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Individual variation in germline and expressed B-cell immunoglob-
ulin (Ig) repertoires has been associated with aging, disease
susceptibility, and differential response to infection and vaccina-
tion. Repertoire properties can now be studied at large-scale
through next-generation sequencing of rearranged Ig genes. Accu-
rate analysis of these repertoire-sequencing (Rep-Seq) data
requires identifying the germline variable (V), diversity (D), and
joining (J) gene segments used by each Ig sequence. Current
V(D)J assignment methods work by aligning sequences to a data-
base of known germline V(D)J segment alleles. However, existing
databases are likely to be incomplete and novel polymorphisms
are hard to differentiate from the frequent occurrence of somatic
hypermutations in Ig sequences. Here we develop a Tool for Ig
Genotype Elucidation via Rep-Seq (TIgGER). TIgGER analyzes mu-
tation patterns in Rep-Seq data to identify novel V segment alleles,
and also constructs a personalized germline database containing
the specific set of alleles carried by a subject. This information is
then used to improve the initial V segment assignments from
existing tools, like IMGT/HighV-QUEST. The application of TIgGER
to Rep-Seq data from seven subjects identified 11 novel V segment
alleles, including at least one in every subject examined. These
novel alleles constituted 13% of the total number of unique alleles
in these subjects, and impacted 3% of V(D)J segment assignments.
These results reinforce the highly polymorphic nature of human Ig
V genes, and suggest that many novel alleles remain to be discov-
ered. The integration of TIgGER into Rep-Seq processing pipelines
will increase the accuracy of V segment assignments, thus improv-
ing B-cell repertoire analyses.
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The production by B cells of immunoglobulin (Ig) proteins,
which are expressed on the cell surface as B-cell receptors

and secreted by subsets of B cells as antibodies, is a key com-
ponent of the adaptive immune system in humans. Through their
specific binding to an enormously diverse range of foreign bod-
ies, Ig proteins are able to elicit further immunological response
and provide protection. These proteins are assembled in B cells
from two pairs of polypeptide chains, termed heavy and light.
The antigen-binding portions of these genes are created through
the somatic recombination of gene segments, termed variable
(V), diversity (D), and joining (J). During the recombination
process, one each of the ∼46 V, 23 D, and 6 J gene segments (1)
recombine to make the antigen-binding region of the heavy
chain; the light chain is created by a similar process, although
involving one of two different loci (λ and κ) containing V and J
genes only. Over three million different Ig sequences can be
created through this V(D)J recombinatorial process alone (2).
The potential diversity of these sequences is further expanded to
the order of trillions (2) when combined with the random in-
sertion and deletion of nucleotides at the gene segment junc-

tions and with somatic hypermutation (SHM), the latter of which
introduces nucleotide changes at a rate of of 10−3 per base pair
per division (3, 4).
Variations in a subject’s germline gene segment alleles and

expressed repertoire (i.e., the collection of different Igs circu-
lating in that subject) have been associated with various aspects
of immune system and health status. Previous studies have, for
example: revealed the association of certain germline genotypes
with susceptibility to such diseases as rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE), and multiple sclerosis (MS)
(5, 6); found correlations of age with a reduced Ig clonal diversity
and less intense response to immune challenge (7, 8); found
overly expanded clones in cases of lymphoma (9, 10); and dis-
covered convergent Ig evolution across subjects in response to
certain immune challenges (11, 12). These repertoire-sequencing
(Rep-Seq) studies have benefitted from improvements in se-
quencing technologies, which allow for the generation of millions
of reads per run (13). Previously, the 454 platform (Roche) was
preferred because of its unique ability to generate reads long
enough to span the V(D)J rearrangement, although now the
MiSeq platform (Illumina) is able to generate paired-end reads
also long enough to span the V(D)J rearrangement (13). Rep-
Seq use is growing rapidly, even spurring the creation of com-
mercial start-ups to provide researchers and clinical laboratories
with sequencing and analysis services (14).
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High-throughput sequencing of B-cell immunoglobulin recep-
tors is providing unprecedented insight into adaptive immu-
nity. A key step in analyzing these data involves assignment of
the germline variable (V), diversity (D), and joining (J) gene-
segment alleles that comprise each immunoglobulin sequence
by matching them against a database of known V(D)J alleles.
However, this process will fail for sequences that use pre-
viously undetected alleles, whose frequency in the population
is unclear. Here we describe TIgGER, a computational method
that significantly improves V(D)J allele assignments by first
determining the complete set of gene segments carried by
a subject, including novel alleles. The application of TIgGER
identifies a surprisingly high frequency of novel alleles, high-
lighting the critical need for this approach.
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Analysis of Rep-Seq data depends critically on the de-
termination of the germline V, D, and J alleles used by each of
the Ig sequences, and several methods exist to perform the task
of V(D)J germline assignment (2, 15–17). All of these methods
essentially involve alignment of sample sequences to a database
of germline alleles of all known V, D, and J gene segments. The
IMGT (18) database of germline Ig alleles is the most widely
used, and the National Center for Biotechnology Information
refers to IMGT for its reference genome. However, recent
studies have discovered the presence of numerous V segments
and alleles not reported in any published databases (6, 19–21), as
well as a several novel D and J alleles (19). Some of these V
alleles have been incorporated into the IMGT database or al-
ternative databases of germline alleles [such as VBASE2 (22) or
the UNSWIg human heavy chain repertoire (23)]. The com-
pleteness of the germline V(D)J database may greatly influence
downstream analysis results, including clinically relevant decision
processes (24), as unreported alleles can skew estimated segment
distributions and because novel polymorphisms will appear as
recurrent somatic mutations.
No automated methods exist for detection of novel V(D)J

alleles, and most current Rep-Seq studies simply assume that the
current databases are complete. One strategy to search for po-
tential Ig polymorphisms involves identifying, from among the
least mutated sequences of each clonal group, V genes that have
a high frequency of mutation to a single nucleotide at a given
position (10% if the nucleotide is a classical SHM hotspot, 5%
otherwise), use a wide variety of D and J alleles, and can be ruled
out as not having resulted from a PCR chimera (19). Although
application of such filtering-based methods have successfully
identified novel alleles (19), the resulting predictions require
manual curation, and their sensitivity and specificity have not
been evaluated. It is unclear whether this approach can distin-
guish polymorphic positions from SHM hot-spots, which can be
mutated in >40% of sequences (25, 26). Here we present a Tool
for Immunoglobulin Genotype Elucidation via Rep-Seq (TIg-
GER). TIgGER includes a sensitive algorithm for the identifi-
cation of novel V segment alleles, as well as an Ig genotype-
determination step, which it uses to correct germline allele assign-
ments from existing V(D)J assignment tools, like IMGT/HighV-
QUEST. Application of TIgGER to Rep-Seq data from seven
subjects identified 11 new alleles, demonstrating the impor-
tance of incorporating novel allele detection into analysis
pipelines. TIgGER is available at clip.med.yale.edu/tigger.

Results
The TIgGER workflow consists of five steps (Fig. 1):

Initial V(D)J assignments. First, existing software is applied to de-
termine initial V(D)J allele assignments for each sequence in the
dataset. Throughout this report, IMGT/HighV-QUEST (27) is
used for this step.
Novel allele detection. Second, mutations are determined by com-
paring each sequence with its initial V(D)J assignments, and
novel V alleles are detected based on analysis of these
mutation patterns.
Extended V(D)J assignments. Third, the V allele assigned to each Ig
sequence is reassigned by realigning each sequence to the set of
novel V alleles as well as the known database germline alleles.
Sequences that better align to novel germline alleles will be
reassigned from their initial assignments.
Inferred subject-specific genotype. Fourth, frequencies of allele
assignments among sequences aligning to each gene are calcu-
lated and used to determine which alleles are actually part of
a subject’s genotype. These will serve as the subject’s personal-
ized germline database.

Personalized V allele assignments. Fifth, sequences that had best aligned
to one or more alleles not in the subject’s personalized germline
database are realigned to reassign them to V alleles from that set.

Many Nucleotide Positions Are Mutated at High Frequency. High-
throughput sequencing of the Ig heavy chain was carried out
from blood and tissue samples of seven subjects (Table 1). Three
subjects (PGP1, hu420143, and 420IV) were part of an influenza
vaccination study (28), and four subjects (M2, M3, M4, and M5)
were part of a study on multiple sclerosis (29). One subject
(PGP1) was sequenced both on the 454 GS FLX and Illumina
MiSeq platforms. As described in Methods, these sequencing
data were processed using pRESTO (30) (clip.med.yale.edu/
presto) to arrive at high-quality Ig sequences, which were then
submitted to IMGT/HighV-QUEST for initial germline V(D)J
gene segment identification. This processing resulted in an av-
erage of ∼140,000 sequences per dataset (Table 1).
Ig sequences that are derived from novel alleles are assigned

to the most similar allele contained in the germline repertoire
database. The polymorphic positions are thus interpreted as
mutations in the sequence, and will appear to have a high overall
mutation frequency (19). Across all sets of sequences assigned to
a particular Ig heavy chain variable (IGHV) allele, position-by-
position analysis of mutation frequency identified thousands of
highly mutated positions. In fact, among alleles occurring at least
100 times in one of the three 454 datasets, 1,206 nucleotide
positions were found to be mutated at a frequency of >30%.
Although many of these positions occurred at well-known hot-
spot motifs, others did not. A typical example is provided by
IGHV1-2*02 (Fig. 2, Left). In this case, six positions were mu-
tated in >30% of the sequences. Four of these positions occurred
at classic WRC/GYW mutation hotspots, and there was a mild
overall correlation between the predicted mutability [according
to the S5F targeting model (25)] and the observed mutation
frequency (R = 0.551) (Fig. 2, Right). Thus, intrinsic biases in
SHM targeting may explain some of these frequently mutated
positions, whereas others may represent polymorphisms because
of the presence of a novel IGHV allele in the subject. There is no
obvious way to draw thresholds on the mutation frequency or
position mutability to differentiate these two possibilities.

Polymorphisms Exhibit a Distinct Pattern of Mutation Accumulation.
Although many nucleotide positions exhibited a high frequency
of mutations, we reasoned that the pattern of mutation
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Fig. 1. Overview of the TIgGER workflow. IMGT/HighV-QUEST is used to
determine initial V(D)J assignments (step 1). TIgGER uses these initial gene
segment assignments to analyze mutation patterns and detect a putative set
of novel alleles (step 2). The germline gene segment database is then ex-
tended by adding these novel alleles to improve the initial V(D)J assignments
(step 3). The extended V(D)J assignments are then analyzed to determine
the genotype of a subject, and generate their personalized germline data-
base (step 4). A final set of V allele assignments is then made (step 5).
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accumulation at polymorphic positions would be distinct from
that found at other positions. Specifically, we hypothesized that
nonpolymorphic positions would accumulate mutations at a fre-
quency proportional to sequence-wide mutation counts, whereas
polymorphic positions would exhibit a negative correlation. To
investigate this hypothesis, a single base change was introduced
into an existing IGHV allele to simulate a novel allele. Then,
a computer simulation was used to sequentially introduce point
mutations and generate a repertoire that reproduced the number
of sequences and mutation count distribution observed in the
data from a specified subject (Methods). Mutations were iden-
tified by comparing these simulated sequences to the existing
IGHV allele (i.e., assuming no knowledge of the polymorphism).
When all simulated sequences contained the polymorphism (i.e.,
the subject was homozygous for the novel allele), then the pat-
tern of mutation accumulation at polymorphic positions was
clearly distinct from other positions (Fig. 3, Upper Left). Poly-
morphic positions exhibited an extremely high mutation fre-
quency (almost 100%) that was practically independent of the
sequence-wide mutation count, although there was a small neg-
ative slope, as expected, because there is a low probability that
this position could obtain a mutation that reverts the sequence to

the existing IGHV germline. In contrast, the mutation frequency
at nonpolymorphic positions was near zero when sequence-wide
mutation counts were low, and was positively correlated with
sequence-wide mutation counts.
The mutation pattern of polymorphic positions changed dra-

matically when the subject was assumed to be heterozygous for
the novel allele (i.e., when one allele of the IGHV segment is
known and the other contains a polymorphism). Although non-
polymorphic positions behaved similarly to the homozygous case,
the polymorphic positions exhibited an unexpected pattern (Fig.
3, Lower Left). The mutation frequency of the polymorphic po-
sition was relatively high when the overall mutation count of the
sequence was low (one to two mutations per sequence), but this
frequency quickly fell to levels that were indistinguishable from
other positions. This pattern results from the fact that the pro-
portion of sequences derived from each of the two V segment
alleles (novel and existing) changes dramatically depending on
the mutation count per sequence. In general, the frequency of
sequences with varying mutation counts (per sequence) follows
a bimodal distribution for unsorted B cells (Fig. S1). Many
sequences (derived from naive or IgM cells) have no mutations,
or perhaps a small number because of sequencing errors,
whereas many other sequences (derived from class-switched
sequences) are generally highly mutated. Thus, when all IGHV
alleles are known, there are few sequences expected in the range
of one to five mutations. Consequently, when a novel allele
exists, it creates sequences that appear to carry a single
“mutation” (or a low number of mutations depending on how
many polymorphisms are present), and such sequences will be
highly overrepresented in these groups (Fig. S2). Overall, these
results show that polymorphic positions exhibit distinct patterns
of mutation accumulation, and that these patterns differ
depending on whether the novel allele is homozygous or het-
erozygous in the subject being analyzed.
To determine whether the predicted patterns for V segment

polymorphisms could be found in experimental data, mutation
accumulation plots were generated for every germline IGHV
allele for each dataset in Table 1. Manual inspection of these
plots found that although most nucleotide positions tended to
exhibit higher mutation frequencies as sequence-wide mutation
counts increased, as predicted for nonpolymorphic positions,
several potential polymorphisms were also identified (Fig. 3,
Center). For example, position 163 in sequences aligning to
IGHV1-2*02 in subject M5 appeared to be a homozygous poly-
morphism (Fig. 3, Upper Center), whereas this same polymorphism
in subject hu420143 appeared to be heterozygous (Fig. 3, Lower
Center). Interestingly, the putative homozygous polymorphism was
the most frequently mutated position (Fig. 3, Upper Right), sug-
gesting that a simple analysis of mutation frequency may have
uncovered this allele in subject M5. However, in subject

Table 1. High-throughput sequencing datasets used in this study

Source
Disease
state Subject Technology Raw reads

Processed
reads

Reads
assigned

2+ V alleles*

Alleles
per V gene
(mean)*

Reads used
for allele
detection

Reads used
for genotyping

(25) Healthy PGP1 454 117,188 70,722 9,042 4.1 14,833 43,752
(25) Healthy hu420143 454 178,584 76,901 16,395 4.3 35,767 27,222
(25) Healthy 420IV 454 398,517 243,043 31,401 4.4 41,374 175,477
(23) Healthy PGP1 MiSeq 3,851,658 110,053 47,828 4.3 31,397 53,670
(26) MS M2 MiSeq 7,691,509 121,742 51,236 4.5 27,224 47,818
(26) MS M3 MiSeq 3,641,633 103,189 30,386 4.5 22,737 4,633
(26) MS M4 MiSeq 3,714,152 137,936 49,095 4.5 27,399 6,783
(26) MS M5 MiSeq 10,917,517 277,913 123,860 4.5 51,072 16,638
Average across all datasets 3,813,845 142,687 44,905 4.4 31,475 46,999

*As assigned by IMGT/HighV-QUEST.
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hu420143, where the polymorphism appears to be heterozygous,
there were many other positions that had a similar mutation
frequency (Fig. 3, Lower Right). This finding suggests that iden-
tifying polymorphisms based on the pattern of mutation accu-
mulation (rather than overall mutation frequency) should have
increased sensitivity for detecting novel alleles, particularly when
they are heterozygous.

Automated Method to Detect Novel Alleles from V(D)J-Rearranged
Samples. Leveraging the distinct pattern of mutation accumu-
lation exhibited by polymorphic positions, a regression-based
method was developed to automate the process of recog-
nizing single nucleotide polymorphisms, which could then be
combined to predict novel IGHV alleles. For each IMGT-
numbered position in each existing germline IGHV allele,
polymorphisms were detected by regressing the mutation fre-
quency of the specific position against the mutation count of
the entire V segment (complete details are provided in Meth-
ods). Nucleotide positions with y-intercepts above 0.125 (as
determined by a Student’s t test with P < 0.05) were considered
potentially polymorphic, with the specific polymorphism defined
by the most commonly mutated-to nucleotide at that position.
Nonpolymorphic positions are expected to have a y-intercept of
zero, and the threshold of 0.125 was chosen for polymorphisms
to detect heterozygous alleles that may be expressed at low fre-
quency. Manual inspection of the data suggested that this was
a reasonable threshold, and the simulation results below confirm
this choice.
The apparent mutation count in germline sequences using

novel IGHV alleles is determined by the most closely related
known allele. This is because sequences using the novel allele
will get mapped to these existing alleles, and any polymorphisms
will be interpreted as mutations. Thus, if the novel allele contains
a single nucleotide difference relative to an existing allele, then
all of the germline sequences using the novel allele will appear to

have one mutation (at the polymorphic position). If the novel
allele contains multiple polymorphisms, then few sequences will
be found with mutation counts below the number of poly-
morphisms. In this case, the lower bound on the mutation count
for regression analysis should be set to the number of poly-
morphisms differentiating the novel allele from its most closely
related known allele. We detected this lower bound by analyzing
the observed number of sequences at mutation counts between
one and five. If the number of sequences at any of these counts
was found to be a statistical outlier (i.e., higher than expected;
see Methods), then the lower bound of the regression was set to
be the count at the smallest such outlier. The range of one to five
was chosen because 88% of known IGHV alleles are related to
another allele that is less than six nucleotides away (Fig. 4), and
we thus expect that most novel alleles will be similarly related to
at least one known allele. Additionally, the 16 new IGHV alleles
discovered in a study of Papua New Guineans differed by at most
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four nucleotides from known alleles (20). The regression also
used an upper bound of 10 for the mutation count, because ac-
cumulation patterns deviate from linear after this point, and
outliers at mutation counts greater than five were not considered
so that the regression would have sufficient data. Overall, the
proposed method was designed to detect polymorphisms in novel
alleles that are related to known alleles by five or fewer nucle-
otide changes, which we expect will constitute nearly 90% of
novel alleles, as seen in Fig. 4.
To construct the novel IGHV alleles implied by the individual

polymorphisms identified in the regression-based approach, po-
tential germline versions of the novel allele were generated by
introducing every combination of polymorphisms into the best-
aligning germline allele. The entire dataset was then searched to
identify perfect matches for each of the proposed novel alleles.
To rule out the possibility that the observed pattern was caused
by a large clonal expansion, only novel alleles for which the most
prominent J gene-junction length combination accounted for
15% or less of these perfect-match sequences were retained. An
example of these steps (y-intercept detection, mutated-to nu-
cleotide frequency, and J gene/junction length distribution) for
a given position in a given allele can be seen in Fig. S3, in ad-
dition to the nucleotide sequence of a proposed novel allele.
Once the set of novel IGHV alleles were determined, the

initial V(D)J assignments provided by IMGT/HighV-QUEST for
each sequence were re-evaluated to test if one of the novel
alleles provided a better alignment. If one of the novel alleles
had a Hamming distance lower than the existing germline V
assignment, then the existing assignment was replaced by the
novel allele with the minimum distance. In the case of ties, all of
the alleles were included in the assignment.

Automated Method Detects Novel IGHV Alleles from Experimental
Samples. Eleven putative novel alleles (Table 2) were identified
by applying the regression-based approach and filtering (de-
scribed above) to the Ig sequencing data from seven subjects
listed in Table 1. These alleles were missing from the IMGT
database, and were also not present in VBASE2 (22) or the
UNSWIg human heavy chain repertoire (23). Excluded from

Table 2 are six alleles that were sequencing artifacts (further
discussed in SI Text), and which were eventually removed by the
genotyping process described later. Of the novel alleles listed in
Table 2, nine differed by a single position from the nearest
known allele, one allele differed by two positions, and another by
three positions. Interestingly, every subject examined contained
at least one novel IGHV allele, suggesting that existing germline
segment databases are largely incomplete, as previously sus-
pected (19–21).
Several observations in the data support the validity of these

predicted novel alleles. First, in all cases, hundreds of unique
sequences (i.e., differing by CDR3 or J segment) carrying an
unmutated form of the novel IGHV allele were observed (Table
2). Second, for the subject where data were available from multiple
sequencing platforms (PGP1), the same set of novel alleles was
predicted in both platforms. In this comparison, it is important to
note that one of the novel alleles could not be detected in the
MiSeq data because the position required to differentiate it from
IGHV2-70*11 (IMGT position 2) was part of the V primer used for
amplification (and thus masked by pRESTO). Third, the novel
allele which differs from IGHV1-2*02 at position 163 was discov-
ered independently in three subjects (hu420143, M4, and M5).
Subject M5 appears to be homozygous for the novel allele, whereas
subjects hu420143 and M4 appear to be heterozygous (Table S1).
Finally, four of the predicted novel alleles (numbered 3, 4, 9, and
11 in Table 2) were subsequently added to the IMGT database
after our analysis was complete (as IGHV1-18*04, IGHV3-11*05,
IGHV3-64D*06, and IGHV3-9*03, respectively). The addition of
these alleles to the IMGT database was the result of genomic DNA
sequenced as a part of two studies unrelated to our own (20, 21).
Taken together, these features strongly suggest that the sequence
predictions made by TIgGER represent true novel alleles.

IGHV Alleles Are Detected with High Sensitivity. Performance was
quantified by removing known alleles from the IMGT germline
database, and testing whether our method could recover the
“novel” allele. Only alleles assigned to at least 500 Ig sequences,
and for which our method did not predict a novel allele in
the full dataset, were included in the analysis. Additionally, we

Table 2. Novel IGHV alleles identified by TIgGER

No. Nearest allele Polymorphic site(s) Subject(s) Technology Perfect matches

1† 1-2*02 T163C hu420143 454 629
M5 MiSeq 736
M4 MiSeq 283

2 1-8*02 G234T PGP1 454 647
PGP1 MiSeq 453

3 1-18*01 T111C M2 MiSeq 1560
4 3-11*03 T13G 420IV 454 866
5 3-11*03 C300T M2 MiSeq 101
6 3-20*01 C307T PGP1 454 187

PGP1 MiSeq 85
7 1-69*06 C191T M3 MiSeq 284
8†† 2-70*01 T164G PGP1 454 220
9 3-64*05 A210C, G265C M2 MiSeq 251
10 3-43*01 A112G, C222T, A286G 420IV 454 192
11 3-9*01 C296T PGP1 454 128

PGP1 MiSeq 202

Inferred novel alleles are listed in order of prevalence. For each novel allele, the nearest IGHV allele from
IMGT is listed, along with the sites that differ between the two. (The first letter represents the database
nucleotide, the number is the IMGT-numbered nucleotide position, and the second letter represents the novel
allele’s nucleotide at that position). Allele 8 could not be detected in the PGP1 MiSeq data as the allele-differ-
entiating position is in the primer area. Excluded from this table are six alleles that were predicted by TIgGER but
are believed to be artifacts (see SI Text for further discussion).
†The same sequence is observed if the polymorphic site T299C is introduced into IGHV1-2*05.
††The same sequence is observed if the polymorphic site G2A is introduced into IGHV2-70*11.
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ensured that the next-best aligning germline did not differ from
the initial alignment beyond the third framework (structural) re-
gion of the Ig. This analysis was carried out using the 454 datasets,
as in some cases the primer positions for the MiSeq data overlap
with the start of the V sequence and prevent accurate germline
identification. As shown in Fig. 5, novel alleles with a single
polymorphism were detected with 95% sensitivity, as were novel
alleles with up to five polymorphisms. Most novel alleles are
expected to be found in this range (Fig. 4), and no novel alleles
with more than five polymorphisms were detected, as expected
based on the design of the method. For the three subjects analyzed
(hu420143, PGP1, and 420IV) the false-discovery rate (new alleles
called incorrectly divided by all new alleles called) was zero. Thus,
the proposed method exhibited excellent performance, and should
be effective at identifying most novel alleles.

Novel IGHV Alleles Appear at High Frequency. Although IGHV
genes can be duplicated in some subjects, with IGHV1-69 being
a frequent example (as reviewed in ref. 5), it is expected that
each subject carries either one or two alleles of most genes.
However, IMGT/HighV-QUEST assigned an average of 4.3
alleles per gene across the three subjects sequenced by 454, as
shown in Table 1. Thus, many of these initial V allele assign-
ments are likely to be incorrect. This problem results in part from
the difficulty in identifying the specific allele for highly mutated
sequences, and IMGT/HighV-QUEST often assigns multiple
potential alleles in such cases. Indeed, 13–21% of sequences
were assigned multiple alleles in the three subjects sequenced by
454, as shown in Table 1. We propose that many of these
assignments could be corrected by analyzing the global repertoire
properties of each subject to identify a subject-specific genotype
(i.e., the set of IGHV alleles carried by the subject), which could
then be used to constrain the potential allele assignments. Im-
proved IGHV assignments would allow us to better determine the
prevalence of novel alleles in the population.
Existing approaches for inferring Ig genotypes are based on

identifying the set of alleles that appear above a specified fre-
quency (6, 19). This frequency is calculated using the set of
unmutated sequences, as existing V(D)J segment identifica-
tion tools are most accurate at identifying and aligning these

sequences to their germline sequences (2). Indeed, we found that
limiting our calculation to unmutated sequences led to average
numbers of alleles per gene of 2.0 across the 454 datasets. A key
issue is how to determine the appropriate frequency for inclusion
in the genotype. Using the set of IGHV genes that were observed
in more than 0.01% of sequences, we found that even a very low
allele frequency cut-off (6.25%, or 1 of 16, of unmutated
sequences assigned to the IGHV gene) reduced the total number
of alleles per subject from 80 to 55 (Fig. 6). The allele count
continued to decrease as this threshold for inclusion was in-
creased, but appeared to stabilize between minimum frequencies
of inclusion of 6.25% and 12.5%, at which point there was an
average of 1.3 alleles per IGHV gene (Fig. 6). Based on this
observation, we defined the subject-specific genotype to include
all alleles whose frequency was 12.5% or higher. Application of
this approach to the seven subjects in Table 1 found that each
subject had a unique genotype, a result similar to that found in
ref. 6. Most (63%) IGHV genes were homozygous, and dupli-
cations of IGHV1-69 or IGHV2-70 were found in three cases
(Table S1). Duplications of these genes have also been observed
in other studies (21). Significantly, 11 of the novel alleles
appeared in the final subject-specific genotypes. Collectively, the
genotypes contained 82 unique IGHV alleles, 11 of which (13%)
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were novel alleles. This high frequency of novel alleles suggests
that current germline databases are incomplete, and that many
more IGHV alleles remain to be discovered.

Subject-Specific Genotype Improves Allele Assignments.On average,
19% of Ig sequences included IMGT/HighV-QUEST assign-
ments to V segments that were not included in the subject-spe-
cific genotype. Moreover, in 4% of sequences, none of the V
assignments were included in the genotype. Among the latter,
virtually all (93%) of the sequences were mutated, and they
tended to carry a higher mutation load (Fig. S4). These se-
quences also tended to be assigned to multiple V segments,
reflecting the difficulty in choosing the V segment. Thus, these
initial assignments provided by existing germline determination
software are likely to be incorrect. To address this problem, we
reassigned these sequences to the best matching segment that
was included in the subject-specific genotype. By removing V
assignments not in the personalized germline database, the
number of Ig sequences assigned to multiple IGHV alleles was
reduced by 92% (Fig. 7, Upper). In addition, the number of low-
confidence assignments was reduced by a similar amount (90%)
(Fig. 7, Lower). This rereassignment was most likely to impact
sequences that were closely related to multiple germline seg-
ments (Fig. S5), and the rate was consistent with the previously
estimated error rate for allele assignment methods (∼5%) (2).
Following these personalized allele assignments, an average of
4,835 sequences per dataset (∼3%; range 1,316–14,389, or about
1–5%) were assigned to novel alleles. Overall, this process pro-
duced high-quality assignments for 98% of sequences.

Discussion
Adaptive immune responses are a critical component of the
human defense against infection, but overactivation can also lead
to pathology. Genetic polymorphisms in immune-related genes
have been implicated in several diseases, including SLE, MS, and
RA (31–33). The MHC locus is highly polymorphic, and is often

one of the strongest signals in genome wide association studies
(34). Subjects also differ greatly in the set of V(D)J segment
alleles that they carry (6, 19, 21) and some V segment alleles
have been associated with disease (including SLE, MS, RA, and
type 1 diabetes, as summarized in ref. 5). Along with the un-
derlying genetics of the Ig locus, properties of the expressed
B-cell Ig repertoire, such as diversity, have been associated with
disease and clinical status (5–10). A critical step in identifying
these linkages is the accurate determination of the set of germline
V(D)J segment alleles carried by a subject.
We have created TIgGER, an automated method for identify-

ing novel Ig V segment alleles based on the analysis of mutation
patterns in Rep-Seq data. Existing methods for Ig polymorphism
detection are based on the identification of positions that are
perceived as mutated in an overwhelming number of sequences
(19). Although such approaches may detect novel alleles that are
homozygous, polymorphisms in heterozygous alleles can easily be
missed. Despite the simplicity of these approaches, few existing
Rep-Seq studies include any kind of novel allele detection step in
their analysis pipeline. These studies implicitly assume that the
germline allele databases used for V(D)J assignment (most often
IMGT) are complete. Our results clearly show that this assump-
tion is faulty, and many subjects are likely to carry novel V seg-
ment alleles. Of the seven subjects analyzed in this study, all
carried at least one novel V segment allele. In fact, these novel
IGHV alleles accounted for 13% of the unique alleles determined
to be in the genotypes of those subjects. Although the ethnicity of
most of the subjects was unknown, PGP1 and hu420143 represent
subjects of European ancestry; thus, it appears that novel alleles
exist even among the most-studied ethnic group. Clearly, we have
just begun to identify the extent of V(D)J segment diversity in
the human population, and polymorphism detection should be
a standard part of Rep-Seq analysis pipelines.
During the course of this study, four of the novel alleles

detected by TIgGER were added to the IMGT database as
a result of two independent studies, which identified these alleles
from DNA (20, 21). IMGT will not include the additional seven
novel V segment alleles identified by TIgGER because they do
not meet the current requirement that new alleles must have
been amplified from the genomic germline region and include
the full sequence. Given the large number of Rep-Seq studies
being carried out on mRNA, these strict requirements mean that
many novel alleles will not be represented in IMGT. This rep-
resents a significant challenge for Rep-Seq analysis with clinical
implications (24), which could be avoided by adopting a classifi-
cation system to indicate alleles with varying levels of underlying
evidence, similar to what has been proposed (23). We are cur-
rently working to submit the novel alleles predicted by TIgGER
to the UNSWIg human heavy chain repertoire (23), and they will
also be hosted on our website (clip.med.yale.edu/tigger).
Along with identifying novel alleles carried by a subject, the

accuracy of Rep-Seq analysis depends on determining which
alleles are not carried by a subject. Existing V(D)J segment as-
signment tools, such as IMGT/HighV-QUEST (15), SoDA2
(2), iHMMune-Align (16), and IgBLAST (17), operate on a
sequence-by-sequence basis. A consequence of this approach is
that many different alleles for each gene can be assigned in
a single subject. Indeed, in the seven subjects analyzed in this study,
an average of 4.4 V segment alleles per gene was assigned by
IMGT/HighV-QUEST. Because most genes are expected to be
present at single copy, this average should be well below two for
most subjects. To correct these allele assignments, we inferred each
subject’s IGHV genotype based on a simple threshold frequency
for inclusion. This personalized database was then used to reassign
alleles. This approach had two important consequences. First, Ig
sequences that were assigned to V segments not included in the
genotype could be reassigned to a V segment in the genotype. We
also found that most Ig sequences that were initially assigned to
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multiple alleles by IMGT/HighV-QUEST were reassigned to
a single allele. Indeed, using this method we were able to confi-
dently reassign single alleles to 92% of sequences with multi-
ple allele assignments, and the ∼4% of sequences whose allele
assignments were not in the inferred genotype was reduced to
∼0.5%. Ideally, the same method used to generate the initial V(D)J
assignments would be applied to carry out the reassignment pro-
cess using the personalized germline database. Unfortunately,
IMGT/HighV-QUEST does not currently allow for the use of a
custom germline database.
In designing Rep-Seq analysis pipelines, it is important to

carefully consider the order of the analysis steps. We have de-
termined that detection of polymorphisms must be done before
genotype inference. If the order of these steps is reversed, no
unmutated Ig sequences assigned to novel alleles will be found
(and thus the allele will be wrongfully excluded from the geno-
type). However, carrying out polymorphism detection first leads to
many sequences with multiple germline allele assignments during
this step. Such sequences cannot be excluded from the analysis. If
sequences with multiple allele assignments are excluded, the ap-
proach will be unable to detect polymorphic nucleotides in posi-
tions that differentiate known alleles. TIgGER identified just such
a case. Ig sequences using the novel allele IGHV1-2*02_T163C
were initially assigned to both IGHV1-2*02 and IGHV1-2*05 by
IMGT/HighV-QUEST. These two known alleles differ from each
other in two positions, and the novel allele differs from each of the
known alleles by one position.
TIgGER has high sensitivity for identifying novel IGHV alleles

that differ from known alleles by five or fewer single nucleotide
polymorphisms. Because most known IGHV alleles are within five
mutations of another known allele, this approach should detect
most novel alleles. However, ∼10% of known alleles are six or
more nucleotides from their closest known allele. Thus, it will be
important to develop methods that can find more distantly related
novel alleles. Alleles that differ by insertions or deletions are also
not addressed by TIgGER. The sensitivity of TIgGER is de-
pendent on having a large number of sequences with relatively low
mutation frequency (≤10 mutations per sequence); although this is
reasonable for many studies, it would not be the case for studies
that focus only on mature, highly mutated populations. In such
cases, one option is to include a collection of less mutated
“background” populations as part of the experimental design.
Alternatively (or additionally), other methods might also be de-
veloped to work on these highly mutated subsets. Although we
have focused on applying TIgGER to IGHV allele detection, this
approach should also be applicable to allele detection of any other
Ig gene segment. Once TIgGER has identified novel alleles, the
V(D)J segments of all sequences are reassigned in case they use one
of these new segments. Whereas any of the existing V(D)J assign-
ment approaches can be used for this task (2, 15–17), this study used
a method based on simple Hamming distance because the imple-
mentation of current V(D)J assignment methods does not allow for
easy incorporation of a modified germline database. It should be
straightforward to extend these methods for future analysis.
TIgGER identified 11 novel IGHV alleles in just seven

subjects using moderately deep Rep-Seq data. The fact that so
many novel alleles were identified in so few subjects implies
that existing gene segment allele databases are substantially in-
complete, and much remains to be discovered about these highly
polymorphic genes. We expect that applying TIgGER to Rep-Seq
data from other subjects will identify additional novel alleles, and
germline segment databases will enter a phase of rapid expansion.
We strongly recommend that Rep-Seq studies include poly-
morphism detection as part of their standard analysis pipeline.

Methods
Data Collection and Preprocessing. Samples coincide with those used by
a previous study (25), and were originally collected and sequenced as part of
two other studies (28, 29). Sequencing results were preprocessed to remove
low-quality reads, annotate and mask primers, assemble paired-end reads,
and remove duplicate sequences using the Repertoire Sequencing Toolkit
(pRESTO) (30) (clip.med.yale.edu/presto) as previously described (25).
Sequences were then assigned to germline IGHV gene segment alleles,
based on alignments to a database of known IGHV alleles, using IMGT/
HighV-QUEST (27). The 454 datasets were analyzed with IMGT/HighV-QUEST
in January 2012; the MiSeq datasets from subjects M2, M3, M4, and M5
in February 2013; and the MiSeq data from PGP1 in September 2013.
The alignment-based nucleotide numbering scheme of IMGT was used
throughout the analyses (18). Finally, when sequences were grouped by V
allele assignment for analysis, all sequences assigned to multiple alleles
by IMGT/HighV-QUEST were considered as part of each allele group in-
dependently. For example, a single sequence assigned to both IGHV1-2*02
and IGHV1-2*05 was included in the analysis of sequences aligning to
IGHV1-2*02 as well as the analysis of sequences aligning to IGHV1-2*05.

Simulation of Polymorphic Sequences. Using the experimental data from
subject hu420143, Sm was defined as the number of sequences with an IGHV
mutation count of m. For each m ∈ {0,1,. . .,10}, simulations were used to
generate Sm sequences, each carrying m mutations, based on the method
described in previous work (35) with the “S5F” SHM targeting and substitution
models (25). To investigate the mutation pattern in a homozygous poly-
morphic allele, the starting sequence for the simulations was a novel allele
(IGHV1-2*02_T163C) that was created by introducing a single nucleotide
substitution (T→ C at position 163) into a known germline IGHV gene segment
(IGHV1-2*02). Next, 1,887 simulated sequences were randomly selected with-
out replacement to match the total number of sequences aligning to IGHV1-2
with m ≤ 10 in subject hu420143. To investigate the mutation pattern in
a heterozygous gene consisting of one known allele and one polymorphic
allele, an additional set of Sm sequences was generated for m ∈ {0,1,. . .,10}
using IGHV1-2*02 as the starting sequence for the simulation. Then, 1,887
sequences were randomly selected without replacement from the combined
IGHV1-2*02 and IGHV1-2*02_T163C simulations to match the total number of
sequences aligning to IGHV1-2withm ≤ 10 in subject hu420143. This sampling
scheme assumed that the known and polymorphic alleles are expressed at
equal frequency. For both the homozygous and heterozygous cases, the lo-
cation of mutations was determined by comparing the simulated sequences
with the known germline (IGHV1-2*02).

Polymorphism Detection Method. For each IMGT-numbered position in each
germline IGHV allele, polymorphisms were detected by regressing the mu-
tation frequency at the specific position against the mutation count of the
entire V segment. Specifically, all sequences assigned to a given germline
allele were first binned into groups based on the number of mutations per
sequence (1, 2, 3, . . ., 10), and the mutation frequency (number of times
mutated/number of times sequenced) of each position was calculated for
each bin. A linear model was then fit to these mutation frequencies versus
the number of mutations per sequence using a least-squares objective
function. Nucleotide positions with y-intercepts above 0.125 (as determined
by a Student’s t test with P < 0.05) were considered potentially polymorphic.
The specific polymorphism was defined by the most commonly mutated-to
nucleotide at that position. To account for alleles that might contain mul-
tiple polymorphic positions, the range of mutations per sequence to be in-
cluded was determined by testing each bin to see whether the number of
sequences included in the bins carrying two, three, four, or five mutations
per sequence was an outlier (i.e., more than 1.5-times the interquartile
range greater than the third quartile of the number of sequences in the bins
carrying between 1 and 10 mutations). If any such bin was found to be
a significant outlier, then all bins with fewer IGHV mutations per sequence
were excluded from the regression.
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