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Abstract

We review recent work that shows how learning to categorize objects changes how those objects 

are represented in the mind and the brain. After category learning, visual perception of objects is 

enhanced along perceptual dimensions that were relevant to the learned categories, an effect we 

call dimensional modulation (DM). DM stretches object representations along category-relevant 

dimensions and shrinks them along category-irrelevant dimensions. The perceptual advantage for 

category-relevant dimensions extends beyond categorization and can be observed during visual 

discrimination and other tasks that do not depend on the learned categories. fMRI shows that 

category learning causes ventral stream neural populations in visual cortex representing objects 

along a category-relevant dimension to become more distinct. These results are consistent with a 

view that specific aspects of cognitive tasks associated with objects can account for how our visual 

system responds to objects.

Keywords

Categorization; Category Learning; Perceptual Learning; Face Recognition; fMRI

Learning to group objects into categories is a basic biological function, letting us recognize 

visually different objects as the same kind. To categorize an object, the visual system must 

create a perceptual representation, that representation is then compared with learned 

category knowledge, and a categorization decision is made (e.g., see Richler & Palmeri, 

2014). Cells in the ventral stream of the visual cortex are sensitive to both simple and 

complex visual features and dimensions (Ullman, Vidal-Naquet, & Sali, 2002). While 

evolutionary, genetic, and developmental mechanisms play key roles in shaping the 

properties of visual neurons, debate continues about the effect of experience on 

representations in the adult visual cortex. As predicted by some cognitive models, our recent 

work has shown how category learning optimizes neural representations in visual cortex to 

make discriminations useful for the cognitive tasks associated with learned objects.
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Category Learning Stretches Object Representations

Many models of categorization assume that objects are represented along multiple 

psychological dimensions (Ashby, 1992; Richler & Palmeri, 2014). These dimensions can 

be psychophysically simple, like size or color (Goldstone, 1994), more complex but 

localized, like object parts (Nosofsky, 1986; Sigala & Logothetis, 2002), or global properties 

related to object shape (Folstein et al., 2012, 2013; Freedman et al., 2003; Goldstone & 

Steyvers, 2001; Gureckis & Goldstone 2008; Jiang et al. 2007).

For object categories, certain dimensions may be more relevant than others. Imagine that 

members of one category have a particular shape and color while members of a different 

category have a different shape and color. In that case, shape and color would be relevant 

dimensions while other dimensions, like size and texture, would be irrelevant. A key 

assumption of many successful category-learning models (e.g., Kruschke, 1992; Nosofsky, 

1984, 1986) is that relevant dimensions are more heavily weighted. This “stretches” 

psychological space along these dimensions, making objects that differ along them less 

similar to one another (Figures 1 and 2). We call the effect of this stretching dimensional 

modulation (DM) because object similarity is selectively modulated along category-relevant 

dimensions.

We can further contrast flexible and stable DM (Folstein, Gauthier, & Palmeri, 2012; 

Gauthier & Palmeri, 2002; Goldstone, 1998; Palmeri & Gauthier, 2004; Richler & Palmeri, 

2014). DM can sometimes be viewed as the result of a flexible process, with dimension 

weights shifting in an optimal fashion depending on current task demands (Nosofsky, 1984, 

1998). But DM can also be the result of a more stable, task-independent form of perceptual 

learning in which diagnostic dimensions become perceptually more discriminable (e.g. 

Goldstone, 1994). Stable DM is commonly measured in perceptual discrimination tasks 

administered following category learning (e.g., Goldstone & Steyvers, 2001; Notman, 

Sowden, & Özgen, 2005). While both types of DM are “flexible” in the sense that similarity 

is altered by the kind of experience with objects, flexible DM alters similarity based on 

current task demands, while stable DM preserves changes in similarity over a longer time 

frame irrespective of the current task. While it is likely that flexible DM is an effect of 

selective attention, it may well be that stable DM becomes independent of selective 

attention. Our focus here is this stable version of DM.

First, we outline behavioral evidence for stable DM. We then review evidence for a neural 

signature of DM. We close with further evidence for the task-independence of stable DM.

Stable Dimensional Modulation for Complex Objects

Early behavioral evidence for stable DM came from simple dimensions like color, size, and 

brightness (Goldstone, 1994). There is also evidence for stable DM for faces (e.g., Beale & 

Keil, 1995). For example, Goldstone and Steyvers (2001) created a two-dimensional space 

of face morphs with the dimensions defined by morphs between pairs of faces (Figure 2a 

shows an analogous example with cars). Categories were defined such that one of the two 

face dimensions was relevant and the other was irrelevant. They found evidence for stable 

DM after category learning. Faces that differed along the relevant dimension were easier to 
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discriminate than faces that differed along the irrelevant dimension (see also Gureckis & 

Goldstone, 2008).

Surprisingly, evidence for stable DM in non-face objects has been rather mixed. Consider, 

for example, the work by Jiang et al. (2007), who trained participants to categorize cars from 

a morphspace of blends between four different cars. Their primary aim was to test a 

feedforward model of object recognition (Riesenhuber & Poggio, 1999), which predicted no 

category-related changes in perceptual representations as a consequence of category 

learning: Indeed, they observed no category-related fMRI changes in visual cortex; they 

were only observed in frontal cortex. But they also observed no behavioral evidence for 

category-related changes in perceptual discrimination either: No stable DM. This is one of 

several studies to find neither behavioral nor neural evidence for DM of any kind 

(Freedman, Riesenhuber, Poggio, & Miller, 2003; Gillebert, Op de Beeck, Panis, & 

Wagemans, 2008; Op de Beeck, Wagemans, & Vogels, 2003; van der Linden, van 

Ruennout, & Idefrey, 2010). These negative results are puzzling because, at least on the 

surface, these experiments are similar to those that reported DM using simple stimuli and 

faces (Goldstone & Steyvers, 2001; Gureckis & Goldstone, 2008).

We recently provided evidence that these inconsistent findings can be explained by critical 

and previously unrecognized differences in how the morphed stimulus spaces used in these 

experiments were created. Figure 2a illustrates a morphspace of cars created using the same 

procedure used by Goldstone and Steyvers; Figure 2c illustrates a morphspace of the type 

used by Jiang et al. Both highlight the boundary defining the categories participants were 

asked to learn. Although the two morphspaces look remarkably similar, their structure is 

actually quite different once you unpack the details of how these morphspaces were created. 

In the Goldstone and Steyvers procedure, the two-dimensional space is defined by two 

independent morphlines and stimuli are created by morphing factorially (a factorial space) 

between positions along each morphline (Figure 2a). By contrast, in the Jiang et al. 

procedure, stimuli in the space were created by sampling over all possible blends (a blended 

space) between four morph parents. The two-dimensional space in Figure 2c is an 

illustration, but a rather fictitious one that masks the true positions of the stimuli within a 

higher-dimensional space (Figure 2d). Folstein et al. (2012) observed stable DM for the 

morph spaces defined by the Goldstone and Steyvers (2001) procedure, but no DM for the 

morph spaces defined by the Jiang et al. (2007) procedure. Folstein et al. (2012) further 

noted that many of the past studies that failed to find evidence for DM used morphing 

procedures analogous to Jiang et al. How categories are defined within a space of objects 

can be critical to whether or not DM is observed.

The dissociation between “factorial” and “blended” spaces might in part be explained by the 

ability (or inability) of selective attention and possibly unsupervised learning mechanisms to 

extract relevant dimensions from a high-dimensional representational space; arguably, these 

are the mechanistic prerequisites for establishing stable DM. Specifically, the factorial space 

has a structure such that, for any given row of cars in Figure 2a, cars in Category 1 are all 

similar to Parent A and cars in category 2 are all similar to Parent B, while similarity to 

Parents C and D is held constant. By contrast, a larger number of distinctions are relevant to 

categorization in the blended space: differences between Parents A and C, A and D, B and 
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C, and B and D, must all be learned. Because all dimensions are relevant, this may prevent 

the isolation or creation (see Folstein et al. 2012) of the relevant dimension. Jones and 

Goldstone (2013) similarly suggested that the visual system isolates principal components of 

shape variance within the categorized stimulus set and uses them as perceptual dimensions. 

Which principal components are extracted is influenced by the distribution of stimuli 

sampled from the stimulus space, and thus more dimensions may be extracted from the more 

complex blended space than from the factorial space. This could make selective attention 

and learning based on a single relevant dimension more difficult, if not impossible.

Neural Correlates of Stable Dimensional Modulation

Prior to searching for neural correlates of stable DM in the brain, it is necessary to 

demonstrate behavioral evidence for stable DM. Jiang et al. (2007) and related work that 

have failed to find neural correlates of stable DM have not met this prerequisite.

By contrast, using a morphspace that allowed DM to be observed behaviorally, Folstein, 

Palmeri, and Gauthier (2013) provided evidence for stable DM in visual cortex using fMRI. 

Subjects first learned to categorize a space of morphed cars and then viewed pairs of cars 

from the morphspace in the scanner. To test for stable DM, participants did not categorize 

the stimuli, but instead made a location judgment that did not require any categorization. 

Using an fMRI-adaptation method (Krekelberg, Boynton, & Van Wezel, 2006), we observed 

in visual cortex (Figure 4) significantly less adaptation when pairs of objects differed along 

the category-relevant dimension than when pairs differed along the category-irrelevant 

dimensions. This suggested that neural populations representing objects were more distinct 

along the relevant dimension, as a consequence of category learning. We also observed 

neural signatures of stable DM in other areas, including the middle frontal gyrus, superior 

and middle temporal gyri, the hippocampus and posterior parahippocampal gyri, which 

suggest that changes in amodal areas also accompany visual category learning (e.g., 

Freedman et al., 2003).

Our work suggests that category learning causes direct modifications to visual cortex, a 

matter of some controversy in the broader perceptual learning literature (Shibata, Sagi, & 

Watanabe, 2014). While attention-gated plasticity is a prime candidate mechanism (Sasaki, 

Nanez, & Watanabe, 2010), other mechanisms, such as influence from top-down links from 

more anterior regions of temporal cortex (Peterson, Cacciamani, Barense, & Scalf, 2012) 

and semantic influences (Collins & Olson, 2014; Gauthier, James, Curby, & Tarr, 2003) are 

also possible.

How Stable is Stable Dimensional Modulation?

In the studies discussed so far, the visual discrimination task was administered after category 

learning within the same session. This leaves open the possibility that stable DM might not 

be so stable, but could be a residual effect of attention from the immediately preceding 

category learning task. For DM to play a central role in acquiring long-term selectivity for 

object categories in the visual system, it requires long-lasting effects. We demonstrated that 

stable DM is still robust even when several days intervene between category learning and 

Folstein et al. Page 4

Curr Dir Psychol Sci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



visual discrimination testing (Figure 3; Folstein, Newton, Van Gulick, Palmeri, & Gauthier, 

2012).

In addition, Van Gulick and Gauthier (in press) showed that DM, once induced, is 

independent of attention and can be further modified by additional perceptual learning. This 

study bridged between category learning studies of the type we have discussed so far, and 

expertise training research. In prior expertise training studies, different participant groups 

learned different tasks with novel objects, causing different perceptual strategies and 

different patterns of specialization in the visual system (Wong, Folstein, & Gauthier, 2011, 

2012). In most category learning studies, the only difference between learned novel object 

categories is that they have different category labels. Going one step further, in Van 

Gulick’s study, after participants categorized artificial “Ziggerin” objects from one 

morphspace into “Vits” and “Mogs”, they then learned to perform one task with Vits, and 

another task with Mogs. They learned individual names for each Vit – a difficult task, 

predicted to induce attention to all stimulus features and perceptual gains for all stimulus 

dimensions. By contrast, participants learned to categorize Mogs according to a local feature 

– the alignment of two small lines drawn on the object. This categorization scheme was 

orthogonal to the original Vit/Mog categories, such that attention to global shape rather than 

the local feature, would be counter productive. Thus, this manipulation redirected attention 

away from dimensions important for learning to categorize Vits vs. Mogs. To measure DM, 

visual discrimination of pairs of Ziggerins differing along one or the other dimension of the 

space was assessed at various points: prior to category learning, after participants learned to 

categorize them as Vits vs. Mogs, and finally after they practiced different tasks with Vits 

and Mogs.

The results were consistent with attention-independent DM. A redistribution of attention 

would have predicted perceptual gains for newly attended dimensions and losses for 

irrelevant dimensions. Instead, the findings suggest stable changes in perception that remain 

after selective attention has been withdrawn or redistributed, with different tunings possible 

depending on experience. The initial category learning caused a perceptual advantage along 

the relevant dimension – the usual DM effect. After learning to individuate Vits and attend 

to Mogs’ local feature, discriminability increased equally for both dimensions, and more for 

Vits than for Mogs. Importantly, the perceptual gains were added on top of the original DM 

effect, suggesting that the DM effect is not merely the result of redistribution of attention to 

task-relevant features.

Future directions

Avenues for future research could focus on the task-specificity and context-specificity of 

DM, behaviorally and neurally. For instance, is DM caused by category learning detectable 

during visual search or when learned features are incorporated into completely new objects? 

Future studies might test if DM is observed even when learned objects are at an unattended 

location or are rapidly presented. And understanding the extent to which DM is sufficient to 

account for real-world perceptual expertise will require a combination of empirical and 

computational efforts.
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Conclusions

Category learning can cause long-lasting perceptual advantages for discriminating objects 

along category-relevant dimensions. While some initial studies suggested that category 

learning has little effect on representations in visual cortex, these studies used methods 

insufficient to produce any behavioral DM. We discovered that changes in visual perception 

via DM as a consequence of category learning are not universal, but depend critically on the 

nature of the objects, their relationships to one another in multidimensional space, and how 

categories are defined within that space (Folstein et al., 2012). When we used conditions that 

give rise to DM behaviorally, we observed DM in visual areas (Folstein et al., 2013). 

Categorization experience has a long-lasting effect on how we see the world and this 

influence is manifest in the plasticity of object representations in the visual system.
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Figure 1. 
Top: In a category learning task, participants categorize objects one at a time and are given 

corrective feedback. Bottom: In a visual discrimination task, participants are tested on their 

ability to make a visual same/different discrimination. Measured visual perceptual changes 

caused by earlier category learning indicate stable dimensional modulation.
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Figure 2. 
Morph spaces used by Folstein et al. (2012), which include, in a) and b), the morph space 

used by Goldstone and Steyvers (2001), and in c) and d), the morph space used by Jiang et 

al. (2007). Both assume spaces that are created from four (roughly) equally dissimilar morph 

parents (A–D). These four parents occupy the corners of a tetrahedron in panels b) and d). 

Panels a) and c) show “flattened” versions of the spaces, separated by category boundaries 

used by the subjects during category learning. Panels b) and d) show the actual spaces 

situated within the tetrahedra. While the flattened two-dimension representations are 

strikingly similar, the actual spaces of morphs and their relationships to the learned category 

boundaries are quite different, with consequences on observed behavior, as outlined in the 

text.
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Figure 3. 
Discrimination performance for category-relevant and category-irrelevant dimensions at 

pretest before category learning, immediately after category learning, and several days after 

category learning.
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Figure 4. 
Ventral stream regions showing stable DM effects. Panel a) shows the results of a whole 

brain analysis showing a global DM effect in the fusiform gyrus. Pairs that differed along 

the relevant dimension adapted less than pairs that differed along the irrelevant dimension. 

Panel b) shows a more posterior area with an acquired categorical perception effect (pairs 

belonging to different categories are compared to pairs in the same category, within the 

same dimension). Pairs that belonged to different categories showed less adaptation than 

pairs in the same category.
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