the goal state with respect to the subgoal

sgtþ1 (for a more detailed description, see appendix A, especially

equation (A 3), and appendix B). Here, the value sg* ¼ argmaxk

p(sgkjftþ1 ¼ 2, sgt), sampled by adopting the algorithmic priors

of equation (2.1) as proposal distribution, is set as subgoal at

time t þ 1. Note that using this procedure the probability of

selecting an optimal policy increases when the state St becomes

closer to the subgoal.
3. Results
3.1. Experiment 1: four-rooms scenario
A first question we ask is whether the proposed subgoaling-

based method is more efficient compared to an equivalent

procedure without subgoaling that searches for a solution to

the problem from start to finish, and under which conditions

it leads to optimal behaviour (e.g. the selection of shorter

paths). To answer this question, we compare the planning-as-

Table 1. Parameters used in Experiments 1 and 2.

parameters Experiment 1 Experiment 2

states 18 21

actions 5 5

policies �6.7 � 106 �5.4 � 109

instances 50, 100, 1000 100

Tmax 12 8

P(Sgoal) 0.095 0.052

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335

5

inference method with and without subgoals in the 18-states

‘four-rooms’ scenario shown in figure 2. Note that even in this

apparently simple scenario the number of potential policies is

around seven million, making exact inference impracticable.

In the first (without-subgoals) strategy, the probability of

choosing a subgoal different from the goal state is zero:

p(SG = sgoal) ¼ 0. In the second (with-subgoals) strategy, the

above-defined algorithmic priors of the subgoals are used:

p(SG = sgoal) . 0. To study the generality of the method,

we tested three different ensembles (of 50, 100 and 1000 of

independent inferential instances) and made 10 simulation

runs for each. The parameters used in the simulations are

reported in table 1. In the experiment, we assume S1 as start-

ing state and S18 as goal. We set the prior probability S18 to

be the highest among all the values of p(SG) (table 1). Specifi-

cally, we set P(S18) as the highest value of p(SG) plus a small

value calculated as the difference between the first and

second highest values of p(SG); then we normalize all the

other probabilities in p(SG) to sum up to 1.

To compare the inference with and without subgoals, we

consider various factors: the number of successfully reached

goals, the optimality of behaviour, expressed here as the

number of inferential instances achieving the optimal plan-

ning strategy (in this scenario, a sequence of eight states,

including both start and goal states), the complexity of the

inference (i.e. the percentage of instances failing to arrive at

the goal) and the complexity of the control (i.e. the average

length of the programs necessary to achieve the task).

The differences between the percentage of successful

strategies and the percentage of achieved optimal paths car-

ried out in the without-subgoals and with-subgoals modalities

are shown in table 2. The latter strategy achieves a better per-

formance and the largest number of optimal paths by using

subgoals to split the search space. In keeping, the programs

produced by the strategy with-subgoals (dotted black line)

are on average shorter than those produced by the strategy

without-subgoals (grey line), especially in the first inferential

steps (figure 3a). Here the results are relative to the programs

used to plan (up to the next subgoal) at each inferential step,

for N ¼ 100 instances and averaged on 10 runs. Results are

similar with 50 and 1000 instances (not shown).

The average percentage of instances that fail to find a suc-

cessful planning strategy (for N ¼ 100) is shown in figure 3b,

revealing again an advantage of the strategy with-subgoals
(dotted black line) over the strategy without-subgoals (grey

line), especially in the first inferential steps. Furthermore,

the fact that the percentage of failures is stable in all the

steps suggests that the strategy with-subgoals is robust.

Overall, these results highlight that the proposed method

using subgoals is more efficient compared to a standard
planning-as-inference procedure that does not use sub-

goals and makes a more parsimonious use of resources

(e.g. working memory).

We next analysed the solutions found by the proposed

method using subgoals. The distribution of the number of

subgoals found by the strategy with-subgoals (averaged on

the different runs) is shown in figure 3c. The results show

that the strategies including two subgoals before the actual

goal (with a total of three sub-plans) are on average the

most successful. This result reflects the specificity of the

four-rooms scenario; for example, successful cases of naviga-

tion between S1 (start) and S18 (goal) include the subgoal

sequences [S2, S3, S18] and [S16, S17, S18].

As a final remark, we note that the probability distri-

butions of S and SG—as estimated by considering the

average of 100 instances during the inference—change at

every step, as shown in figures 4 and 5, respectively. In the

next experiment, we ask whether these dynamic repre-

sentations might have equivalents in the brain of primates

executing planning tasks.
3.2. Experiment 2: neuronal correlates of planning
in monkey lateral prefrontal cortex

Few neurophysiological studies have directly probed the role of

goals and subgoals during planning and control at the single

cell level (see [4] for a review). Perhaps the most direct test of

the neuronal underpinnings of planning in prefrontal circuits

comes from two monkey studies performed by Tanji and collab-

orators [6,7]. In these studies, monkeys performed a multistep

path planning task in a maze (shown in figure 6a) and were

required to prepare multiple movements of a cursor stepwise

from a starting position (at the centre of the maze) to a pre-

instructed goal position which varied in the experimental

conditions (see labels from G1 to G8 in figure 6a). These exper-

iments revealed that during the preparatory period monkey

lateral prefrontal cortex (lPFC) neurons encoded sequential rep-

resentations of the path plans [7] and that these prefrontal

representations are specific for goals and not motor actions

(i.e. the position to be reached and not the cursor movement

to be executed), in contrast with representations in the primary

motor cortex that encoded arm movements [6].

Most importantly for our study, the experiment reported in

[7] identified two neuronal populations in the lPFC that are

crucial for preparation of path planning: one in which neurons

specifically coded the position within the maze that rep-

resented the final path goal independent of the steps required

to achieve it (called final goal-selective neural activity) and one

in which neurons specifically coded the position within the

maze to which the animal intended to move the cursor next,

independent of the movement required or the specific maze

configuration (called immediate goal-selective neural activity).

The aim of our modelling study is identifying whether the

dynamics of two key variables used in our model, P(SG) and

P(S), might correspond to the activity of final and immediate
goal-selective neurons in the monkey study, respectively,

thus providing a computationally motivated explanation of

what these neuronal populations might encode during the

planning task.

We mapped the maze used in the monkey experiment of

[7] (figure 6a) into a discrete domain that includes 21 states

and four actions (giving approx. 109 possible policies), and

2 4 6 8 10 12
10

15

20

25

30

(a) (b) (c)

step

av
er

ag
e

pr
og

ra
m

 le
ng

th

2 4 6 8 10 12

0

10

20

30

40

50

step

av
er

ag
e

fa
ilu

re
s

%

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

no. subgoals

%
 o

f
in

st
an

ce
s

th
at

 r
ea

ch
 th

e
go

al

P(SG π sgoal) > 0

P(SG π sgoal) = 0

Figure 3. Performance in the four-rooms scenario. (a) Average length of programs produced at each inferential step by the two alternative models (without versus
with subgoals); standard deviations are shown. The length is coded in terms of binary program length [34]. (b) Average failure percentage of instances that do not
represent a successful strategy (standard deviation shown). (c) Distribution of number of subgoals used by successful strategies. Note that the goal is included so a
subgoal of 1 indicates that no additional subgoals were selected.

Table 2. Percentage of instances that correctly find a plan to the goal in Experiment 1. Results are shown for different number of independent inferential
instances (50, 100 and 1000).

no. instances

% of success with standard deviation without
subgoals: P(SG=sgoal) 5 0

% of success with standard deviation with
subgoals: P(SG=sgoal) > 0

step step

8 10 12 8 10 12

50 34+ 8 64+ 6 81+ 3 50+ 6 79+ 6 94+ 4

100 35+ 4 63+ 3 82+ 3 49+ 6 80+ 3 94+ 2

1000 35+ 2 65+ 1 84+ 1 50+ 1 81+ 1 93+ 1

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335

6

we calculated the algorithmic prior of each state using the

aforementioned method; the results are shown in figure 6b.

We next conducted a simulated experiment on a sample

trial (equivalent to one of those studied in [7]), which consists

of running an inference from a starting position (S11) to a

known goal location (S3) (figure 7). The prior probability

S3 is set to be the highest value (table 1) and all the other

probabilities in p(SG) are normalized to sum up to 1. Results

are for 10 execution runs using 100 instances with the par-

ameters reported in table 1. Note that this example is

chosen for illustrative purposes but the results reported

below generalize to all the start-goal pairs of the maze used

in the original monkey experiment.

The former panel of figure 7 shows the prior SG once the

goal (S3) is known; the other panels show how the distri-

bution p(SGt) changes during the probabilistic path-

planning inference. It is possible to appreciate that during

the inference the final goal position S3 is tonically maintained

in a way that closely mimics the final goal-selective neural
activity reported by Saito et al. [7]. Importantly, while in the

first panel the final goal S3 is clamped, in the successive

steps it is not, but it results from sampling over the p(SGt)

distribution (e.g. p(SGt¼2jsstart ¼ S11, sgoal ¼ S3) in the

second inferential step (see §2.3 for details). The fact that

the probabilistic inference of SGt in our proposed algorithm

predicts the final goal-selective neural population found in

monkeys lPFC [7] suggests that these neurons might be a sig-

nature of an ongoing probabilistic inference [38,39] rather
than only playing a role in working memory, as usually

assumed. This result provides a novel perspective on how

prefrontal goal representations might support inference and

control, which is in line with other evidence that goal-

coding neurons peak before an action is made but are also

maintained tonically after action onset [4,40].

The probability distribution of the states St¼1 2 St¼4 in the

same path planning example as before (i.e. from S11 to S3) is

shown in figure 8. It is possible to appreciate that these prob-

ability distributions closely mimic the immediate goal-selective
neural activity reported in [7], with a preferential coding

of the next spatial position in the maze required to reach

the goal. This suggests that the activity of immediate goal-

selective neurons codes (predicted) state representations;

these prospective representations might complement the

activity of final goal-selective neurons in a coherent probabil-

istic path-planning inference [41]. Importantly, these state

representations maintained by lPFC are not just ‘reachable’

future states but compose optimal (i.e. shorter) plans, in keep-

ing with previous theoretical proposals [42]. Supporting this

idea is the fact that the probability distributions found by our

method preferentially select optimal plans. For example, in

the second step (figure 8b) the probability of S6 is higher

than S12. This fact can be easily justified by making simple

probabilistic considerations: the probability P(S3jS7, S6) that

S3 can be reached through the path [S11, S6, S7, S3] is greater

than the probability P(S3jS7, S12). Indeed, there are two opti-

mal paths passing through S6 while there is only one through

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0

0.1

0.2

0.3

0.4

0.5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

S2

0

0.1

0.2

0.3

0.4

0.5

0.6

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

p(St=1sstart = S1, sgoal = S18) p(St=2sstart = S1, sgoal = S18)

p(St=3sstart = S1, sgoal = S18) p(St=4sstart = S1, sgoal = S18)

p(St=5sstart = S1, sgoal = S18) p(St=6sstart = S1, sgoal = S18)

p(St=7sstart = S1, sgoal = S18) p(St=8sstart = S1, sgoal = S18)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Probability distribution of S in the four-rooms scenario, calculated by considering the average of 100 instances at each time step (numbered from a to h).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335

7

S12, which would imply the path [S11, S12, S7, S3] (and thus

visiting S6) increases the probability of finding an optimal

path to the desired goal.

Overall, this second study shows that the two distri-

butions p(SG) and p(S) used in our probabilistic inference

method can be fruitfully linked to two distinctive (final

and immediate) goal-selective neural populations found

in monkeys lPFC, and provide a novel interpretation of
what these populations might code during the task (i.e. sub-

goal distributions and states that compose optimal plans)

and how these neuronal responses might be produced (i.e.

through probabilistic inference). Note that the inference

used to compute p(SG) and p(S) is not conditionally depen-

dent on action, which implies that these populations are

goal- and not movement-related, as reported in the target

monkey study [7].

0.040
0.045
0.050
0.055
0.060
0.065
0.070
0.075
0.080
0.085
0.090

0

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

0.30

0

0.05

0.10

0.15

0.20

0.25

0.30

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0

0.1

0.2

0.3

0.4
0.5

0.6

0.7

0.8

0.9

p(SGt=1sgoal = S18) p(SGt=2sstart = S1, sgoal = S18)

p(SGt=4sstart = S1, sgoal = S18)p(SGt=3sstart = S1, sgoal = S18)

p(SGt=6sstart = S1, sgoal = S18)p(SGt=5sstart = S1, sgoal = S18)

p(SGt=8sstart = S1, sgoal = S18)p(SGt=7sstart = S1, sgoal = S18)

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

S1 S2 S3 S4

S5 S6

S7

S8 S9

S10 S11

S12

S13 S14

S15 S16 S17 S18

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Probability distribution of SG in the four-rooms scenario, calculated by considering the average of 100 instances at each time step (numbered from a to h).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335

8

4. Discussion
The benefits of subgoaling have long been recognized by many

disciplines that include psychology, neuroscience and computa-

tional modelling, but its computational and neuronal principles

are incompletely known. From a normative perspective, we pro-

posed that subgoaling permits planning solutions and control

behaviour using less information by selecting more compact
programs. To implement this idea, we devised a probabilistic

inference method that combines planning as inference with infor-

mation-theoretic measures based on Solomonoff’s Algorithmic

Probability and Kolmogorov Complexity (KC), the latter being

widely used in AI [19,23] and closely related to variational prob-

abilistic methods that minimize free energy [30,43]. Essentially,

our approach formalizes the ‘Occam’s razor’ principle: a priori,
among the strings (here, programs) that represent the procedures

monkey scenario(a) (b)

0.0455

0.0460

0.0465

0.0470

0.0475

0.0480

0.0485

0.0490

0.0495

0.0500G4 G1

G8

G7

G3 G2

G6

G5

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

p(SG)

Figure 6. The maze of Experiment 2. (a) The original maze used in the monkey study of [7]. Here the start position is the centre and G1 – G8 denote possible goal
locations. (b) The representation of the maze used in Experiment 2. The grey scales indicate the SG a priori probability distribution for the task: S1, S3, S4, S8, S14,
S18, S19, S21 has probability 0.045, S11 has probability 0.048, S6, S10, S12, S16 has probability 0.0485, S2, S9, S13, S20 has probability 0.0486 and S5, S7, S15, S17
has probability 0.05.

0.045

0.046

0.047

0.048

0.049

0.050

0.051

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p(SGt=1sgoal = S3) p(SGt=2sstart = S11, sgoal = S3)

p(SGt=4sstart = S11, sgoal = S3)p(SGt=3sstart = S11, sgoal = S3)

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

(a)

(c)

(b)

(d)

Figure 7. SG probability distribution at each time step (numbered from a to d) for the monkey path-planning task reported in [7].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335

9

returning the same output, ‘simpler’ strings (i.e. strings with

low descriptive complexity) are more probable and should

more likely be selected by the probabilistic inference.

There is increased attention in theoretical neuroscience

to the idea that brain computations, and in particular

state inference and planning, can be understood in terms of

probabilistic inference; still, the required computations are

computationally expensive and it is unclear how the brain

might solve or approximate them [27,30,33,38]. Within this

framework, we have demonstrated that parsimony principles
derived from normative (information-theoretical) consi-

derations can guide efficient subgoaling and significantly

lower the descriptive complexity of inferential procedures

underlying planning and problem solving (Experiment 1).

We have also linked aspects of the proposed method to plan-

ning dynamics found in monkey lPFC (Experiment 2). The

proposed computational framework thus offers a mechanistic

explanation of subgoaling in planning and problem solving

and suggests parallels with neurobiological findings, which

remain to be tested in future studies.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p(St=1sstart = S11, sgoal = S3) p(St=2sstart = S11, sgoal = S3)

p(St=3sstart = S11, sgoal = S3) p(St=4sstart = S11, sgoal = S3)

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

S1

S19 S21

S4 S5

S9

S6

S11S10

S15 S16

S20

S12

S17

S13

S18S14

S7

S2 S3

S8

(a) (b)

(c) (d)

Figure 8. S probability distribution at each time step (numbered from a to d) for the monkey path-planning task reported in [7].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335

10
The subgoaling approach proposed here shares some

similarities with ‘task partitioning’ strategies that have been

reported in insect societies [44–46]. In insect societies, a

task is split into smaller tasks that are carried out in a dis-

tributed manner by several individuals (e.g. insects), which

can collectively produce optimal solutions. The similarities

between the collective decision-making strategies of insect

societies and of neurons in the brain have often been noticed

[47,48]; understanding the benefits of distributed schemes for

subgoaling is an open interrogative for future research.

The proposed method represents a novel approach to plan-

ning and subgoaling that can also inform technical fields such

as AI/HRL. In HRL, temporal abstraction methods such as

Options are widely used but they are normally modelled as

structures that, once learned, are retrieved in an all-or-nothing

way. On the contrary, our method permits building Options-

like constructs on the fly using probabilistic inference, which

yields increased flexibility. Note that the two approaches are

not mutually exclusive but can be combined. The method pre-

sented here can be easily extended to model the acquisition of

stable or ‘cached’ skills or Options; it is sufficient to allow the

system to store the results of previous inferences (e.g. in the

form of priors on policies) and re-use them in similar future

inferences. Running inferences based on such prior infor-

mation would generate a well-known dilemma between

faster but less flexible (habitual) and slower but more flexible

(goal-directed) selection mechanisms [26,49–53].

Although we have focused on the importance of subgoaling

for planning, the same computational principles might operate

at the three different timescales of planning, control and learning.
These three problems are traditionally studied in isolation but

are closely related in probabilistic schemes and might use

common optimization principles, including the proposed sub-

goal-based, Divide et Impera (divide and conquer) strategy.

During planning, subgoals (or Options in HRL) reduce the

search space by permitting planning at a higher level of temporal

abstraction (i.e. at the level of macro-actions and not only basic

actions). During control, subgoals permit maintaining the smal-

lest possible information in working memory that is sufficient for

successful task achievement [35]. During learning, subgoals (and

associated Options) permit more efficient learning, reducing the

search space, which also helps in the transfer of knowledge and

skills to novel domains [12].

An open research question is whether goals and subgoals

might support efficient coding and information compression

in cortical hierarchies. The rationale of this idea is that, in

the same way perceptual coding might be based on minimum
description length and efficient coding principles [54], information

compression principles might explain how the brain efficiently

codes control programs [55]. In this perspective, goals and sub-

goals might ensure that information is compressed in a way that

is more useful to solve problems efficiently and thus bias which

control programs (e.g. Options) should be learned. It remains to

be tested in future studies whether plans that are initially formed

using probabilistic inference and subgoaling might be succes-

sively stored in prefrontal hierarchies, yielding an efficient

coding of control-related information.

Funding statement. Research funded by the EU’s FP7 under grant agree-
ment no FP7-ICT-270108 and the HFSP under grant agreement

11
RGY0088/2014. The GEFORCE Titan used for this research was
donated by the NVIDIA Corporation.
rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335
Appendix A. Algorithmic probability, Bayesian
inference and subgoaling
As usually in computer science, transition sequences can be

considered as series of instructions that let a computing

machine return an output for some input, provided that the

execution halts. In the spirit of Algorithmic Probability

Theory introduced by Solomonoff [23,34], we assume that

(in a discrete state space) it is possible to determine a set of

executable instructions by considering a starting state si, an

arrival state si0 and a policy pj. The policy is represented as

a state-action table encoding a list of actions that, by starting

from si, will get to si0. In algorithmic terms, the triple (si, pj, si0)

defines a program for the state si0. This correspondence is not

biunique because the same program can be determined by

different policies.

The next step consists of encoding the program in a com-

putable format. A simple and efficient way to do so is using

the bitwise encoding. By mapping the program (si, pj, si0) into

a binary string pi0 (si, pj) with length jpi0 (si, pj)j, we can algor-

ithmically assign to it an a priori probability equal to

2�jpi0 (si ,pj)j. This probability goes to 0 in the limit of

jpi0 (si, pj)j ! 1 (e.g. if a program does not halt in si0 or it

does not halt at all) and is equal to 1 when jpi0 (si, pj)j ¼ 0

(i.e. when initial and arrival states coincide). In our represen-

tation, this last condition can happen if and only if there

exists a policy working as an ‘identity function’, namely

having the transition si! si, 8i (that corresponds to the

policy p1, in our approach).

By considering the set {pi0 (si, pj)}i,j of all the programs

returning the state si0, the a priori algorithmic probability of

si0 can be defined as

P(si0) ¼
X

i

X
j

2�jpi0 (si ,pj)jP
l 2�jpi(sl ,pj)j

 !
, (A 1)

when the above-equation is applied on every state, it gener-

ates an a priori probability distribution, depending on the

specific domain, in which the subgoal states have the highest

probability values.

This algorithmic method to define probabilities can be used

to determine the conditional probability distribution com-

monly involved in Bayesian inference. For example, let us

consider equation (2.2) of §2.3: we can obtain the expressions

for p(sgtjsi, pj) by setting st and pj in equation (A 1); and

the expression for p(stjpj) by setting st in equation (A 1). There-

fore, equation (2.2) can be rewritten in an algorithmic form as

p(Pt ¼ pjjst, sgt)/ p(sgtjst, pj)p(stjpj)p(pj)

¼ 1

Z
(2�jpsgt

(st ,pj)j)
X

i

2�jpst
(si ,pj)j

 !
p(pj)

¼ 1

Z

X
i

2�(jpsgt
(st ,pj)jþjpst

(si ,pj)j)

 !
p(pj), (A 2)

with Z as a normalization constant. According to the above

equation, the probability of a specific policy pj, given st and

sgt, is proportional to its aptitude to generate programs of mini-

mum length which, starting from every possible state si, permit
movement to the currently examined subgoal sgt by passing

through the current state st.

Analogously, one can determine the algorithmic expres-

sion of p(SGtþ1 ¼ sgkjftþ1 ¼ 2, sgt) in equation (2.4) by

constraining all the programs returning the goal to have sgk

as an intermediate outcome. Equation (2.4) thus becomes

p(SGtþ1 ¼ sgkj ftþ1 ¼ 2, sgt)/ p(ftþ1 ¼ 2jsgk)p(sgkjsgt)

; p(gjsgk)p(sgkjsgt)

¼ 1

Z0
X

j

2�jpg(sgk ,pj)j

0
@

1
A X

j

2�jpsgk
(sgt ,pj)j

0
@

1
A,

(A 3)

where Z0 is a normalization constant.

It is worth noting that equation (A 3) is equivalent, up to

the normalization factor, to p(sgoaljsgt) when sgk ¼ sgoal or

sgk ¼ sgt. Besides, it holds 1 when sgoal ¼ sgt. This is a direct

consequence of the fact that, when initial and final states

coincide, the only policy able to determine a halting program

of length zero is the ‘rest policy’ p1 with probability equal to

1. Rather, when the rest policy is fixed, the probability of a

program is different from zero if and only if the starting

and final states are the same.

Evaluating equation (A 1) or (A 3) is computationally bur-

dening as it depends on the number m of policies, which is

usually prohibitive also for a space with few states. However,

it is possible to introduce various approximations and heur-

istics, such as that presented in appendix B, to render their

evaluation computationally treatable.
Appendix B. Heuristic procedure for estimating
algorithmic conditional probabilities
Equations (A 1) and (A 3) have a considerable computational

cost, because they are evaluated over the whole set of the pol-

icies. However, it is possible to use heuristics to decrease the

cost of calculating the conditional probabilities used in the

two equations.

The state space of the problem can be arranged as a graph

having the states si as the n vertices and the transitions e
between states as the edges. The graph can be represented as

an adjacency list: a collection of unordered lists, one for each

state, composed of the neighbours of the related vertex. Given

two states, si and si0, we exploit a standard depth-first search

algorithm for figuring out all the paths c [C(si, si0) between

them. Every path c corresponds intuitively to a distinct program

pc, but each program can be attained by different policies.

As aconsequence, various policies give the same contribution

to the algorithmic probability computation. Their number can be

estimated by considering every possible combination of the

neighbours of the states not involved in the specified path c
(and, thus, not present in the program pc). We call this value

multiplicity of the program pc and we indicate it as m(pc).

Therefore, the probability p(si 0jsi) can be written in the

following form:

p(si0 jsi) ¼
X

c[C(si0 ,si)

m(pc)(2
�jpcj), (B 1)

which makes the conditional probability estimation afford-

able with a computational complexity of O(n þ e), equal to

the depth-first search complexity. An analogous procedure

can be used to calculate p(sgkjsgt) and p(gjsgk).

12
References
rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141335
1. Newell A, Simon HA. 1972 Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall.

2. Fuster JM. 1997 The prefrontal cortex: anatomy,
physiology, and neuropsychology of the frontal lobe.
Philadelphia, PA: Lippincott-Raven.

3. Miller EK, Cohen JD. 2001 An integrative theory
of prefrontal cortex function. Annu. Rev.
Neurosci. 24, 167 – 202. (doi:10.1146/annurev.
neuro.24.1.167)

4. Passingham RE, Wise SP. 2012 The neurobiology of
the prefrontal cortex: anatomy, evolution, and the
origin of insight, vol. 50. Oxford, UK: Oxford
University Press.

5. Pezzulo G, Castelfranchi C. 2009 Thinking as the
control of imagination: a conceptual framework for
goal-directed systems. Psychol. Res. 73, 559 – 577.
(doi:10.1007/s00426-009-0237-z)

6. Mushiake H, Saito N, Sakamoto K, Itoyama Y, Tanji J.
2006 Activity in the lateral prefrontal cortex reflects
multiple steps of future events in action plans. Neuron
50, 631 – 641. (doi:10.1016/j.neuron.2006.03.045)

7. Saito N, Mushiake H, Sakamoto K, Itoyama Y, Tanji J.
2005 Representation of immediate and final
behavioral goals in the monkey prefrontal cortex
during an instructed delay period. Cereb. Cortex 15,
1535 – 1546. (doi:10.1093/cercor/bhi032)

8. Shallice T. 1982 Specific impairments of planning.
Phil. Trans. R. Soc. Lond. B 298, 199 – 209. (doi:10.
1098/rstb.1982.0082)

9. Botvinick MM. 2008 Hierarchical models of behavior
and prefrontal function. Trends Cogn. Sci. 12,
201 – 208. (doi:10.1016/j.tics.2008.02.009)

10. Solway A, Diuk C, Cordova N, Yee D, Barto AG, Niv
Y, Botvinick MM. 2014 Optimal behavioral hierarchy.
PLoS Comput. Biol. 10, e1003779. (doi:10.1371/
journal.pcbi.1003779)

11. Sutton RS, Precup D, Singh S. 1999 Between MDPs
and semi-MDPs: a framework for temporal
abstraction in reinforcement learning. Artif. Intell.
112, 181 – 211. (doi:10.1016/S0004-3702(99)
00052-1)

12. Barto AG, Mahadevan S. 2003 Recent advances
in hierarchical reinforcement learning. Discr. Event
Dyn. Syst. 13, 341 – 379. (doi:10.1023/A:102569
6116075)

13. Botvinick M, Niv Y, Barto A. 2009 Hierarchically
organized behavior and its neural foundations:
a reinforcement learning perspective. Cognition
119, 262 – 280. (doi:10.1016/j.cognition.2008.
08.011)

14. van Dijk SG, Polani D, Nehaniv CL. 2011 Hierarchical
behaviours: getting the most bang for your bit.
In Advances in artificial life. Darwin Meets von
Neumann, pp. 342 – 349. Berlin, Germany: Springer.

15. Rosenbloom PS, Laird JE, Newell A. 1992 The soar
papers: research on integrated intelligence, vols. 1
and 2. Cambridge, MA: MIT Press.

16. Hauskrecht M, Meuleau N, Kaelbling LP, Dean T,
Boutilier C. 1998 Hierarchical solution of Markov
decision processes using macro-actions. In Proc.
14th Conf. on Uncertainty in artificial intelligence,
Madison, WI, 24 – 26 July, pp. 220 – 229. San
Francisco, CA: Morgan Kaufmann Publishers Inc.

17. Lipovetzky N, Geffner H. 2012 Width and
serialization of classical planning problems. In ECAI
2012: 20th European Conf. on Artificial Intelligence,
Montpellier, France, 27 – 31 August, pp. 540 – 545.
Clifton, VA: IOS Press. (doi:10.3233/978-1-61499-
098-7-540)

18. Donnarumma F, Prevete R, Trautteur G. 2012
Programming in the brain: a neural network
theoretical framework. Connect. Sci. 24, 71 – 90.
(doi:10.1080/09540091.2012.684670)

19. Schmidhuber J. 1997 Discovering neural nets with
low Kolmogorov complexity and high generalization
capability. Neural Netw. 10, 10 – 15. (doi:10.1016/
S0893-6080(96)00127-X)

20. Mumford MD, Schultz RA, Van Doorn JR. 2001
Performance in planning: processes, requirements,
and errors. Rev. Gen. Psychol. 5, 213 – 240. (doi:10.
1037/1089-2680.5.3.213)

21. Spitz HH, Minsky SK, Bessellieu CL. 1984 Subgoal
length versus full solution length in predicting
Tower of Hanoi problem-solving performance. Bull.
Psychon. Soc. 22, 301 – 304. (doi:10.3758/
BF03333826)

22. Simon DA, Daw ND. 2011 Neural correlates of
forward planning in a spatial decision task in
humans. J. Neurosci. 31, 5526 – 5539. (doi:10.1523/
JNEUROSCI.4647-10.2011)

23. Li M, Vitâanyi PMD. 2008 An introduction to
Kolmogorov complexity and its applications. Berlin,
Germany: Springer.

24. Attias H. 2003 Planning by probabilistic inference.
In Proc. 9th Int. Workshop on Artificial Intelligence
and Statistics, Key West, Florida, 3 – 6 January. New
Jersey: Society for Artificial Intelligence and
Statistics.

25. Botvinick M, Toussaint M. 2012 Planning as
inference. Trends Cogn. Sci. 16, 485 – 488. (doi:10.
1016/j.tics.2012.08.006)

26. Pezzulo G, Rigoli F, Chersi F. 2013 The mixed
instrumental controller: using value of information to
combine habitual choice and mental simulation.
Front. Psychol. 4, 92. (doi:10.3389/fpsyg.2013.00092)

27. Toussaint M, Storkey A. 2006 Probabilistic inference
for solving discrete and continuous state Markov
decision processes. In Proc. 23rd Int. Conf. on
Machine learning, Pittsburgh, Pennsylvania, 25 – 29
June, pp. 945 – 952. New York, NY: ACM.

28. Botvinick MM, An J. 2008 Goal-directed decision
making in prefrontal cortex: a computational
framework. In Advances in Neural Information
Processing Systems (NIPS), Vancouver, Canada,
8 – 11 December. Cambridge, MA: MIT Press.

29. Solway A, Botvinick MM. 2012 Goal-directed
decision making as probabilistic inference: a
computational framework and potential neural
correlates. Psychol. Rev. 119, 120 – 154. (doi:10.
1037/a0026435)
30. Friston KJ, Daunizeau J, Kiebel SJ. 2009
Reinforcement learning or active inference? PLoS
ONE 4, e6421. (doi:10.1371/journal.pone.0006421)

31. Murphy KP. 2002 Dynamic Bayesian networks:
representation, inference and learning. PhD thesis,
Computer Science Division, UC Berkeley, USA.

32. Sutton RS, Barto AG. 1998 Reinforcement learning:
an introduction. Cambridge, MA: MIT Press.

33. Verma D, Rao RPN. 2006 Planning and acting in
uncertain environments using probabilistic
inference. In IROS, Beijing, China, 9 – 15 October,
pp. 2382 – 2387. Piscataway, NJ: IEEE.

34. Solomonoff RJ. 1997 The discovery of algorithmic
probability. J. Comp. Syst. Sci. 55, 73 – 88. (doi:10.
1006/jcss.1997.1500)

35. van Dijk SG, Polani DP. 2011 Grounding subgoals in
information transitions. In Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL),
2011 IEEE Symposium, Paris, France, 11 – 15 April,
pp. 105 – 111. New York, NY: IEEE.

36. Doucet A, Godsill S, Andrieu C. 2000 On sequential
Monte Carlo sampling methods for Bayesian
filtering. Stat. Comput. 10, 197 – 208. (doi:10.1023/
A:1008935410038)

37. Geffner H. 2013 Computational models of planning.
Wiley Interdiscip. Rev. Cogn. Sci. 4, 341 – 356.
(doi:10.1002/wcs.1233)

38. Doya K, Ishii S, Pouget A, Rao RPN (eds). 2007
Bayesian brain: probabilistic approaches to neural
coding, 1 edn. Cambridge, MA: MIT Press.

39. Friston K. 2010 The free-energy principle: a unified
brain theory? Nat. Rev. Neurosci. 11, 127 – 138.
(doi:10.1038/nrn2787)

40. Genovesio A, Tsujimoto S, Wise SP. 2012 Encoding
goals but not abstract magnitude in the primate
prefrontal cortex. Neuron 74, 656 – 662. (doi:10.
1016/j.neuron.2012.02.023)

41. Friston K, Samothrakis S, Montague R. 2012 Active
inference and agency: optimal control without cost
functions. Biol. Cybern. 106, 523 – 541. (doi:10.
1007/s00422-012-0512-8)

42. Lee D, Rushworth MFS, Walton ME, Watanabe M,
Sakagami M. 2007 Functional specialization of the
primate frontal cortex during decision making.
J. Neurosci. 27, 8170 – 8173. (doi:10.1523/
JNEUROSCI.1561-07.2007)

43. Ortega PA, Braun DA. 2013 Thermodynamics as a
theory of decision-making with information-
processing costs. Proc. R. Soc. A 469, 20120683.
(doi:10.1098/rspa.2012.0683)

44. Anderson C, Boomsma JJ, Bartholdi JJ. 2002 Task
partitioning in insect societies: bucket brigades. Insectes
Soc. 49, 171 – 180. (doi:10.1007/s00040-002-8298-7)

45. Hamann H, Karsai I, Schmickl T. 2013 Time delay
implies cost on task switching: a model to
investigate the efficiency of task partitioning. Bull.
Math. Biol. 75, 1181 – 1206. (doi:10.1007/s11538-
013-9851-4)

46. Karsai I, Schmickl T. 2011 Regulation of task
partitioning by a common stomach: a model of

http://dx.doi.org/10.1146/annurev.neuro.24.1.167
http://dx.doi.org/10.1146/annurev.neuro.24.1.167
http://dx.doi.org/10.1007/s00426-009-0237-z
http://dx.doi.org/10.1016/j.neuron.2006.03.045
http://dx.doi.org/10.1093/cercor/bhi032
http://dx.doi.org/10.1098/rstb.1982.0082
http://dx.doi.org/10.1098/rstb.1982.0082
http://dx.doi.org/10.1016/j.tics.2008.02.009
http://dx.doi.org/10.1371/journal.pcbi.1003779
http://dx.doi.org/10.1371/journal.pcbi.1003779
http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1023/A:1025696116075
http://dx.doi.org/10.1023/A:1025696116075
http://dx.doi.org/10.1016/j.cognition.2008.08.011
http://dx.doi.org/10.1016/j.cognition.2008.08.011
http://dx.doi.org/10.3233/978-1-61499-098-7-540
http://dx.doi.org/10.3233/978-1-61499-098-7-540
http://dx.doi.org/10.1080/09540091.2012.684670
http://dx.doi.org/10.1016/S0893-6080(96)00127-X
http://dx.doi.org/10.1016/S0893-6080(96)00127-X
http://dx.doi.org/10.1037/1089-2680.5.3.213
http://dx.doi.org/10.1037/1089-2680.5.3.213
http://dx.doi.org/10.3758/BF03333826
http://dx.doi.org/10.3758/BF03333826
http://dx.doi.org/10.1523/JNEUROSCI.4647-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.4647-10.2011
http://dx.doi.org/10.1016/j.tics.2012.08.006
http://dx.doi.org/10.1016/j.tics.2012.08.006
http://dx.doi.org/10.3389/fpsyg.2013.00092
http://dx.doi.org/10.1037/a0026435
http://dx.doi.org/10.1037/a0026435
http://dx.doi.org/10.1371/journal.pone.0006421
http://dx.doi.org/10.1006/jcss.1997.1500
http://dx.doi.org/10.1006/jcss.1997.1500
http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1023/A:1008935410038
http://dx.doi.org/10.1002/wcs.1233
http://dx.doi.org/10.1038/nrn2787
http://dx.doi.org/10.1016/j.neuron.2012.02.023
http://dx.doi.org/10.1016/j.neuron.2012.02.023
http://dx.doi.org/10.1007/s00422-012-0512-8
http://dx.doi.org/10.1007/s00422-012-0512-8
http://dx.doi.org/10.1523/JNEUROSCI.1561-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.1561-07.2007
http://dx.doi.org/10.1098/rspa.2012.0683
http://dx.doi.org/10.1007/s00040-002-8298-7
http://dx.doi.org/10.1007/s11538-013-9851-4
http://dx.doi.org/10.1007/s11538-013-9851-4

rsif.royalsocietypublishing.org
J.R.Soc.

13
nest construction in social wasps. Behav. Ecol. 22,
819 – 830. (doi:10.1093/beheco/arr060)

47. Seeley TD, Visscher PK, Schlegel T, Hogan PM,
Franks NR, Marshall JAR. 2012 Stop signals provide
cross inhibition in collective decision-making by
honeybee swarms. Science 335, 108 – 111. (doi:10.
1126/science.1210361)

48. Trianni V, Tuci E, Passino KM, Marshall JAR. 2011
Swarm cognition: an interdisciplinary approach to
the study of self-organising biological collectives.
Swarm Intell. 5, 3 – 18. (doi:10.1007/s11721-010-
0050-8)

49. Daw ND, Niv Y, Dayan P. 2005 Uncertainty-based
competition between prefrontal and dorsolateral
striatal systems for behavioral control. Nat. Neurosci.
8, 1704 – 1711. (doi:10.1038/nn1560)

50. Pezzulo G, Rigoli F. 2011 The value of foresight:
how prospection affects decision-making.
Front. Neurosci. 5, 79. (doi:10.3389/fnins.
2011.00079)

51. Pezzulo G, Verschure P, Balkenius C,
Pennartz C. 2014 The principles of goal-
directed decision-making: from neural
mechanisms to computation and robotics. Phil.
Trans. R. Soc. B 369, 20130470. (doi:10.1098/
rstb.2013.0470)

52. Pezzulo G, van der Meer MA, Lansink CS, Pennartz
CMA. 2014 Internally generated sequences in
learning and executing goal-directed behavior.
Trends Cogn. Sci. 18, 647 – 657. (doi:10.1016/j.tics.
2014.06.011)

53. Verschure P, Pennartz C, Pezzulo G. 2014 The why,
what, where, when and how of goal directed choice:
neuronal and computational principles. Phil. Trans. R.
Soc. B 369, 20130483. (doi:10.1098/rstb.2013.0483)

54. Barlow HB. 1961 Possible principles underlying the
transformation of sensory messages. In Sensory
communication (ed. WA Rosenblith). Cambridge,
MA: MIT Press.

55. Kiebel SJ, Daunizeau J, Friston KJ. 2008 A hierarchy
of time-scales and the brain. PLoS Comput. Biol. 4,
e1000209. (doi:10.1371/journal.pcbi.1000209)
 In
terf
ace

12:20141335

http://dx.doi.org/10.1093/beheco/arr060
http://dx.doi.org/10.1126/science.1210361
http://dx.doi.org/10.1126/science.1210361
http://dx.doi.org/10.1007/s11721-010-0050-8
http://dx.doi.org/10.1007/s11721-010-0050-8
http://dx.doi.org/10.1038/nn1560
http://dx.doi.org/10.3389/fnins.2011.00079
http://dx.doi.org/10.3389/fnins.2011.00079
http://dx.doi.org/10.1098/rstb.2013.0470
http://dx.doi.org/10.1098/rstb.2013.0470
http://dx.doi.org/10.1016/j.tics.2014.06.011
http://dx.doi.org/10.1016/j.tics.2014.06.011
http://dx.doi.org/10.1098/rstb.2013.0483
http://dx.doi.org/10.1371/journal.pcbi.1000209

	Divide et impera: subgoaling reduces the complexity of probabilistic inference and problem solving
	Introduction
	Material and methods
	Probabilistic model
	How to generate algorithmic priors for subgoals
	Inferential procedure

	Results
	Experiment 1: four-rooms scenario
	Experiment 2: neuronal correlates of planning in monkey lateral prefrontal cortex

	Discussion
	Funding statement
	Appendix A. Algorithmic probability, Bayesian inference and subgoaling
	Appendix B. Heuristic procedure for estimating algorithmic conditional probabilities
	References

