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Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to
the nucleus and is associated with suppression of innate and adap-
tive immunity. Here we demonstrate an extracellular function of the
IL-37 precursor and a processed form. Recombinant IL-37 precursor
reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory
human blood-derived M1 differentiated macrophages derived from
selective subjects but not M2 macrophages. In contrast, a neutraliz-
ingmonoclonal anti–IL-37 increased LPS-induced IL-6, TNFα and IL-1β
(P < 0.01). The suppression by IL-37 was consistently observed at
low picomolar but not nanomolar concentrations. Whereas LPS in-
duced a 12-fold increase in TNFα mRNA, IL-37 pretreatment de-
creased the expression to only 3-fold over background (P < 0.01).
Mechanistically, LPS-induced p38 and pERK were reduced by IL-37.
Recombinant IL-37 bound to the immobilized ligand binding
α-chain of the IL-18 receptor as well as to the decoy receptor
IL-1R8. In M1 macrophages, LPS increased the surface expression
of IL-1R8. Compared with human blood monocytes, resting M1 cells
express more surface IL-1R8 as well as total IL-1R8; there was
a 16-fold increase in IL-1R8 mRNA levels when pretreated with
IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50–55% in mouse
bone marrow-derived dendritic cells, but not in dendritic cells derived
from IL-1R8–deficient mice. In mice subjected to systemic LPS-
induced inflammation, pretreatment with IL-37 reduced circulating
and organ cytokine levels. Thus, in addition to a nuclear function,
IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor
but using the IL-1R8 for its anti-inflammatory properties.
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IL-37, previously known as IL-1 family member 7, broadly
reduces innate inflammation as well as acquired immune

responses (1). In human peripheral blood mononuclear cells
(PBMCs), a knockdown of endogenous IL-37 results in increased
production of LPS- as well as IL-1β–induced cytokines (2). Mice
transgenic for full-length human IL-37 (IL-37tg) are protected
against LPS-induced systemic inflammation (2), chemical colitis
(3), metabolic syndrome (4), and acute myocardial infarction (5).
IL-37tg mice also have suppressed immune responses following
challenge by specific antigen (6). We believe that full-length IL-37
expressed in the transgenic mice is processed extracellularly.
In mouse macrophages stably transfected with human IL-37,

∼20% of IL-37 translocates to the nucleus (7), which is associated
with decreased cytokine production (2, 7). However, in the pres-
ence of a caspase-1 inhibitor, there is no translocation to the
nucleus and no reduction in LPS-induced cytokines (7). Mutation
of aspartic acid at the caspase-1 cleavage position 20 to alanine
also results in failure to translocate to the nucleus and loss of the
suppression of cytokine production (8). Thus, as with IL-1α and
IL-33, IL-37 is the third member of the IL-1 family that trans-
locates to the nucleus and affects cellular responses. Nevertheless,
it remains unclear whether the reduction in cytokines in vitro or in
vivo is due solely to nuclear translocation of IL-37.

Support for an extracellular function for IL-37 comes from early
studies reported over 10 y ago that demonstrated binding of IL-37
to the α-chain of IL-18 receptor (IL-18Rα). We therefore hy-
pothesized that extracellular IL-37 can function through the
IL-18Rα surface receptor to mediate its anti-inflammatory
effects but that a negative or decoy receptor would be required.
The candidate decoy receptor would likely be IL-1R8 [formerly,
single IgG IL-1–related receptor (SIGIRR)] because, similar to
IL-18BP, IL-1R8 has only a single Ig domain and is known for
providing a brake on inflammation (9). In the present study, we
have characterized the function of full-length recombinant IL-37b
in inhibiting inflammation in vitro and in vivo and the role of
IL-1R8.

Results
Recombinant IL-37 Suppresses LPS-Induced IL-1β, IL-6, and TNFα in M1
Differentiated Human Blood Macrophages. As shown in Fig. S1A,
the precursor form of IL-37b was expressed in Escherichia coli
and purified to homogeneity. The initial studies examined
whether pretreatment with recombinant IL-37b reduces LPS-
induced cytokines in PBMCs, an observation based on the re-
duction in plasma cytokines observed in mice transgenic for
IL-37 following LPS challenge (2). Only a modest but consistent
reduction (10–15%) was observed (Fig. S1B). We next differ-
entiated adherent cells in the PBMC preparations into M1 and
M2 macrophages and dendritic cells (DCs) and, after 5 d,
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pretreated the cells for 2 h with IL-37 and then challenged the
cultures with LPS. As shown in Fig. 1A, LPS-induced IL-6 pro-
duction decreased by 35% in M1 macrophages but not in M2
differentiated cells (Fig. S1C) nor in dendritic cells (Fig. S1D).
Donor variation was observed, but in a subgroup of 35 responsive
donors IL-6 decreased to 51% (Fig. 1B). As shown, maximal
reduction in IL-1β, IL-6, and TNFα took place at picomolar
concentrations of the IL-37 precursor. We also tested the
recombinant IL-37a isoform (Lys27-Asp192) in the same cul-
tures; we observed that the recombinant IL-37a isoform func-
tions in a pattern similar to that of the IL-37b precursor (Fig.
1C). The recombinant IL-37b precursor and the recombinant
IL-37a isoform share exons 4–6.

Recombinant IL-37 Inhibits p38 MAPK Activation in Response to LPS in
M1 Macrophages. To examine changes in intracellular kinases that
may be modulated by recombinant IL-37, we treated M1 dif-
ferentiated macrophages with recombinant IL-37b precursor
followed by LPS and assessed the lysates in a phospho-kinase
array. As shown in Fig. S2, exposure to LPS increased the p38
MAPK phosphorylation to ninefold over nonstimulated cells.
However, in IL-37–pretreated cells, the increase was markedly
reduced to twofold. We then further confirmed the findings us-
ing individual immunoblotting for specific p-P38, p-ERK, and
p-JNK kinases (Fig. 1D). Consistently, LPS-induced p38, ERK,
and JNK phosphorylations were reduced by recombinant IL-37b
in the M1 cells.

Effects of Recombinant IL-37 in Mice Subjected to Endotoxemia. We
next assessed the effect of recombinant IL-37b injected into mice
1 h before LPS challenge. A 1-h IL-37 pretreatment was effective
in other models of inflammation (10, 11). As shown in Fig. 2A,
IL-37b pretreatment protected the mice from endotoxin-induced
weight loss and hypothermia. Plasma IL-1β and IL-6 were also
reduced 24 h after LPS (Fig. 2B). We next examined IL-6 levels
in whole-organ homogenates at 24 h. In the spleen, IL-6 was
reduced by 26%, in the liver by 44%, and in the lungs by 27%
(Fig. 2C). Using a lower dose of LPS, after 4 h IL-6 content in
the spleen decreased by 42%, in the liver by 26%, and in the lung
by 38% (Fig. 2D). Plasma TNFα levels were also measured after
4 h; there was a 32% decrease in circulating TNFα (P < 0.05) and
a 26% decrease in plasma IL-6 (Fig. S3A). TNFα content in the
spleen was reduced by 32% (P < 0.01) and in the lung by 23%
(P = 0.01) but not in the liver.
In addition to these studies using the recombinant precursor

form of IL-37, we examined IL-37b with an N terminus at amino
acid 46 as determined by Edman degradation of cells transfected
with full-length IL-37b (12). Mice received three i.p. injections
24, 16, and 1 h before LPS. After 24 h, plasma IL-6 as well as
spontaneous ex vivo levels of IL-6 from cultured whole blood was
determined. As shown in Fig. S4A, mean plasma levels decreased
from 4,000 pg/mL in vehicle-treated mice to 1,000 pg/mL.
Whole-blood IL-6 production fell from 5,500 pg/million white
blood cells to 1,000 pg/million white blood cells (Fig. S4B). IL-6
production from the number of cells infiltrating the peritoneal
cavity decreased by 60% (P = 0.07) (Fig. S4A).

Recombinant IL-37 Binds to Immobilized IL-18R and the Extracellular
Domain of IL-1R8. Although previous studies reported that IL-37
binds to IL-18Rα, no study provided evidence that IL-37 acts as
a receptor antagonist for IL-18 (12–14). We confirmed that the
recombinant IL-37 precursor binds to immobilized IL-18Rα Fc
(Fig. 3A). However, we hypothesized that, upon binding to the
IL-18Rα chain, IL-37 does not recruit the IL-18Rβ chain because
IL-37 reduces inflammation. Instead, IL-37 would have to recruit
a coreceptor that possessed anti-inflammatory properties such as
IL-1R8 (15, 16). As shown in Fig. 3 A and B, recombinant IL-37
binds also to IL-1R8.

IL-1R8 deficiency reverses the anti-inflammatory effects of
recombinant IL-37. To define a functional role of IL-1R8 for
IL-37, we examined the effect of recombinant IL-37 in bone
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Fig. 1. Recombinant IL-37 inhibits LPS-induced proinflammatory cytokine
production and MAPK activation in granulocyte-macrophage colony-stimulat-
ing factor (GM-CSF)–differentiated human M1 macrophages. (A) Mean ± SEM
percentage change of LPS-induced cytokine production from GM-CSF–differ-
entiated human M1 macrophages incubated with decreasing concentrations
of recombinant IL-37b precursor (n = 51). (B) Mean ± SEM percentage change
of LPS-induced cytokine production in M1 macrophages from consistent res-
ponders (derived from data shown in A) (n = 35, except for 0.01 ng/mL where
n = 6). ***P < 0.001, **P < 0.01, and *P < 0.05, compared with LPS alone.
(C) Mean ± SEM percentage change IL-6 from M1 macrophages incubated with
recombinant IL-37a, compared with IL-37b (n = 6). ***P < 0.001 and **P < 0.01,
compared with LPS alone. (D) IL-37b inhibits LPS-induced MAPK activation in
human M1 macrophages. The cells were stimulated with or without 10 ng/mL
LPS for 30 min. Cells of lane 3 and lane 4 of the blots are pretreated with 0.1
ng/mL IL-37 for 2 h. Representative of three independent experiments.

2498 | www.pnas.org/cgi/doi/10.1073/pnas.1424626112 Li et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424626112/-/DCSupplemental/pnas.201424626SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424626112/-/DCSupplemental/pnas.201424626SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424626112/-/DCSupplemental/pnas.201424626SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424626112/-/DCSupplemental/pnas.201424626SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424626112/-/DCSupplemental/pnas.201424626SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424626112/-/DCSupplemental/pnas.201424626SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1424626112/-/DCSupplemental/pnas.201424626SI.pdf?targetid=nameddest=SF4
www.pnas.org/cgi/doi/10.1073/pnas.1424626112


marrow-derived dendritic cells (BMDCs) from the IL-1R8–
deficient mice. Mouse DCs but not macrophages express IL-1R8,
and their responsiveness to LPS is increased when IL-1R8 is
absent (16, 17). Similar to the responses in human M1 cells,
IL-37 pretreatment reduced LPS-induced TNFα in BMDCs from
wild-type (WT) mice by 52% (Fig. 3C, Upper, P < 0.001); IL-6
was similarly reduced (Fig. 3C, Lower) by 51% (P < 0.001).
However, these reductions did not occur in BMDCs derived
from IL-1R8–deficient mice (Fig. 3C). We also observed a sig-
nificant reduction of LPS-induced IL-1β mRNA synthesis
by recombinant IL-37 precursor at 1 ng/mL in WT BMDCs
(Fig. S5).
LPS triggering of TLR4 leads to downstream MAPK activa-

tion and JNK phosphorylation but is enhanced and prolonged in
IL-1R8–deficient cells (15). Next, we compared LPS-induced
MAPK activation in BMDCs from both WT and IL-1R8–
deficient mice. Consistent with the reduction in cytokine pro-
duction, the ability of recombinant IL-37 to reduce LPS-induced
MAPK activation was also reversed in the BMDCs from IL-1R8–
deficient mice (Fig. 3D). These data reveal that IL-1R8 has a
functional role in the anti-inflammatory properties of IL-37.

IL-1R8 Is Abundantly Expressed in M1 Macrophages and Increases Its
Cell-Surface Localization in Response to LPS. We next measured
surface expression of IL-1R8 in both resting and LPS-stimulated
cells. In resting PBMCs, few CD14+ monocytes express IL-1R8
(Fig. 4A, Upper Left) and nor do CD68+ macrophages or CD3+
lymphocytes (Fig. S6). However, following LPS stimulation,
there is significantly greater surface IL-1R8 (Fig. 4A, Upper
Right), whereas the intracellular levels of IL-1R8 remain un-
changed (Fig. 4A, Lower Left and Lower Right). In M1 cells, we
observed greater numbers of IL-1R8–positive CD14+ macro-
phages than in freshly obtained PBMCs (Fig. 4B, Upper Left).
LPS stimulation increased IL-1R8 surface expression (Fig. 4B,
Upper Right), but total intracellular IL-1R8 remained unchanged
(Fig. 4B, Lower panels). The mean percentage change in surface
and intracellular IL-1R8 in PBMC, M1, and M2 macrophages is

summarized in Fig. 4 C and D. Overall, CD14+ M1 cells have
greater IL-1R8 surface expression compared with resting
PBMCs and show a robust increase of surface IL-1R8 level with
LPS (mean change 8–30%, Fig. 4C). IL-1R8 surface expression
on CD14+ M2 cells is nearly unchanged (Fig. 4C).

IL-37–Related Gene Expressions in PBMCs and M1 Macrophages.
Consistent with flow cytometry data, we detected high levels of
IL-1R8 mRNA in M1 cells compared with PBMCs (Fig. 5A).
Moreover, we found that both IL-18Rα and IL-1R8 mRNA
levels increase with LPS stimulation (Fig. 5B), although the in-
crease in IL-18Rα is modest. TNFα gene expression is also in-
creased in M1 cells following LPS (Fig. 5B). At picomolar levels
of IL-37, we observed a marked increase in IL-37–pretreated
LPS-induced steady-state mRNA levels of IL-1R8 (Fig. 5B,
Middle) but also a marked reduction in gene expression for
TNFα. mRNA levels of IL-18Rα were similar for LPS as well as
LPS plus IL-37 (Fig. 5B).

Neutralization of Endogenous IL-37 in LPS-Stimulated PBMCs Results
in an Increase of Inflammatory Cytokine Production. Studies with
siRNA knockdown indicated a suppressive role for endogenous
IL-37 in PBMCs (2). However, it remains unclear to what extent
nuclear translocation of IL-37 accounted for the increase in
cytokines with the knockdown of total endogenous IL-37 or
whether the IL-37 precursor in the extracellular compartment
affected the observation. We thus added a neutralizing mono-
clonal anti–IL-37 to freshly obtained PBMCs to prevent the ex-
tracellular function of endogenous IL-37. As shown in Fig. 6,
anti–IL-37 increased IL-1β. This increase in LPS-induced cyto-
kine production was compared with the control IgG treatment
(Fig. 6). IL-6 increased more than 2.0-fold. TNFα increased
1.6-fold and IL-1β increased 1.6-fold.

Discussion
Although IL-37b translocates to the nucleus following LPS ac-
tivation and is associated with decreased cytokine production

Fig. 2. Effects of recombinant IL-37 on endotoxin-induced weight loss, hypothermia, and proinflammatory cytokine production. (A) Mean ± SEM percentage
change in weight loss (Left) and temperature (Right) in mice pretreated with either vehicle or 1 μg IL-37b precursor 24 h before the intraperitoneal ad-
ministration of 10 mg/kg of LPS to the mice (n = 8 in each group). (B) Mean ± SEM percentage change of plasma IL-1β and IL-6 levels in mice pretreated 24 h
before the intraperitoneal administration of 10 mg/kg of LPS to the mice (n = 3 groups). (C) Mean ± SEM percentage change of IL-6 level in organ lysates of
mice pretreated with 1 μg of IL-37b 24 h before the intraperitoneal administration of 10 mg/kg of LPS to the mice (n = 3 groups). (D) Mean ± SEM percentage
change of IL-6 level in organ lysates of mice pretreated with either vehicle or 1 μg IL-37b 2 h before the intraperitoneal administration of 2.5 mg/kg of LPS to
the mice (n = 3 groups, 9 mice in total).
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(7), we sought to demonstrate an extracellular role for IL-37. We
used two methods: first, we assessed the activities of recombinant
IL-37 added to cells in vitro or injected into mice challenged with
LPS. Second, we used a neutralizing antibody to IL-37 to prevent
the effects of endogenous extracellular IL-37. Both methods
revealed that IL-37 functions extracellularly to suppress cytokine
production induced by LPS. These data are a confirmation of the
binding of IL-37 to an extracellular receptor, in this case
IL-18Rα (12, 13), but in contrast to an increase in inflammation,
as would be expected from an IL-18 signal, the extracellular
effects of IL-37 results in reduced inflammation. To do this,
IL-37 exploits the decoy IL-1R8 because cells deficient in IL-1R8
do not exhibit reductions in cytokines when exposed to
recombinant IL-37 compared with WT cells. We also show that
recombinant IL-37 binds to immobilized IL-18Rα as well as to
IL-1R8. Others have reported a role for the extracellular domain
of IL-1R8 (18). Thus, IL-37 is ligand for the orphan receptor
IL-1R8. IL-1R8–deficient mice consistently have greater disease
severity in various models of inflammation (16, 19, 20).
In the present report, we studied the biological properties of

the recombinant IL-37b precursor. However, it remains unclear
to what extent extracellular processing of the precursor takes
place in vitro or in vivo. We compared recombinant IL-37a
isoform with an N terminus at lysine 27 (Lys27-Asp192) to the
IL-37b precursor on M1 macrophages. The precursor was more
active in suppressing LPS-induced LPS. The N terminus at Lys27
of IL-37a is nine amino acids forward from the consensus se-
quence, specifically IHD. In a model of hepatic ischemia
reperfusion injury, the IL-37a isoform is protective (10). A
recombinant form of IL-37b with the N terminus at the predicted
caspase-1 site bound to the immobilized recombinant IL-18Rα

chain (13). In combination with the IL-18BP, this form of IL-37
suppressed IL-18–induced IFNγ (14).
We also assessed the in vivo effect of recombinant IL-37 with

an N terminus at amino acid 46. Amino acid 46 is in exon 4, and
IL-37a, IL-37b, and IL-37d share exons 4–6. The amino acid
valine 46 was found during Edman degradation of supernatants
from cell lines transfected with full-length IL-37b. Both the full-
length and the processed form (N46) were found in the super-
natants (12). The recombinant N46-218 injected into WT mice
suppressed circulating IL-6 levels fivefold. It is possible that the
IL-37 precursor is processed in vivo to a form similar to N46-218.
Nevertheless, we conclude that processing increases specific ac-
tivity of IL-37.
The variable responses to IL-37 in PBMCs appear to be re-

lated to the presence of surface expression of IL-1R8. The flow
cytometric data reveal that M1 cells express more surface and
total IL-1R8 compared with PBMCs and M2 macrophages (Fig.
4 C and D) and thus may account for the low responsiveness
of these latter two cells. As only picomolar concentrations of
recombinant IL-37 initiate an anti-inflammatory response (Fig.
1), the limiting factor in the response to the ligand is likely the
level of surface IL-1R8 expression. IL-1R8 expression levels are
variable in the different species and cell types (16).
An unexpected finding is that both the IL-37b precursor and

the IL-37a processed form reduce LPS-induced IL-1β, IL-6, and
TNFα in the picomolar range with the optimal reduction con-
sistently observed at 1,000 and 100 pg/mL. Low-picomolar con-
centrations of IL-1β and IL-1α induce IL-6 from A549 cells,
which are rich in IL-1R3 but low in IL-1R2 (21), and thus we can
conclude that high surface levels of IL-1R8 on M1 macrophages
account for the high level of sensitivity. Similarly, nanomolar
concentrations of IL-37 in PBMCs (100 ng/mL) can increase the
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Fig. 3. Recombinant IL-37 binds to immobilized IL-18Rα-Fc and IL-1R8-Fc and requires IL-1R8. (A) Mean ± SEM. OD of IL-37b precursor binding to the ex-
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deficient mice. Representative of two independent experiments.
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production of LPS-induced cytokines in some donors, which is
also observed for IL-10 (22). We propose that at picomolar con-
centrations, IL-37 binds IL-18Rα and recruits IL-1R8, whereas at
micromolar concentrations the complex of IL-37/IL-18Rα may
recruit IL-18Rβ and the corresponding IL-18 signal.
Using siRNA knockdown of endogenous IL-37 in PBMCs,

there was an increase in LPS- and IL-1β–induced IL-6, TNFα,
and IL-1β production, revealing functional endogenous IL-37 in
these cells (2). Similarly, siRNA to IL-37 in human renal tubular
epithelial cells resulted in increased IL-6, IL-1β, and TNFα when
stimulated by IL-18, LPS, or IFNγ (23). Despite this near-global
increase in cytokines, it remained unclear whether the increase
in cytokines was due to nuclear translocation of endogenous
IL-37. In the present study, we treated PBMCs with an anti–IL-
37 monoclonal antibody to prevent extracellular effects of en-
dogenous IL-37. The increase in LPS-induced cytokine pro-
duction (Fig. 6) was observed at concentrations as low as 1 μg/
mL and 100 ng/mL of the antibody. This is consistent with the
concentration range of recombinant IL-37 in vitro (Fig. 1). As
only picomolar concentrations are needed to limit inflammation,
a correspondingly low concentration of anti–IL-37 would be re-
quired to block extracellular endogenous IL-37.
Members of the IL-1 family bind to their respective ligand-

binding receptor chain but recruit different coreceptor accessory
chains. For example, the ligand-binding chain for IL-1α and
IL-1β is IL-1R1 and the coreceptor is IL-1R3; IL-1R3 also serves
as the coreceptor for IL-1R2, IL-1R4, and IL-1R6 (24). IL-18
binds to IL-18Rα (IL-1R5), and its coreceptor IL-1R7 results
in a proinflammatory signal. Although IL-37 binds to IL-18Rα
(12, 13) and IL-18BP (14), no coreceptor has been identified for
IL-37. IL-37 does not act as a receptor antagonist for IL-18Rα
(14). Moreover, in mice deficient in IL-18Rα or using a blocking
antibody to IL-18Rα, a hyper-responsive state has been observed
(25, 26). In the present studies, we provide data supporting that

the recombinant IL-37 precursor binds to immobilized IL-1R8 and
suggesting that IL-1R8 acts as the coreceptor for IL-37. IL-37 fails
to suppress LPS-induced cytokines as well as MAPK in dendritic
cells from IL-1R8–deficient mice (Fig. 3). These data are consis-
tent with mice deficient in IL-1R8 showing greater inflammation
than WT mice (15, 16, 27). In a model of inflammatory aspergil-
losis, recombinant IL-37 precursor is protective but not in mice
deficient in IL-1R8 (11). Together, these data support the concept
that the anti-inflammatory and immunosuppressive properties of
extracellular IL-37 require the decoy effect of IL-1R8. This finding

Fig. 4. Flow cytometric analysis of IL-1R8/SIGIRR expression in CD14+ PBMCs, M1, and M2 differentiated macrophages. (A) Representative flow panels of
IL-1R8 expression in CD14+ PBMCs with or without LPS stimulation. (Upper) Nonpermeabilized cells. (Lower) Permeabilized cells. (B) Representative flow
panels of IL-1R8 expression in CD14+ M1 macrophages with or without LPS stimulation. (Upper) Nonpermeabilized cells. (Lower) Permeabilized cells. (A
and B, Left panels) Resting or without LPS stimulation; (Right panels) with LPS stimulation. (C ) Mean ± SEM percentage of IL-1R8 cell-surface–expressed
cells in CD14+ PBMCs, M1, and M2 macrophages with or without LPS stimulation (n = 7 for PBMCs and M1; n = 3 for M2). (D) Mean ± SEM percentage of
IL-1R8–expressed cells in CD14+ PBMCs and M1 cells with or without LPS stimulation (n = 3).

Fig. 5. mRNA expression level of IL-37–related genes in PBMCs and M1
macrophages. (A) Mean ± SEM steady-state mRNA levels of IL-1R8 in fresh
PBMCs as well as differentiated M1 cells (n = 5). (B) Mean ± SEM steady-state
mRNA levels of IL-18Rα, IL-1R8, and TNFα in M1 cells with or without LPS or
IL-37 + LPS (n = 11 for IL-1R8 and IL-18Rα; n = 5 for TNFα). P = 0.06 for IL -1R8
gene and P = 0.0018 for TNFα gene when comparing the combination of LPS
plus IL-37 with LPS alone.
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is also consistent with the loss of the protection of IL-37 transgenic
mice deficient in IL-1R8 (28).

Materials and Methods
Generation of Recombinant IL-37b Precursor. Full-length human IL-37b iso-
form was inserted in pCACTUS under a chicken β-actin promoter and
N-terminal 6-histidines (11). After expression in E. coli, the recombinant
molecule was purified on Talon followed by FPLC size exclusion. The frac-
tions isolated from FPLC were pooled and applied to a C6 HPLC column, and
the IL-37 peak was eluted in acetonitrile, isolated, and lyophilized. The ly-
ophilized IL-37 was reconstituted in PBS. The Limulus amebocyte lysate
assayed indicated that, at 10 μg/mL of recombinant IL-37, there was less
than 0.1 ng/mL of LPS-like activity endotoxin unit equivalents. Recombinant
IL-37, when incubated in PBMCs at concentrations from 100 pg to 100 ng/mL,

did not induce IL-1β. Recombinant IL-37 N46-218 was supplied by Vassili
Kalabokis, Bio-Techne, Minneapolis.

Cell Culture. Venous blood from healthy consenting donors was drawn into
lithium heparin-containing tubes and PBMCs were isolated as previously
described (29). Adherent cells were differentiated into M1 or M2 macro-
phages or dendritic cells (see SI Materials and Methods for details). Cytokines
were measured by specific ELISA (BioTechne) and ECL assays (Bioveris).

LPS-Induced Systemic Inflammation. Animal protocols were approved by the
University of Colorado Animal Care and Use Committee. C57BL/6 mice were
obtained from Charles River. Details of mouse studies are in SI Materials and
Methods. IL-1R8–deficient mice were as previously described (16).

Bone Marrow-Derived Dendritic Cells. Mouse bone marrow-derived dendritic
cells were collected from both tibias from either WT or IL-1R8–deficient mice
and differentiated as described in SI Materials and Methods.

Flow Cytometry. As described in SI Materials and Methods, PBMCs differen-
tiated into M1 or M2 cells were washed twice with flow cytometry staining
buffer (BioTechne) and incubated with an Fc-receptor blocking antibody
(eBioscience) for 15 min to reduce nonspecific staining.

Steady-State mRNA Collection and Real-Time PCR. See SI Materials and
Methods for details for determining steady-state mRNA levels and primers.
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