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Abstract

Although stochastic actor based models (e.g., as implemented in the SIENA software program) are 

growing in popularity as a technique for estimating longitudinal network data, a relatively 

understudied issue is the consequence of missing network data for longitudinal analysis. We 

explore this issue in our research note by utilizing data from four schools in an existing dataset 

(the AddHealth dataset) over three time points, assessing the substantive consequences of using 

four different strategies for addressing missing network data. The results indicate that whereas 

some measures in such models are estimated relatively robustly regardless of the strategy chosen 

for addressing missing network data, some of the substantive conclusions will differ based on the 

missing data strategy chosen. These results have important implications for this burgeoning 

applied research area, implying that researchers should more carefully consider how they address 

missing data when estimating such models.
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Introduction

For at least the last 30 years, researchers have explored the question of whether networks of 

relations among individuals have important consequences for behaviors such as substance 

use, general delinquency, and even obesity (Baerveldt, Volker, and Van Rossem 2008; 

Christakis and Fowler 2007; Shakya, Christakis, and Fowler 2012). The importance of social 

networks for behavioral phenomena is well-known for populations throughout the life 

course, from adolescents in schools (Mouw and Entwisle 2006) to elderly adults in 

© 2015 Elsevier B.V. All rights reserved.

Address correspondence to John R. Hipp, Department of Criminology, Law and Society, University of California, Irvine, 3311 Social 
Ecology II, Irvine, CA 92697; john.hipp@UCI.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Soc Networks. Author manuscript; available in PMC 2016 May 01.

Published in final edited form as:
Soc Networks. 2015 May 1; 41: 56–71. doi:10.1016/j.socnet.2014.12.004.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



communities (Rook, August, and Sorkin 2011). A well-known challenge for such integrated 

network/behavior studies is that the processes driving network tie formation and behavior 

change (e.g., delinquency) are tightly intertwined. As a consequence, a growing research 

paradigm utilizes a novel methodological solution to this problem: stochastic actor-based 

models (popularly implemented via the SIENA (Simulation Investigation for Empirical 

Network Analysis) toolkit developed by Snijders and colleagues (Snijders, van de Bunt, and 

Steglich 2010). The growing use of tools like SIENA has allowed researchers to study both 

influence effects—in which individuals adopt the behavior of their alters—and selection 

effects—in which individuals form ties with others who engage in similar behaviors—for a 

variety of behaviors.

As an analytic approach, stochastic actor-based models (SAB) require longitudinal network 

data, which frequently results in a substantial amount of missing information present 

(particularly if there are several waves of data). Missing data occurs due to factors such as 

respondent or item-level non-response, accidental or intentional censoring of responses, or 

administrative error. Although missing data is a well-known challenge for traditional cross-

sectional and longitudinal studies (where missingness can be even more of a problem since a 

higher proportion of persons are typically missing for one or more waves when compared to 

a cross-sectional study), the problem is even greater for network studies—and longitudinal 

network studies in particular. Given a single cross-section from an undirected network from 

which some fraction of nodes f are observed, the fraction of unobserved edge variables 

scales as 1-f2; thus, if a researcher lacks information on half of the persons in the network, 

approximately 75% of the possible edge variables in the network will be missing (Handcock 

2002). This problem is exacerbated by the fact that many network properties (e.g., 

connectivity, betweenness) can be sensitive to the addition or deletion of small numbers of 

edges (Borgatti and Everett 2006), making network analysis in the presence of missing data 

particularly treacherous.

Thus, there is reason to believe that missing data may be a serious problem for researchers 

utilizing longitudinal network data to estimate SAB models. As might be expected given the 

scope of the problem, various means of dealing with missingness in SAB modeling have 

been suggested (e.g., Huisman and Steglich 2008). Nonetheless, this issue has received 

limited attention in the literature and we do not currently know how much impact the choice 

of missing data strategy used has on the estimated results. The goal of this research note is to 

describe four possible approaches that are employed in the literature with varying degrees of 

plausibility vis a vis how we might expect the network to be generated, and to compare how 

each of these approaches work on real-world data when estimating SAB models. In the 

process, we hope to shed some light on the question of how much difference the choice of 

missing data methodology makes for substantive conclusions drawn from SAB models in a 

practical setting.

The SAB modeling approach

We first briefly describe the SAB modeling approach, as implemented in SIENA. An 

important challenge for modeling of influence and selection processes is that longitudinal 

network data is often collected at discrete time points on a time scale that is comparable to 
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the rate of structural and behavioral change (e.g., multiple months for adolescent friendship 

networks). Because social ties are created and dissolved in continuous time, ties can form 

and dissolve between data collection points; likewise, behavior change occurs in continuous 

time. While these events could be modeled directly (e.g., via a relational event process Butts 

2008) if their timing were exactly known, or approximated by discrete-time dynamics if 

their dynamics were slow relative to the time-scale of measurement (see e.g., Lerner, 

Indlekofer, Nick, and Brandes 2013), the combination of “fast” dynamics and discrete-time 

measurement requires that they be modeled as a latent process in continuous time. SIENA 

accomplishes this objective by simultaneously modeling selection and influence processes 

with an agent-based simulation model that imputes latent trajectories of structural and 

behavioral co-evolution consistent with observed data and a hypothesized set of behavioral 

mechanisms (Baerveldt, Volker, and Van Rossem 2008; Snijders 2001; Snijders, van de 

Bunt, and Steglich 2010). An important strength of this approach is that it directly links 

hypothesized behavioral processes with observed social dynamics in a statistically 

principled way, making it an increasingly popular approach for joint modeling of structural 

and behavioral evolution within groups (Snijders, van de Bunt, and Steglich 2010).

Strategies to handle missing network data with SAB models

In this section we describe four approaches for handling missing network data when 

estimating a longitudinal SAB model. These strategies have varying levels of a priori 

plausibility given the structure of the underlying processes being modeled, but nonetheless 

have all been used in empirical studies. Table 1 briefly describes various possible missing 

network data patterns, and how each is addressed by the four strategies.

The first strategy discards the greatest amount of information: this approach only includes in 

the analysis individuals who are present at all time points. Thus, in this strategy anyone who 

does not appear in the sample in any of the waves is assumed to not be in the network. Of 

course, we know that these persons are indeed part of the network, and thus this strategy 

makes a particularly large assumption that discarding said actors from the network will not 

affect the model estimates. This approach has been used in a number of studies, 

incorporating various types of individual behaviors (e.g., Agneessens and Wittek 2008; 

Baerveldt, Volker, and Van Rossem 2008; Burk, Kerr, and Stattin 2008; de Cuyper, 

Weerman, and Ruiter 2009; Flashman 2012; Light and Dishion 2007; Pearson, Steglich, and 

Snijders 2006; Schaefer, Haas, and Bishop 2012; Simpkins, Schaefer, Price, and Vest 2013).

The second strategy discards all persons who were missing in the first wave of the study, but 

does not discard persons missing from later waves as long as they were eligible at the first 

wave. For the later waves, this strategy (as well as strategies 3 and 4) employs a built in 

feature of SIENA in which network ties at later time points are imputed based on previous 

observed values with missingness treated as ignorable (Huisman and Snijders 2003; 

Huisman and Steglich 2008). Although this strategy does not assume that a person missing 

at any of the later time points is not in the network (as done in strategy 1), it does assume 

that persons that did not respond to the survey at the first wave are not in the network. This 

is a somewhat strong assumption that is clearly inaccurate (although it may be a reasonable 

approximation where e.g. those initially missing are generally peripheral to the group under 

Hipp et al. Page 3

Soc Networks. Author manuscript; available in PMC 2016 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



study). As with the first strategy, various studies have adopted this strategy when estimating 

SAB models (e.g., de Klepper, Sleebos, van de Bunt, and Agneessens 2010; Mathys, Burk, 

and Cillessen 2013; Mundt, Mercken, and Zakletskaia 2012; Shoham, Tong, Lamberson, 

Auchincloss, Zhang, Dugas, Kaufman, Cooper, and Luke 2012).

The third strategy includes all persons who appeared in the study in any of the waves of the 

survey. However, for persons who are missing at the first time point this approach simply 

imputes null ties to them. This assumes that persons who did not respond to the survey at the 

first time point have no social ties at time 1. This is an assumption that seems quite 

implausible. Furthermore, making this assumption causes missingness at the first time point 

to act as a de facto proxy for isolation, implying that the persons who did not respond to the 

survey at the first time point have no social ties during the period. To the extent that this 

assumption is inaccurate, it will appear that such persons are “gaining” quite a few ties 

between the first time point and the second time point, when in fact this occurs because of 

the incorrect assumption that they had no social ties at the first time point. Numerous studies 

have employed this strategy (e.g., Berger and Dijkstra 2013; Burk, Steglich, and Snijders 

2007; Cheadle and Goosby 2012; Dijkstra, Lindenberg, Veenstra, Steglich, Isaacs, Card, and 

Hodges 2010; Light, Greenan, Rusby, Nies, and Snijders 2013; Logis, Rodkin, Gest, and 

Ahn 2013; Ojanen, Sijtsema, and Rambaran 2013; Osgood, Ragan, Wallace, Gest, Fienberg, 

and Moody 2013; Rambaran, Dijkstra, and Stark 2013; Van Workum, Scholte, Cillessen, 

Lodder, and Giletta 2013; Veenstra and Steglich 2011).

The fourth strategy also includes all persons who appeared in any wave of the study. 

However, instead of assuming that persons who did not respond to the survey at the first 

wave have no social ties, it builds an imputation model based on the characteristics of the 

sample at the first time point to impute social ties to these persons. This builds on the 

insights of Handcock (2002) that the latent missing data framework developed by Rubin 

(1976) in a non- network context can also be applied to full networks. The strategy begins 

by fitting a cross- sectional exponential random graph model (ERGM) on the data at wave 1, 

using the method of Gile and Handcock (2006) to estimate model parameters using the 

observed-data likelihood. Simulated draws from this fitted model, conditional on the 

observed data, are then used to impute the states of the edge variables in time 1 that were not 

observed; the SAB model is then fit to the resulting data set, with the standard SAB 

imputation scheme being used to handle missing values in subsequent time points (see 

Appendix 1 for a more complete description).. The uncertainty brought to the resulting 

estimates by the time 1 imputation process can be accounted for by imputing the network 

multiple times, and then estimating the SAB model on each of these imputed networks.1 The 

general principle of multiple imputation is well-known (Schafer 1997), and the properties 

have been well-studied in Monte Carlo simulations.

1We assessed the variability in model results when estimating the model on 50 different networks for a single school. The results 
across estimates only had a modest amount of variability. Given that it can take several days to estimate a single model for the larger 
schools, it was not practical to estimate all models on the multiple imputed networks. Given the similarity of the results over network 
imputations, the pattern of our singly imputed results is quite similar. Thus, for practical reasons, and because the multiple imputation 
results are outside the scope of the current study, we focus here on estimates from a single imputation.
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In general, imputation strategies (as in methods (3) and (4) above) will only do as well as the 

imputation model on which they are built. If the imputation model accurately represents the 

true social process, the imputation-based estimate will often be a close approximation to 

what would have been obtained had complete data been available. Of course, the researcher 

will not know the true social process in practice. It is therefore incumbent on the researcher 

to specify the most plausible imputation model possible. Although the specified network 

imputation model one proposes is unlikely to be exactly correct, a model that captures basic 

network properties will typically bias the resulting SAB estimates less than one that 

produces highly unrepresentative networks. For this reason, strategy (4) has considerable 

opportunity to outperform strategy (3), in which values of 0 are imputed to the ties of all 

non-respondents.

In the current study, we utilize these four missing data strategies to estimate SIENA models 

on six separate schools with three waves of data. We chose two large schools (077 and 058, 

N = 2104 and N = 1,024, respectively), two mid-sized schools (007 and 008, N = 181 and N 

= 133, respectively), and two small schools (002 and 126, N = 78 and N = 62, respectively). 

We estimated the model for each school using the four missing data strategies, and then 

compared the results. While many such comparisons could be made, our focus here is on 

differences that would impact the substantive interpretation of the results. We thus compare 

over missing data strategies: 1) the difference in the size of the coefficients; and 2) the 

difference in inferential conclusions.

Data and Methods

The data used for analysis comes from three waves of the AddHealth survey (Harris 2009). 

We used the two large schools, two mid-sized schools, and two small schools from the 

special oversample data with network information, termed the “saturation sample”. Wave 1 

(referred to as the “in-school” sample) was collected from September 1994 - April 1995, 

wave 2 (the in-home 1 sample) was collected from April-December 1995, and wave 3 (the 

in-home 2 sample) was collected from April-August 1996. We use AddHealth because that 

it is one of the few widely available longitudinal network studies, it contains schools of 

varying sizes allowing studying the effects of missing data in these various contexts, and it 

is commonly studied in the dynamic network literature (Cheadle and Schwadel 2012; 

Cheadle and Goosby 2012; de la Haye, Green, Kennedy, Pollard, and Tucker 2013; 

Flashman 2012; Shoham et al. 2012; Simpkins, Schaefer, Price, and Vest 2013). 

Nonetheless, the fact that the network data were not collected at a single time point is not 

ideal and raises additional challenges for dynamic network modeling, which are outside the 

scope of the present study. We compared the results across these different sized schools. For 

the two smallest schools, the full model was not able to converge to a proper solution. We 

therefore estimated models for those schools focusing only on the network dynamics.

Dependent Variables

We examine two main outcome variables: tie choice by adolescents, and smoking behavior. 

To measure smoking, at waves 2 and 3 the respondents were asked “During the past 30 days, 

on how many days did you smoke cigarettes?” The results are categorized into: 1) “no 

days”; 2) 1 to 3 days; 3) more than 3 days but less than 22 days; 4) 22 or more days. At 
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wave 1 a different question was asked: “How often in the last 12 months did R smoke 

cigarettes?” We re- categorized the results so that they matched the category framing at 

waves 2 and 3, which include: 1) “never”; 2) “once or twice” to “2 or 3 days a month”; 3) 

“once or twice a week” to “3 or 5 days a week”; 4) “nearly every day.” Tie choice was 

measured by adolescents selecting up to 5 males and 5 females as ties from a roster of 

students in the school.

Independent Variables

Truncated friendship identifier—Due to an administrative error within the AddHealth 

study, certain students were only allowed to nominate one female friend and one male friend 

during wave 2 and wave 3 of data collection. To correct for this effect within our network 

model, we account for this limited nomination effect with a variable capturing the change in 

possible nominations during that period: -1 = going from full to limited nominations, 0 = no 

change, and +1 = going from limited to full nominations.

We included several measures in the tie choice equation. Rate functions for each of the two 

periods between waves capture the average number of changes in friendship ties (friendship 

rate). The measure out-degree captures the overall propensity to be tied to another 

adolescent, and reciprocity captures the extent to which ties are reciprocated. Transitive 

triplets, the tendency for a focal actor to nominate a friends' friend as their friend, and three 

cycles, the tendency for a friends' friend to nominate the focal actor as a friend, are two 

effects that assess the presence of triadic closure within a friendship network. In-degree 

popularity is the proclivity to choose popular alters (peers) as friends. In-in degree 

assortativity (square root) is the proclivity to choose friends with similar levels of popularity 

(Ripley, Snijders, Boda, Vörös, Preciado, and at 2014).

In addition to structural network effects, measures are constructed for the ego effect, an alter 

effect, and a similarity effect (Burk, Steglich, and Snijders 2007; Steglich, Snijders, and 

Pearson 2010). For example, we included a measure of the smoking behavior of the ego: this 

assesses whether higher-level smokers form more ties. The measure capturing the smoking 

behavior of the alter assesses whether higher-level smokers receive more ties (i.e., are more 

popular). And the measure of similarity in smoking behavior between ego and alter assesses 

whether adolescents are more likely to form social ties with others who are similar in 

smoking behavior (a selection effect). Given that ties are more likely to form among 

adolescents in the same grade, we included a grade similarity effect. In the largest school, 

we included a measure of race similarity to capture race homophily (the smaller schools 

were too racially homogeneous to include such a measure).

In the equation predicting change in smoking behavior over time, we included several 

measures. Rate functions estimate the average number of changes in smoking behavior 

(behavior rate) between waves. The linear shape effect and the quadratic shape effect, 

capture the general tendency to change smoking behavior over time. A measure of in-degree 

assesses whether adolescents with more ties in the network (more popular) smoke more over 

time. We assess influence effects with the sum of the Negative Absolute Difference of 

smoking behavior between ego and all his or her alters averaged by ego's out-degree. This 
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assesses whether the adolescent's smoking behavior mimics his or her peers' over time (an 

influence effect).

We account for gender with a measure of female. Only the largest school had racial 

heterogeneity, so we coded an indicator variable for Black. A measure of depression was 

constructed as a factor score of 19 items modified from the Center for Epidemiologic 

Studies Depression Scale (CES-D) all assessing mood in the past week (Radloff 1977). 

Sample items included “felt depressed,” “felt lonely,” “felt happy,” and “felt life was not 

worth living.” Responses were coded on a 3-point scale (i.e., 0=“never or rarely”, 

1=“sometimes,” 2=“a lot of the time”, and 3=“most of the time or all of the time”) with 

higher values indicating higher levels of depressed mood. The home smoking environment 

was measured as a sum of parent smoking and household smoking items. To determine 

parent smoking, we used parents' self-reported smoking behavior (i.e., replies from “Do you 

smoke?” in parent questionnaire coded 0=no and 1= yes) and adolescent reports of 

residential parent's smoking (i.e., the average of both parents for each in-home assessment 

with 0= no parent smokes, 1= at least one parent smokes, 2= both parents smoke). To 

determine household smoking, we used interviewer's remarks on whether there was 

“evidence of smoking in the household” (0 = no, 1=yes) and adolescent reports of whether 

cigarettes were “easily available” at the home (0=no, 1=yes) during each in-home 

assessment. Parental support was measured as the average of two factor scores assessing 

maternal and paternal emotional support. For both the mother and father, adolescents rated 

their parents on whether they were “warm and loving” (1= “strongly disagree” to 5 = 

“strongly agree”), communicated well with each other (1= “strongly disagree” to 

5=“strongly agree”), had a “good relationship” (1=“strongly disagree” to 5= “strongly 

agree”), felt cared for (1= “not at all” to 5= “very much”), felt close (1=not at all” to 5= 

“very much”), and discussed personal problems together (0= “no”, 1= “yes).

Missing covariate information was imputed in STATA before data was transferred to 

SIENA. In the Appendix 2 tables, the summary statistics for the six schools are displayed. 

As can be seen, there is some variability across these schools, as well as across the missing 

data strategies. For example, in Table A2 the percentage that does not smoke at all at time 1

— according to strategy 3—ranges from 42% in school 058 to 79% in school 126. Notably, 

these values all are somewhat higher when using strategy 1, implying that the observations 

dropped from the network using this missing data strategy are systematically different from 

the rest of the network in this sample. Likewise, heavy smokers at time 1 are 3, 4, 5, 6, and 9 

percentage points greater using strategies 3 and 4 compared to strategy 1 in schools 077, 

058, 126, 008, and 002, respectively. This highlights that researchers employing these 

strategies dropping observations missing network data at time 1, or at any time point, 

encounter the risk of a resultingly biased sample. Assessing whether this is indeed the case 

is necessary for such an approach. We will assess here the consequences of violating this 

assumption.

Results

Given that we estimated the model using four different missing data strategies across six 

networks (for 24 total estimated models), some summarization of results is necessary. We 
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present the SAB model school-by-school results across the four missing data strategies in 

Appendix 2 (Tables A4-A9). We focus on a condensed version of the results in Table 2 in 

which we compare the size of coefficients across the various missing data strategies, 

averaged over the six networks. We compare missing data strategies 1 through 3 to strategy 

4, which uses a principled approach to imputation.2 For example, Column 1 of Table 2 

shows the average bias across the six schools when comparing strategy 1 (dropping any 

cases with missing network data at any time point) to strategy 4. Average bias between 

strategies 1 and 4 is computed as follows: 1) for each school, we compute the difference 

between the estimated parameter for strategy 1 and that for strategy 4, and divide this by the 

parameter for strategy 4, and 2) we then compute the average of these values for the six 

networks. Positive values indicate that that strategy 1 yields larger positive coefficients (or 

smaller negative coefficients) than strategy 4, on average. Negative values indicate that 

strategy 4 yields larger positive coefficients (or smaller negative coefficients) than strategy 

1, on average. The average bias between strategies 2 or 3 and strategy 4 are computed 

similarly. Column 2 shows the average error when comparing strategy 1 to strategy 4. This 

is computed as follows: 1) for each school, we compute the absolute value of the difference 

in the estimated parameters from strategy 1 and strategy 4 divided by the parameter for 

strategy 4, and 2) we then compute the average of these values for the six networks. Larger 

positive values indicate greater differences in the coefficients across the two strategies, on 

average, whereas values closer to zero indicate minimal differences in the coefficients across 

the two strategies. The average error between strategies 2 or 3 and strategy 4 computed 

similarly. Columns 3 and 4 display the average bias and average error across all six schools 

when comparing strategy 2 to strategy 4. And columns 5 and 6 display the average bias and 

average error across all six schools when comparing strategy 3 to strategy 4.

In comparing the results across all six schools, we distinguish between consistent patterns 

and those that are unique to specific schools. In the first column of Table 3, we see that the 

average estimated parameter for the rate of change in friendship is about 50% smaller during 

the first period for strategy 1 (dropping cases missing any network data at any time point) 

versus strategy 4, and the parameter during the second period is about 40% less for strategy 

1 versus strategy 4. These parameter values are always under-estimated in strategy 1 versus 

strategy 4 across these six schools, and hence the average bias has the same value as the 

average error (absolute value of these differences). In columns 3 and 4 we see that these rate 

parameters are also under-estimated in strategy 2 (dropping any cases missing network data 

at time 1) relative to strategy 4, although the gap is a little narrower: the rate during period 1 

is 35% less and the rate in period 2 is 23% less. The gap is narrower yet when comparing 

strategy 3 (imputing all missing network at time 1 to be null ties) to strategy 4, although 

even here we see that the rate in period 1 is 20% less in strategy 3 and the rate in period 2 is 

8% less. This general pattern can also be seen in Table 2 showing the results for the largest 

school: the friendship rate parameter during period 1 increases from 8.4 to 22.9 across the 

four missing data strategies.

2Of course, comparisons between the other strategies can be made implicitly given that these are relative comparisons.
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For the out-degree and reciprocity parameters, there is little systematic bias in the estimates 

for strategies 1 or 2 relative to strategy 4. The parameter estimates across the six schools are 

6% to 9% different across the strategies (as seen in the average error columns) but the 

average bias is less than 5%. These two parameters are slightly under-estimated in strategy 3 

compared to strategy 4—about 6% less on average across these schools.

For four of the network structural measures—transitive triplets, three cycles, in-degree 

popularity, and in-in-degree assortativity (square root)—the parameter values are over-

estimated using strategies 1 through 3. For example, comparing strategy 1 to strategy 4 these 

parameter values are over-estimated on average by 32% for three cycles, 68% for transitive 

triplets, 91% for in-degree popularity, and 169% for in-in-degree assortativity. The average 

bias values are less extreme, though still pronounced, when comparing strategy 2 to strategy 

4, as they range from 31% to 95%. The average bias is also quite pronounced for strategy 3, 

with estimated parameters that are 29% to 69% larger on average than those for strategy 4. 

We also observe that two of these structural network parameters showed relatively 

consistent differences across the various strategies in each of the schools. First, the absolute 

value of the in-degree popularity parameter tended to be largest in strategy 1 and smallest in 

strategy 4. Comparing strategy 1 to strategy 4, this positive parameter was between 46% and 

157% larger across these schools. Second, the absolute value of the in-in degree assortativity 

(square root) parameter tended to be largest in strategy 1 and smallest in strategy 4. 

Comparing strategy 1 and strategy 4, the negative in-in degree assortativity parameter was 

two to three times larger in the various schools. These are consistent patterns across these 

four strategies of treating missing data, and highlight that the way in which missing data is 

handled is far from a trivial issue.

We also point out that conclusions regarding statistical significance of the in-in-degree 

assortativity parameter vary across these strategies. In one of the large schools, one of the 

mid- sized schools, and both of the small schools, the statistical conclusion will differ based 

on the missing data strategy employed. For example, in the largest school (077) in Table 2 

this parameter is not statistically significant (p > .05) in strategy 4, but is significant using 

the other strategies. In mid-sized school 008 this parameter attains statistical significance at 

p < .05 using strategy 2, but not under any of the other strategies (see Table A6 in Appendix 

2). In small school 002 the parameter is statistically significant when using strategy 1 and 4, 

but not the other two strategies (Table A7 in the Appendix). And for small school 126 the 

parameter is statistically significant for strategies 1 and 4, but not the other two (Table A8 in 

the Appendix). Table 3 displays the number of times a parameter achieves statistical 

significance (based on p < .05) in one technique but not another.

There is also evidence of different results across the missing data strategies for the network 

covariate measures. For example, the grade similarity effect is upwardly biased 24%, 15%, 

and 13% for strategies 1, 2, and 3, respectively, on average, compared to strategy 4. In the 

largest school in Table 2, although race homophily (the race similarity variable) is 

statistically significant in all strategies, the size of the coefficient is 29% larger when using 

strategy 1 compared to the other strategies.
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A key feature of SAB models is simultaneously exploring influence and selection processes; 

in the present models smoking behavior is of particular interest. There are some notable 

differences in the estimated parameter values for the smoking similarity (selection) measure 

across the different missing data strategies. The average error across the five of the schools 

comparing strategies 1 and 4 is 23% (we exclude small school 002 which has a very large 

difference and would skew the results), it is 82% for strategy 2, and 36% for strategy 3. 

There is minimal evidence of systematic bias across these strategies, suggesting that a 

researcher cannot be sure if the estimated parameter is larger or smaller compared to what 

would be obtained using the principled imputation procedure of strategy 4. For example, in 

one large school (077) the parameter estimates for smoking selection from strategies 2 and 3 

are more than twice as large as that for strategy 4 (Table 2). In one mid-sized school (007) 

this parameter is statistically significant in strategies 1 and 2 but not the other two strategies, 

but in the other mid- sized school (008) it is statistically significant in strategies 1 and 4 but 

not the other two strategies. And in one of the small schools (002) the size of the effect 

differs considerably across these strategies (and is not statistically significant for strategy 3). 

Thus, the decision on how to handle missing network data can have important implications 

in terms of estimated selection effects.

The smoking alter parameter captures the popularity of smokers in these networks, and the 

estimated parameter for this characteristic differs considerably over the various missing data 

strategies. For example, the average error across schools is 36% comparing strategy 1 to 

strategy 4 for this measure, it is 18% comparing strategy 2 to 4, and 39% comparing strategy 

3 to 4. The parameter estimates across strategies are larger in some schools, but smaller in 

other schools compared to strategy 4. In the largest school (077) the parameter for alter 

smoking in strategy 1 is not statistically significant compared to the other three strategies. 

The same pattern is also detected in the other large school (058). And for mid-sized school 

008, only strategy 4 has enough statistical power to conclude that smokers (smoking ego) 

name fewer ties than others.

Turning to the equation in which smoking behavior is the outcome, it is notable that the 

effect of smoking similarity—the influence effect—differs considerably over these missing 

data strategies. When using strategy 1 instead of 4, this parameter is 85% smaller, on 

average, across these schools. And when using strategy 2 instead of 4, this parameter is 42% 

smaller, on average, across these schools. Although the conclusions regarding statistical 

significance for this parameter did not differ across these strategies in these particular 

schools, the sharp differences in estimated parameters might have considerable 

consequences for researchers who wish to explore the dynamic implications of these models 

by perturbing various parameter values or altering the composition of the sample along 

values of key variables and then simulating the model forward in time.

We also find striking differences in some of the covariate effects for the evolution of 

smoking behavior between strategies 1 or 2 versus strategies 3 or 4. The effect of depression 

on smoking behavior is typically inflated in strategy 1 compared to the other strategies: in 

one- midsized school (007) it has a much larger coefficient and is statistically significant 

under strategy 1 but not with the other strategies. In the largest school (077), although 

strategy 1 has the largest coefficient, statistical significance only reaches p < .10 given the 
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greater uncertainty in this strategy (in part due to the reduced sample size). In the largest 

school, the negative effect of parental support appears twice as strong in strategy 1 

compared to the other strategies. The effect of the home smoking environment varies 

somewhat over these strategies, although not in a systematic way: whereas there is 26% and 

21% more average error using strategies 1 or 2 compared to strategies 3 or 4, the bias is low 

given that the estimates can be either higher or lower. In the largest school (077), the size of 

the effect for females is almost 50% larger in strategy 1 compared to the other strategies.

Among the baseline parameters for smoking behavior, we note that the rate parameters are 

somewhat under-estimated in strategies 1 and 2 compared to strategy 4 across these schools. 

However, the linear and quadratic shape parameters do not differ much over these missing 

data strategies.

Finally, we assessed whether there were systematic differences in the pattern of biases 

across missing data strategies depending on the size of the network in this study (small, 

medium, or large). In general, there was little evidence of systematic differences for these 

strategies based on the size of the network. There was some suggestive evidence that the 

selection parameter based on smoking behavior was more strongly biased upwards in 

smaller networks when using strategies 1 or 2 compared to strategy 4, but the small number 

of networks in the study precludes making a more confident assessment of such a pattern.

Discussion

The stochastic actor based approach is growing in popularity as a technique for handling 

longitudinal network data, in part because it is designed to explore influence and selection 

processes. Despite this growing popularity, there is limited knowledge regarding the 

consequences of various strategies for handling missing data. Scholars are well aware that 

missing data can be particularly challenging in longitudinal designs. The consequences of 

such missingness for inferences regarding social processes may be even more challenging. 

As a first attempt at assessing the scope of the issue, we have explored the impact of four 

missing data strategies on inference for SAB model parameters using SIENA on a 

commonly used dataset. Our findings demonstrate that management of missing data is not a 

trivial decision, but in fact has serious consequences for parameter estimates and substantive 

conclusions.

The current study is a first step in demonstrating that missing data can have strong 

consequences for the obtained results of longitudinal network models. The fact that we 

found sometimes striking differences when employing different missing data strategies 

suggests that much more research is needed to explore these issues. Whereas our study had 

the virtue of studying the consequences of missing network data on an existing dataset that 

is frequently used in applied research, we are obviously limited in our ability to draw 

conclusions regarding the “right” approach to take: the fact that different procedures provide 

different answers implies that at least some are problematic, but a definitive performance 

assessment requires examination of cases in which the correct answer is known (e.g., via 

simulation). There is a clear need for Monte Carlo studies that explore the effects of 

different types of missingness by first drawing data from a known SAB process, 
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systematically introducing different types of missingness into the synthetic data, and then 

estimating models on the resulting data sets.

In light of our results, key questions to be addressed by such Monte Carlo studies should 

include the impact of missingness associated with behavioral or structural characteristics 

(e.g., smoking behavior or degree), missingness that occurs at different rates over time (e.g., 

due to declining participation or late enrollment), and missingness in small versus large 

networks. Such studies should also examine impact of the various analyses strategies 

discussed here (as well, perhaps, as others), to provide useful guidance on what can be done 

in practice to minimize the effect of missing data on substantive conclusions. Finally, we 

suggest that such studies consider not only effects of missing data and analysis strategy on 

estimated parameter values and significance levels, but also on predictions resulting from 

the fitted models (e.g., rates of smoking or mean degree). Given the widespread interest in 

SAB models as tools to inform policy, inaccuracies in predicted behavior patterns are at 

least as important as inaccuracies in inferred model parameters.

Our study raises broader issues for questions relating to missing data and dynamic network 

(and network/behavioral) analyses. Although the consequences of different types of 

missingness are relatively well understood for cross-sectional data, they are less well 

understood for dynamic network models. For example, although data that is missing 

completely at random (MCAR) may have the most benign consequences for SAB models, it 

still is not well understood whether missing data techniques that simply exclude such 

observations will affect the parameter estimates from SAB models given that this will 

change the apparent structure of the network (e.g., by changing network size). Even if 

network data is missing at random (MAR, but not MCAR), individuals with missing 

network data may differ systematically.3 For example, those with missing network data may 

systematically differ based on such characteristics as age, their substance use behavior, or 

their position in the network (e.g., popular actors). In the MAR case, a principled imputation 

strategy can correct for these biases; even where data is not fully MAR, a strategy that takes 

at least some of these factors into account will likely yield more accurate results than 

strategies that simply exclude these cases. Notably, almost none of the existing research 

using SAB models adopts such a principled strategy for imputing missing network data (at 

least in the first time point).

Given that a primary goal of researchers employing SAB models is disentangling influence 

and selection effects, it is particularly notable how different the estimated influence and 

selection effects could be based on the particular missing data strategy employed. In this 

study, the size of the estimated parameter for selection based on smoking behavior differed 

considerably across these missing data strategies. Furthermore, the direction of the bias was 

uncertain, as the parameter estimates were both over- or under-estimated compared to 

estimates based on a principled imputation strategy at time 1. Whereas researchers often 

impute 0's to missing ties at time 1, this approach had an average error of 35% for this 

3Data is missing at random if its probability of inclusion depends only on observed data and covariates (i.e., not on the values of 
unobserved quantities); despite the name, MAR does not imply that all variables are equally likely to be observed, nor that this 
probability is unrelated to other factors.
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selection parameter compared to a principled imputation strategy at time 1. Notably, the 

conclusions regarding statistical significance of this parameter often differed depending on 

the missing data strategy employed. Given that the statistical significance of this parameter 

is often of paramount interest, these results highlight the importance of considering seriously 

how to address missing network data in such longitudinal network designs.

It was also notable that the average smoking influence effect was underestimated when 

using certain missing data strategies compared to a principled imputation strategy at time 1. 

Thus, dropping cases that are missing on network data at any time point (strategy 1) or at 

time 1 (strategy 2) can seriously impact estimates of influence effects: in this study these 

were 85% and 40% smaller parameter estimates on average, respectively. These two missing 

data strategies will not necessarily always bias such estimates downward—the consequences 

will depend on which cases are dropped from the analysis based on the pattern of 

missingness—but the results of this study highlight that the impact can be quite 

consequential.

Another instance in which biased estimates of structural network parameters might matter is 

when researchers use the estimates of SAB models for forward simulation of the network 

based on various perturbations (Schaefer, adams, and Haas 2013). The large differences we 

detected in the influence and selection parameters could also have considerable effects on 

such forward simulations. The biased estimates of these network parameters may impact the 

conclusions drawn from such simulations that could otherwise potentially provide key 

insights into the possible consequences of various policy manipulations.

Another parameter of much substantive interest to adolescent smoking researchers is the 

measure of smoking popularity (smoking alter, in our models). There is debate in the 

literature, as some have suggested that smokers tend to be more popular (Alexander, Piazza, 

Mekos, and Valente 2001; Valente, Unger, and Johnson 2005), whereas others have 

suggested that smokers tend to be isolates (Ennett and Bauman 1993). Notably, the estimates 

of this parameter varied over missing data strategies. Furthermore, the conclusions regarding 

statistical significance often varied depending on the missing data strategy employed. Given 

that in each strategy we are estimating the same model on what was initially the same 

network sample (before observations were dropped in some strategies) these differing 

conclusions highlight that missing data decisions are not some arcane statistical decision, but 

rather of crucial importance for substantive conclusions.

We also found that whereas ego and dyadic network measures (e.g., out-degree, reciprocity) 

were typically less affected by the choice of missing data strategy, higher order network 

measures were quite strongly impacted. In our study, measures of transitive triplets, 3- 

cycles, and in-in degree assortativity were upwardly biased anywhere from 30% to 170% on 

average by alternative missing data strategies compared to a principled imputation strategy 

at wave 1. The parameter estimates for in-degree (capturing popularity) similarly differed 

over missing data strategies. Although these network structural parameters are often not of 

primary focus to SAB modelers—who are more typically focused on the relative effects of 

influence and selection—these parameters may nonetheless impact the estimated values of 

Hipp et al. Page 13

Soc Networks. Author manuscript; available in PMC 2016 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the selection and influence parameters, which we saw indeed often differed over these 

strategies.

Dropping observations due to missing data generally relies (tacitly or otherwise) on an 

assumption of MCAR, and the differences we detected across missing data strategies for the 

covariate estimates in the smoking equation suggest that MCAR does not characterize the 

missing network data in our sample. The fact that we observed differences in some of the 

summary statistics for the subset of persons with network information at time 1 compared to 

the full sample implies that persons with missing network data are systematically different in 

various ways compared to the entire sample in these networks. The concern of violating the 

MCAR assumption is why researchers are always wary of using an approach that simply 

excludes all cases with missing data from the analyses; our results highlight that this issue is 

equally important for researchers with missing network data. Again, a more principled 

imputation approach for missing network data is called for in such instances. We also note 

that omission of nodes from a network alters its size, which may have non-trivial impact on 

other network properties (see, e.g., Anderson, Butts, and Carley 1999; Butts 2006; Faust 

2007).

Conclusion

Although we make no claim that any of these approaches yields the “true” results, nor that 

these are exhaustive of all possible missing data strategies, it is nonetheless the case that 

some of these strategies for treating missing data are more defensible compared to others 

based on our presumptions about how the processes underlying these networks operate. We 

hope that this study will bring about two developments in the SAB literature. First, we hope 

that our results will spur additional research exploring the consequences of different types of 

missing network data using Monte Carlo simulation studies. Simulations would allow 

isolating the consequences of different types of missing network data for the parameter 

estimates of SAB models. It would also allow assessing whether the consequences differ 

based on the size of the network, or based on various characteristics of the network (e.g., 

density, clustering).

Second, it is our hope that applied researchers will give more consideration to missing 

network information, and even consider other possible strategies that might be employed. 

We have focused here on the strategies most commonly utilized in the existing literature. 

Strategy 1, which discards all persons who are missing at any wave in the study, may be 

particularly hard to defend given that it assumes that those persons are not part of the 

network. Given that they are in fact part of the network, this potentially biases the structural 

network parameters. To the extent that excluded persons are different from those included in 

the network, this strategy can yield biased results. Strategy 2, which excludes individuals 

who were not in the sample at wave 1, suffers from a similar strong assumption, albeit 

somewhat weaker since it includes persons present in the network at subsequent waves. 

Although strategy 3 has the virtue of including all members of the network present at any of 

the waves, it makes the rather strong assumption that those who did not report network data 

at wave 1 in fact had no social ties at that time. This artificially deflates network density at 

the first time point (potentially in a manner that is conflated with one or more predictors, if 
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non-response is non-random), and exaggerates the apparent rate of change between the first 

and second time points (since some ties appearing in time 2 appear to be novel due to the 

fact that they were taken to be absent at time 1). Strategy 4 attempts to build a model 

predicting which ties actually exist for these missing persons at the first time step: although 

we cannot know whether this model of ties is the true one, it does seem likely that it will do 

a better job of predicting ties than simply assuming that none exist (as is done in strategy 3). 

Of the four strategies presented here, we recommend this last approach on the grounds of its 

substantive plausibility, maximal use of available data, ease of robustness testing (via 

multiple imputation), and capacity for future refinement. Regardless, our findings clearly 

demonstrate that researchers are well-advised to carefully consider the strategies they use for 

handling missing data when fitting SAB models, given that the results obtained can differ 

quite strongly based on this choice.
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Appendix 1: Description of ERGM imputation procedure

Due to missing data, each school has an incomplete adjacency matrix whose i,j entries are: 0 

if it is known that student i did not nominate student j; 1 if it is known that student i did 

nominate student j; and NA if it is not known whether student i nominated student j as a 

friend. For each student we have the minimum and maximum number of nominations from 

him or her to: the set of all male students; the set of all female students; the set of all male 

off-roster students; and the set of all female off-roster students. These counts are inferred 

from the invalid and/or off-roster entries in each respondent's male and female nominee lists, 

and (for non- respondents) from the global male/female out-degree constraint. The edge 

variables that are coded as NA are the portion of the adjacency matrix that the ERG model 

will impute during the simulation portion of the process, subject to these group-specific out-

degree constraints.

We use a combination of inference and simulation with a model-based procedure within an 

ERGM-based framework to estimate uncertain edge states associated with missing data. The 

ERGM approach specifies the model based on structural network measures and a covariate 

set X. We follow Gile and Handcock (2006) in constructing the observed data likelihood for 

the above model that contains both the missing and non-missing portion. Maximum 

likelihood inference requires a complex MCMC-based algorithm described by Snijders 

(2002), Snijders et al. (2006), and Wasserman and Robins (2005), and we employ the 

implementation of this method in the ergm package (Hunter, Handcock, Butts, Goodreau, 

and Morris 2008) of the statnet (Goodreau, Handcock, Hunter, Butts, and Morris 2008; 

Handcock, Hunter, Butts, Goodreau, and Morris 2008) software suite.

To impute the unobserved elements in our respective nomination networks, we must first 

model each network. Using the above approach, we estimated a model that contained: 1) the 

edge count statistic (i.e., a homogeneous Bernoulli digraph with support constraints); 2) a 

mutuality/reciprocity effect; 3) the absolute difference in school grade (de facto age) and 

gender; 4) homophily effects for those in the same class(es), the same club(s), and the same 
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sport- team(s); 5) a geometrically weighted edgewise shared partner term (gwesp) fixed at 

its optimal value (δopt).4 For all but one school the models converged within 2,000 

iterations.5

After estimating the model parameters, we employ conditional ERGM simulation to impute 

missing edge states. In this case, missing edge variables (NAs) are imputed based on the 

model estimated with the observed data, with observed edges (1s) and nulls (0s) unaltered 

and all degree constraints based on the observed data enforced.

Appendix 2

Table A1
Network statistics

School Net statistics Strategy 1 Strategy 2 Strategy 3 Strategy 4

077

# of nodes 851 1,674 2,104 2,104

# of edges at t1 1,765 3,706 4,585 5,685

# of edges at t2 1,237 2,514 4,201 4,201

# of edges at t3 1,074 1,469 2,296 2,296

058

# of nodes 479 757 1,024 1,024

# of edges at t1 1,854 3,331 4,037 6,063

# of edges at t2 1,476 2,437 3,713 3,713

# of edges at t3 1,308 1,673 2,484 2,484

007

# of nodes 121 160 181 181

# of edges at t1 456 812 853 1,193

# of edges at t2 211 338 416 416

# of edges at t3 280 375 421 421

008

# of nodes 70 111 133 133

# of edges at t1 183 372 413 706

# of edges at t2 116 239 320 320

# of edges at t3 191 281 359 359

002

# of nodes 48 54 78 78

# of edges at t1 129 192 255 367

# of edges at t2 62 90 155 155

# of edges at t3 87 110 183 183

126

# of nodes 42 46 62 62

# of edges at t1 168 209 229 285

# of edges at t2 89 105 144 144

# of edges at t3 66 74 110 110

4The optimal value is determined by estimating a series of models with gwesp fixed from 0 to 3 with 0.1 increment at a step and 
locating the one with the smallest AIC, BIC, and log-likelihood values.
5We raised the iteration limit for the largest school (077) given that the models required between 7,000 to 22,000 iterations before 
reaching convergence.
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Table A2
Smoking level at t1

School Smoking level (past 30 days, %) Strategy 1 Strategy 2 Strategy 3 & 4

077

0 = never 70.04 70.67 68.60

1 = 1-3days 19.39 17.68 17.54

2 = 4-21 days 4.70 4.54 4.91

3 = 22 or more days 5.88 7.11 8.95

058

0 = never 43.01 43.46 42.01

1 = 1-3days 24.63 22.59 21.31

2 = 4-21 days 8.98 10.04 9.02

3 = 22 or more days 23.38 23.91 27.66

007

0 = never 57.02 55.62 55.84

1 = 1-3days 15.70 16.85 15.74

2 = 4-21 days 4.96 5.62 5.58

3 = 22 or more days 22.31 21.91 22.84

008

0 = never 51.43 45.67 44.30

1 = 1-3days 21.43 18.90 20.13

2 = 4-21 days 10.00 12.60 12.08

3 = 22 or more days 17.14 22.83 23.49

002

0 = never 91.67 92.59 75.64

1 = 1-3days 8.33 7.41 14.10

2 = 4-21 days 0.00 0.00 1.28

3 = 22 or more days 0.00 0.00 8.97

126

0 = never 85.71 84.78 79.03

1 = 1-3days 14.29 13.04 12.90

2 = 4-21 days 0.00 2.17 3.23

3 = 22 or more days 0.00 0.00 4.84

Smoking level at t2

School Smoking level (past 30 days, %) Strategy 1 Strategy 2 Strategy 3 & 4

077

0 = never 79.20 79.93 78.28

1 = 1-3days 6.93 6.99 7.44

2 = 4-21 days 8.11 6.93 7.07

3 = 22 or more days 5.76 6.15 7.21

058

0 = never 53.03 56.14 53.18

1 = 1-3days 10.02 9.38 9.12

2 = 4-21 days 12.94 11.62 11.58

3 = 22 or more days 24.01 22.85 26.13

007
0 = never 57.85 58.43 56.85

1 = 1-3days 7.44 8.43 8.12
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Smoking level at t2

School Smoking level (past 30 days, %) Strategy 1 Strategy 2 Strategy 3 & 4

2 = 4-21 days 11.57 11.80 13.20

3 = 22 or more days 23.14 21.35 21.83

008

0 = never 68.57 66.93 65.10

1 = 1-3days 8.57 7.87 8.72

2 = 4-21 days 11.43 8.66 8.72

3 = 22 or more days 11.43 16.54 17.45

002

0 = never 95.84 94.45 92.31

1 = 1-3days 0.00 1.85 2.56

2 = 4-21 days 2.08 1.85 1.28

3 = 22 or more days 2.08 1.85 3.85

126

0 = never 92.86 91.30 90.32

1 = 1-3days 2.38 4.35 4.84

2 = 4-21 days 2.38 2.17 1.61

3 = 22 or more days 2.38 2.17 3.23

Smoking level at t3

School Smoking level (past 30 days, %) Strategy 1 Strategy 2 Strategy 3 & 4

077

0 = never 75.21 72.22 71.76

1 = 1-3days 8.93 9.08 9.37

2 = 4-21 days 8.23 8.72 8.91

3 = 22 or more days 7.64 9.98 9.96

058

0 = never 47.60 47.82 45.39

1 = 1-3days 10.65 12.29 11.68

2 = 4-21 days 11.69 10.04 10.55

3 = 22 or more days 30.06 29.85 32.38

007

0 = never 49.59 46.63 47.21

1 = 1-3days 7.44 8.43 8.12

2 = 4-21 days 8.26 10.11 9.64

3 = 22 or more days 34.71 34.83 35.03

008

0 = never 44.29 43.31 46.31

1 = 1-3days 10.00 10.24 9.40

2 = 4-21 days 17.14 15.75 14.77

3 = 22 or more days 28.57 30.71 29.53

002

0 = never 85.41 81.48 83.33

1 = 1-3days 4.17 5.56 7.69

2 = 4-21 days 6.25 5.56 3.85

3 = 22 or more days 4.17 7.41 5.13

126

0 = never 80.95 82.61 80.65

1 = 1-3days 9.52 8.70 9.68

2 = 4-21 days 7.14 6.52 4.84
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Smoking level at t3

School Smoking level (past 30 days, %) Strategy 1 Strategy 2 Strategy 3 & 4

3 = 22 or more days 2.38 2.17 4.84

Table A3
Covariate statistics

School Strategy 1 Strategy 2 Strategy 3 & 4

077

Female (%) 51.00 47.97 47.52

Grade level (%)

 10th grade 47.00 38.05 37.24

 11th grade 43.83 32.74 33.43

 12th grade 9.17 29.21 29.34

Depression, mean (sd) 0.14(0.51) 0.11(0.52) 0.14(0.53)

Home smoking environment, mean (sd) 0.79(0.76) 1.11(0.77) 1.09(0.77)

Parental support, mean (sd) -0.02(0.28) -0.03(0.29) -0.05(0.30)

058

Female (%) 47.18 48.48 48.46

Grade level (%)

 9th grade 35.28 28.79 28.79

 10th grade 33.40 30.38 28.48

 11th grade 24.01 21.14 21.72

12th grade 7.31 19.68 21.00

Depression, mean (sd) -0.05(0.51) -0.04(0.51) 0.00(0.53)

Home smoking environment, mean (sd) 1.24(0.78) 1.38(0.74) 1.42(0.73)

Parental support, mean (sd) -0.04(0.29) -0.03(0.28) -0.04(0.29)

007

Female (%) 42.98 47.19 48.22

Grade level (%)

 7th grade 17.36 15.17 14.72

 8th grade 19.01 16.29 15.74

 9th grade 22.31 22.47 22.84

10th grade 18.18 14.04 14.21

 11th grade 17.36 15.17 15.23

 12th grade 5.79 16.85 17.26

Depression, mean (sd) -0.13(0.47) -0.11(0.47) -0.09(0.48)

Home smoking environment, mean (sd) 1.33(0.80) 1.42(0.74) 1.43(0.74)

Parental support, mean (sd) 0.07(0.23) 0.07(0.25) 0.06(0.24)

008

Female (%) 45.71 50.39 48.99

Grade level (%)

 7th grade 27.14 21.26 21.48

 8th grade 18.57 19.69 20.81

 9th grade 12.86 14.17 14.09
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School Strategy 1 Strategy 2 Strategy 3 & 4

 10th grade 22.86 15.75 16.78

 11th grade 14.29 12.60 11.41

 12th grade 4.29 16.54 15.44

Depression, mean (sd) -0.08(0.49) -0.07(0.51) -0.06(0.50)

Home smoking environment, mean (sd) 1.30(0.73) 1.44(0.66) 1.42(0.68)

Parental support, mean (sd) 0.03(0.28) 0.02(0.27) 0.02(0.27)

002

Female (%) 56.25 53.70 52.56

Grade level (%)

 7th grade 18.75 18.52 21.79

 8th grade 22.92 20.37 19.23

 9th grade 20.83 20.37 21.79

 10th grade 12.50 12.96 14.10

 11th grade 18.75 20.37 16.67

 12th grade 6.25 7.41 6.41

Depression, mean (sd) -0.14(0.34) -0.15(0.35) -0.16(0.38)

Home smoking environment, mean (sd) 0.59(0.68) 0.69(0.72) 0.87(0.81)

Parental support, mean (sd) 0.13(0.19) 0.13(0.19) 0.13(0.20)

126

Female (%) 52.38 50.00 53.23

Grade level (%)

 7th grade 45.24 45.65 46.77

 8th grade 50.00 50.00 48.39

 9th grade 4.76 4.35 4.84

Depression, mean (sd) -0.10(0.48) -0.12(0.47) -0.03(0.51)

Home smoking environment, mean (sd) 1.14(0.73) 1.14(0.71) 1.16(0.75)

Parental support, mean (sd) 0.12(0.20) 0.13(0.20) 0.08(0.22)

Table A4
Four Models for school 077

Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Constant friendship rate (period 1) 8.40*** (0.69) 9.95*** (0.56) 15.51*** (2.57) 22.87*** (0.91)

 Constant friendship rate (period 2) 4.92*** (0.24) 6.15*** (0.29) 8.74*** (0.86) 9.47*** (0.44)

 Out-degree (density) -4.66*** (0.09) -4.33*** (0.08) -4.25*** (0.30) -4.39*** (0.06)

 Reciprocity 2.94*** (0.12) 2.90*** (0.11) 2.48*** (0.13) 2.89*** (0.09)

 Transitive triplets 0.95*** (0.06) 1.03*** (0.05) 0.98*** (0.21) 0.83*** (0.04)

 3-cycles -0.89*** (0.14) -0.94*** (0.13) -1.07*** (0.15) -0.81*** (0.14)

 In-degree - popularity 0.10* (0.04) 0.10** (0.03) 0.07* (0.03) 0.06*** (0.02)

 In-in degreeˆ(1/2) assortativity -0.14* (0.07) -0.19** (0.06) -0.11* (0.05) -0.05† (0.02)
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Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Race similarity 1.41*** (0.06) 1.20*** (0.05) 1.09*** (0.04) 1.09*** (0.04)

 Grade similarity 0.66*** (0.04) 0.54*** (0.03) 0.51*** (0.03) 0.50*** (0.02)

 Smoking alter 0.09 (0.07) 0.15* (0.06) 0.22** (0.07) 0.09** (0.03)

 Smoking ego -0.02 (0.06) 0.01 (0.08) -0.03 (0.07) 0.07† (0.04)

 Smoking similarity 0.26** (0.09) 0.36*** (0.09) 0.35* (0.14) 0.16* (0.08)

 Limited nomination ego -0.48*** (0.12) -0.46*** (0.10) -0.48*** (0.08) -0.52*** (0.07)

Behavior decision: influence processes

 Rate smoking behavior (period 1) 3.47*** (0.47) 3.09*** (0.42) 13.45*** (2.65) 12.77*** (1.23)

 Rate smoking behavior (period 2) 5.82*** (1.57) 17.29*** (3.27) 24.71*** (3.62) 22.33*** (2.10)

 Smoking behavior linear shape -2.39*** (0.15) -2.43*** (0.11) -2.44*** (0.10) -2.46*** (0.08)

 Smoking behavior quadratic shape 0.71*** (0.04) 0.73*** (0.03) 0.72*** (0.06) 0.74*** (0.03)

 Smoking behavior in-degree -0.02 (0.04) -0.01 (0.02) 0.00 (0.02) 0.00 (0.01)

 Smoking behavior new similarity 0.54* (0.27) 0.51** (0.16) 0.51* (0.24) 0.56** (0.20)

 Effect from gender (female=1) -0.18* (0.08) -0.12* (0.05) -0.13*** (0.04) -0.13** (0.05)

 Effect from Black -0.26* (0.11) -0.33*** (0.07) -0.25*** (0.07) -0.25*** (0.04)

 Effect from depression 0.13† (0.07) 0.07 (0.06) 0.09 (0.06) 0.09* (0.04)

 Effect from home smoking 
environment

0.18*** (0.05) 0.18*** (0.03) 0.14*** (0.02) 0.14*** (0.02)

 Effect from parental support -0.32* (0.14) -0.19* (0.09) -0.16† (0.09) -0.17* (0.08)

†
Two-sided p<0.1;

*
Two-sided p<0.05;

**
Two-sided p<0.01;

***
Two-sided p<0.001

Table A5
Four Models for school 058

Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Constant friendship rate (period 1) 10.66*** (0.49) 13.59*** (0.56) 16.80*** (0.66) 23.47*** (0.82)

 Constant friendship rate (period 2) 9.47*** (0.46) 10.68*** (0.55) 13.79*** (0.46) 15.15*** (0.52)

 Out-degree (density) -2.53*** (0.06) -2.66*** (0.06) -2.62*** (0.06) -2.76*** (0.05)

 Reciprocity 2.59*** (0.08) 2.47*** (0.06) 2.35*** (0.11) 2.51*** (0.06)

 Transitive triplets 0.70*** (0.03) 0.60*** (0.03) 0.66*** (0.02) 0.55*** (0.02)

 3-cycles -0.47*** (0.07) -0.51*** (0.06) -0.63*** (0.06) -0.46*** (0.04)

 In-degree - popularity 0.07*** (0.01) 0.06*** (0.01) 0.06*** (0.02) 0.05*** (0.01)

 In-in degreeˆ(1/2) assortativity -0.15*** (0.02) -0.09*** (0.02) -0.09** (0.03) -0.06** (0.01)

 Grade similarity 0.50*** (0.03) 0.49*** (0.02) 0.47*** (0.02) 0.43*** (0.02)

 Smoking alter 0.04† (0.02) 0.06** (0.02) 0.08** (0.02) 0.08*** (0.02)

 Smoking ego -0.04* (0.02) -0.01 (0.02) 0.00 (0.02) 0.00 (0.02)

Hipp et al. Page 21

Soc Networks. Author manuscript; available in PMC 2016 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Smoking similarity 0.20*** (0.03) 0.24*** (0.03) 0.27*** (0.03) 0.26*** (0.02)

 Limited nomination ego -0.71*** (0.08) -0.80*** (0.07) -0.70*** (0.06) -0.71*** (0.06)

Behavior decision: influence processes

 Rate smoking behavior (period 1) 2.06*** (0.23) 2.45*** (0.30) 9.41*** (1.00) 9.18*** (1.28)

 Rate smoking behavior (period 2) 6.03** (1.22) 11.06*** (1.33) 14.55*** (1.42) 14.50*** (1.83)

 Smoking behavior linear shape -2.31*** (0.16) -2.29*** (0.12) -2.28*** (0.09) -2.25*** (0.10)

 Smoking behavior quadratic shape 0.72*** (0.04) 0.71*** (0.03) 0.67*** (0.03) 0.67*** (0.02)

 Smoking behavior in-degree 0.02 (0.02) 0.01 (0.01) 0.02† (0.01) 0.01 (0.01)

 Smoking behavior new similarity 0.60*** (0.16) 0.41*** (0.12) 0.82*** (0.11) 0.80*** (0.10)

 Effect from gender (female=1) 0.03 (0.09) -0.00 (0.06) -0.01 (0.04) -0.01 (0.04)

 Effect from depression 0.15† (0.08) 0.13* (0.06) 0.13** (0.04) 0.13** (0.04)

 Effect from home smoking 
environment

0.11* (0.05) 0.11** (0.04) 0.12*** (0.03) 0.12*** (0.03)

 Effect from parental support 0.23 (0.15) 0.15 (0.11) -0.04 (0.07) -0.02 (0.07)

†
Two-sided p<0.1;

*
Two-sided p<0.05;

**
Two-sided p<0.01;

***
Two-sided p<0.001

Table A6
Four Models for school 007

Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Constant friendship rate (period 1) 7.46*** (0.59) 10.73*** (0.84) 10.85*** (0.91) 13.53*** (1.13)

 Constant friendship rate (period 2) 5.12*** (0.47) 7.68*** (0.80) 7.64*** (0.85) 8.19*** (1.13)

 Out-degree (density) -2.37*** (0.17) -2.25*** (0.12) -2.19*** (0.13) -2.25*** (0.14)

 Reciprocity 2.22*** (0.19) 1.92*** (0.15) 1.96*** (0.16) 1.97*** (0.17)

 Transitive triplets 0.74*** (0.10) 0.51*** (0.05) 0.55*** (0.06) 0.38*** (0.06)

 3-cycles -0.49** (0.18) -0.54*** (0.12) -0.51*** (0.14) -0.30** (0.11)

 In-degree - popularity 0.15*** (0.03) 0.10*** (0.02) 0.11*** (0.02) 0.08*** (0.02)

 In-in degreeˆ(1/2) assortativity -0.24** (0.09) -0.11* (0.05) -0.16** (0.06) -0.10* (0.06)

 Grade similarity 0.58*** (0.06) 0.51*** (0.04) 0.51*** (0.04) 0.44*** (0.06)

 Smoking alter 0.09† (0.05) 0.04 (0.04) 0.01 (0.04) 0.04 (0.04)

 Smoking ego 0.03 (0.06) 0.01 (0.05) 0.03 (0.05) -0.02 (0.05)

 Smoking similarity 0.11* (0.05) 0.11* (0.06) 0.10† (0.06) 0.10† (0.06)

 Limited nomination ego -0.89*** (0.10) -0.73*** (0.09) -0.74*** (0.08) -0.68*** (0.07)

Behavior decision: influence processes

 Rate smoking behavior (period 1) 2.98** (1.02) 6.05** (1.83) 8.41* (3.52) 8.44* (3.65)

 Rate smoking behavior (period 2) 7.25*** (1.87) 18.23* (4.38) 17.63** (6.36) 17.61* (7.00)
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Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Smoking behavior linear shape -2.90*** (0.35) -2.61*** (0.19) -2.52*** (0.33) -2.53*** (0.27)

 Smoking behavior quadratic shape 0.85*** (0.09) 0.77*** (0.06) 0.76*** (0.06) 0.76*** (0.07)

 Smoking behavior in-degree 0.05 (0.06) 0.02 (0.03) 0.00 (0.02) 0.00 (0.02)

 Smoking behavior new similarity -0.28 (0.30) 0.09 (0.19) 0.15 (0.23) 0.17 (0.36)

 Effect from gender (female=1) -0.03 (0.17) -0.02 (0.08) -0.11 (0.09) -0.11 (0.08)

 Effect from depression 0.52* (0.20) 0.08 (0.11) 0.05 (0.10) 0.06 (0.09)

 Effect from home smoking 
environment

0.25* (0.11) 0.19* (0.08) 0.19* (0.09) 0.19** (0.06)

 Effect from parental support 0.16 (0.42) -0.11 (0.19) -0.20 (0.18) -0.20 (0.20)

†
Two-sided p<0.1;

*
Two-sided p<0.05;

**
Two-sided p<0.01;

***
Two-sided p<0.001

Table A7
Four Models for school 008

Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Constant friendship rate (period 1) 5.65*** (0.61) 9.18*** (0.84) 10.82*** (1.09) 12.96*** (1.78)

 Constant friendship rate (period 2) 4.06*** (0.62) 6.29*** (0.77) 6.34*** (0.70) 6.94*** (0.64)

 Out-degree (density) -1.73*** (0.35) -1.54*** (0.35) -1.67*** (0.29) -1.88*** (0.19)

 Reciprocity 1.86*** (0.33) 1.80*** (0.26) 1.82*** (0.26) 1.97*** (0.26)

 Transitive triplets 0.93*** (0.18) 0.53*** (0.11) 0.47*** (0.12) 0.32** (0.10)

 3-cycles -0.53* (0.27) -0.62** (0.19) -0.53** (0.19) -0.27* (0.13)

 In-degree - popularity 0.23*** (0.07) 0.14*** (0.03) 0.11** (0.04) 0.09** (0.03)

 In-in degreeˆ(1/2) assortativity -0.42† (0.23) -0.24* (0.10) -0.16 (0.13) -0.13 (0.10)

 Grade similarity 0.57*** (0.09) 0.64*** (0.06) 0.59*** (0.05) 0.49*** (0.05)

 Smoking alter 0.20† (0.12) 0.42† (0.25) 0.45† (0.24) 0.44* (0.19)

 Smoking ego -0.26 (0.18) -0.52 (0.34) -0.47 (0.29) -0.38* (0.18)

 Smoking similarity 0.41* (0.18) 0.36 (0.28) 0.45 (0.30) 0.46* (0.23)

 Limited nomination ego -1.57*** (0.45) -1.49*** (0.30) -1.34*** (0.28) -1.21*** (0.25)

Behavior decision: influence processes

 Rate smoking behavior (period 1) 3.22** (1.00) 8.15** (2.51) 11.83** (3.92) 11.32*** (2.35)

 Rate smoking behavior (period 2) 10.53* (5.16) 42.50** (13.16) 40.18*** (10.43) 37.01*** (7.68)

 Smoking behavior linear shape -2.08*** (0.33) -2.36*** (0.24) -2.50*** (0.23) -2.44*** (0.27)

 Smoking behavior quadratic shape 0.66*** (0.10) 0.71*** (0.08) 0.70*** (0.08) 0.70*** (0.07)

 Smoking behavior in-degree -0.04 (0.06) -0.01 (0.02) 0.01 (0.02) 0.00 (0.02)

 Smoking behavior new similarity 0.19 (0.32) 0.13 (0.21) 0.34 (0.44) 0.32† (0.19)

 Effect from gender (female=1) 0.06 (0.23) -0.03 (0.08) -0.02 (0.08) -0.02 (0.09)
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Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Effect from depression -0.12 (0.21) -0.08 (0.08) -0.08 (0.08) -0.09 (0.08)

 Effect from home smoking 
environment

0.10 (0.12) 0.10 (0.07) 0.16† (0.08) 0.16* (0.07)

 Effect from parental support -0.36 (0.36) -0.29 (0.19) -0.33* (0.14) -0.31† (0.18)

†
Two-sided p<0.1;

*
Two-sided p<0.05;

**
Two-sided p<0.01;

***
Two-sided p<0.001

Table A8
Four Models for school 002

Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Constant friendship rate (period 1) 4.71*** (0.63) 5.78*** (0.62) 7.82*** (0.74) 9.77*** (0.97)

 Constant friendship rate (period 2) 3.41*** (0.50) 4.38*** (0.58) 5.48*** (0.58) 6.28*** (0.68)

 Out-degree (density) -1.94*** (0.32) -2.03*** (0.28) -1.74*** (0.38) -1.95*** (0.20)

 Reciprocity 1.92*** (0.42) 1.75*** (0.32) 1.87*** (0.32) 1.85*** (0.32)

 Transitive triplets 0.93*** (0.22) 0.75*** (0.15) 0.76*** (0.13) 0.60*** (0.10)

 3-cycles -0.95** (0.44) -1.06*** (0.31) -0.99*** (0.26) -0.62** (0.19)

 In-degree - popularity 0.31*** (0.09) 0.21** (0.07) 0.21** (0.05) 0.14*** (0.03)

 In-in degreeˆ(1/2) assortativity -0.62* (0.30) -0.28 (0.20) -0.39† (0.23) -0.21* (0.09)

 Grade similarity 1.02*** (0.17) 0.95*** (0.13) 0.86*** (0.10) 0.74*** (0.09)

 Smoking similarity 2.04* (0.89) 1.05** (0.38) 0.14 (0.15) 0.17* (0.08)

 Limited nomination ego -1.08** (0.38) -1.04*** (0.21) -1.07*** (0.25) -0.89*** (0.16)

†
Two-sided p<0.1;

*
Two-sided p<0.05;

**
Two-sided p<0.01;

***
Two-sided p<0.001

Table A9
Four Models for school 126

Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 Constant friendship rate (period 1) 6.94*** (0.82) 7.91*** (0.84) 9.17*** (0.98) 9.69*** (0.97)

 Constant friendship rate (period 2) 3.51*** (0.50) 3.76*** (0.50) 4.91*** (0.61) 5.15*** (0.61)

 Out-degree (density) -2.51*** (0.29) -2.58*** (0.31) -2.28*** (0.24) -2.47*** (0.20)

 Reciprocity 2.01*** (0.47) 1.85*** (0.44) 1.65*** (0.31) 1.65*** (0.28)

 Transitive triplets 0.71*** (0.16) 0.74*** (0.18) 0.68*** (0.14) 0.59*** (0.09)

3-cycles -0.12 (0.25) 0.00 (0.30) -0.28 (0.21) -0.18 (0.16)
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Effect name Model 1 Model 2 Model 3 Model 4

Network decision: selection processes beta (s.e.) beta (s.e.) beta (s.e.) beta (s.e.)

 In-degree - popularity 0.21*** (0.06) 0.19** (0.06) 0.14*** (0.04) 0.12*** (0.03)

 In-in degreeˆ(1/2) assortativity -0.44* (0.21) -0.44† (0.24) -0.33† (0.18) -0.22* (0.09)

 Grade similarity 0.89*** (0.25) 0.78*** (0.22) 0.93*** (0.20) 0.84*** (0.18)

 Smoking similarity 0.06 (0.16) 0.20 (0.17) 0.02 (0.12) 0.06 (0.09)

 Limited nomination ego -0.97*** (0.28) -1.14*** (0.31) -0.93*** (0.26) -0.88*** (0.19)

†
Two-sided p<0.1;

*
Two-sided p<0.05;

**
Two-sided p<0.01;

***
Two-sided p<0.001
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Highlights

• The consequences of missing longitudinal network data are under-studied

• We estimate SAB models using four different missing data strategies

• The estimated parameters often differ considerably across missing data 

techniques

• The influence and selection effects can differ over missing data techniques
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