Table 1.
Link prediction accuracy measured by precision on the 10 real networks
Precision | Jazz | Metabolic | Neural | USAir | Food web | Hamster | NetSci | Yeast | Router | |
SPM | 0.677 | 0.354 | 0.168 | 0.451 | 0.561 | 0.469 | 0.334 | 0.166 | 0.158 | 0.357 |
CN | 0.506 | 0.137 | 0.095 | 0.374 | 0.073 | 0.061 | 0.329 | 0.109 | 0.149 | 0.027 |
AA | 0.525 | 0.190 | 0.105 | 0.394 | 0.075 | 0.061 | 0.334 | 0.121 | 0.150 | 0.026 |
RA | 0.541 | 0.267 | 0.104 | 0.455 | 0.076 | 0.054 | 0.541 | 0.090 | 0.148 | 0.027 |
Katz | 0.546 | 0.147 | 0.107 | 0.379 | 0.181 | 0.108 | 0.370 | 0.061 | 0.149 | 0.120 |
HSM | 0.326 | 0.100 | 0.073 | 0.216 | 0.249 | 0.202 | 0.303 | 0.081 | 0.134 | 0.309 |
SBM | 0.410 | 0.197 | 0.143 | 0.335 | 0.460 | 0.275 | 0.177 | 0.122 | 0.094 | 0.176 |
We compare our method, SPM, to six well-known methods presented in Materials and Methods. For each real network, 10% of its links will be randomly selected to constitute the probe set, and the rest of the links constitute the training set. Prediction accuracy is measured by precision. We set for SPM. For the parameter-dependent Katz index, the present results correspond to the optimal parameter subject to the highest precision. The highest value for each network is in boldface.