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Abstract

Functional magnetic resonance imaging (fMRI), a noninvasive neuroimaging method that 

provides an indirect measure of neuronal activity by detecting blood flow changes, has 

experienced an explosive growth in the past years. Statistical methods play a crucial role in 

understanding and analyzing fMRI data. Bayesian approaches, in particular, have shown great 

promise in applications. A remarkable feature of fully Bayesian approaches is that they allow a 

flexible modeling of spatial and temporal correlations in the data. This paper provides a review of 

the most relevant models developed in recent years. We divide methods according to the objective 

of the analysis. We start from spatio-temporal models for fMRI data that detect task-related 

activation patterns. We then address the very important problem of estimating brain connectivity. 

We also touch upon methods that focus on making predictions of an individual's brain activity or a 

clinical or behavioral response. We conclude with a discussion of recent integrative models that 

aim at combining fMRI data with other imaging modalities, such as EEG/MEG and DTI data, 

measured on the same subjects. We also briefly discuss the emerging field of imaging genetics.
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Introduction

Functional magnetic resonance imaging (fMRI) is a noninvasive neuroimaging method that 

measures blood-oxygen level-dependent (BOLD) signals in the brain in vivo. Neural activity 

is associated with localized changes in metabolism. As a brain area becomes active, for 

example in response to a task, there is an increase in local oxygen consumption and, 

consequently, more oxygen-rich blood flows to the active brain area. Thus, activated brain 

areas show a relative increase in oxyhemogloblin and a relative decrease in 

deoxyhemoglobin, as the increased supply of oxygen outpaces the increased demand for it. 

BOLD signals measure metabolic activity in the brain as the difference between the 

oxyhemoglobin and deoxyhemoglobin levels arising from changes in local blood flow.

Figure 1 illustrates a typical fMRI experiment. Distributed three-dimensional (3D) maps of 

localized brain activity are measured over time while the subject lies in the MRI scanner. 

Scans are typically acquired every two to three seconds, with each scan arranged in a three 

dimensional array of volume elements (or “voxels”). Time series of BOLD responses are 
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produced at every voxel, as the temporal evolution of brain activity at that location. An 

fMRI experiment on a single subject can yield hundreds of scans in a single session. fMRI 

data are therefore massive collection of hundreds of thousands of time series, arising from 

spatially distinct locations.

Statistical methods play a crucial role in the analysis of fMRI data7,68,76,96, due to the 

complex spatial and temporal correlation structure of the data, as well as their large 

dimensionality. Early approaches to the analysis of such data would calculate voxel-wise t-

test or ANOVA statistics and/or fit a linear model at each voxel after a series of 

preprocessing steps, including scanner drift and motion corrections, adjustment for cardiac 

and respiratory-related noise, normalization and spatial smoothing, see Huettel et al.54, 

Chapter 10. However, spatial correlation is expected in a voxel-level analysis of fMRI data 

because the response at a particular voxel is likely to be similar to the responses of 

neighboring voxels. Also, correlation among voxels does not necessarily decay with 

distance. All this makes single-voxel approaches not appropriate, as the test statistics across 

voxels are not independent. In addition, serious multiplicity issues arise, due to the large 

dimensionality of the data.

This paper provides a review of the most relevant Bayesian modeling approaches to fMRI 

data analysis that have been developed in recent years. Bayesian approaches have a great 

potential in applications as they allow a flexible modeling of spatial and temporal 

correlations in the data126. We divide methods according to the objective of the analysis. We 

start from spatio-temporal models that estimate task-related activation patterns. In a typical 

task-related fMRI experiment, the whole brain is scanned at multiple times while a subject 

performs a series of tasks. The objective of the analysis is then to detect those brain regions 

that get activated by the external stimulus. We discuss general linear and nonlinear models, 

as well as mixture models, for both single- and multiple-subject studies.

Another important task in fMRI studies, which has received increased interest in recent 

years, is to infer brain connectivity. In general terms, connectivity looks at how brain 

regions interact with each other and how information is transmitted between them, with the 

aim of uncovering the actual mechanisms of how our brain functions. We discuss Bayesian 

approaches for both functional (undirected) and effective (directed) connectivity, as first 

defined by Friston27. Functional connectivity studies seek to identify multiple brain areas 

that exhibit similar temporal profiles, either task-related or at rest, while effective 

connectivity seeks to estimate the directed influence of one brain region on another.

In the last part of our review, we touch upon methods that focus on making predictions of an 

individual's brain activity or a clinical or behavioral response and then conclude the paper 

with a discussion of recent integrative models that aim at combining fMRI data with other 

imaging modalities, such as EEG/MEG and DTI data, measured on the same subjects. We 

also briefly discuss the emerging field of imaging genetics. Figure 2 shows an outline of our 

review.
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Detection of Activated Brain Regions

Detecting brain regions activated by an external stimulus or condition is probably the most 

common objective in fMRI studies. Neuronal activation in response to a stimulus occurs in 

milliseconds and cannot be observed directly. However, neuronal activation is followed by 

the metabolic process which increases blood flow and volume in the activated areas, and can 

therefore be measured by fMRI.

Single-subject modeling

In a typical task-related fMRI experiment, the whole brain is scanned at multiple times while 

a subject performs a series of tasks, and a time series of BOLD response is acquired for each 

voxel of the brain.

The most common statistical model of a time series of BOLD responses relies on the 

Gaussian linear model, known as general linear model (GLM) in the fMRI literature, as first 

proposed by Friston et al.31. This models the observed fMRI signal as the underlying BOLD 

response plus a noise component. Let Yυ be the T × 1 response vector of time series data for 

voxel υ, for υ = 1, …, V, with T the number of time points and V the number of voxels, and 

let Xυ be the T × p design matrix, with p being the number of experimental tasks or input 

stimuli. We write the voxel-wise general linear model as

(1)

where βυ = (βυ,1, …, βυ,p)T is a p × 1 vector of regression coefficients and ∈υ is a T × 1 error 

vector. The error component in (1) captures random noise and various nuisance components 

due to the hardware as well as subject-related physiological noise.

Let's consider the underlying BOLD response component Xυβυ in model (1). This captures 

the relationship between the vascular response and the stimulus as follows. When measuring 

the change in the metabolism of BOLD contrast due to an outside stimulus, the MR signal 

gets delayed hemodynamically12. Such a hemodynamic response is typically referred to as 

the hemodynamic response function (HRF). A widely used model to account for the lapse of 

time between the stimulus onset and the vascular response looks at the BOLD signal as the 

convolution of the stimulus pattern with the HRF. This implies that in model (1) each 

column (task or input stimulus) of Xυ is modeled as

(2)

where x(s) represents the external time-dependent stimulus function for that particular task, 

which is known and corresponds to the experimental paradigm (for example, a vector 

defined with elements set to 1 when the stimulus is “on” and 0 when it is “off”). Figure 3 

depicts such BOLD signal modeling for two commonly used experimental designs, block 

and event-related.
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Several models for the HRF hυ(t) have been proposed. Early proposals included Poisson31 

functions of the type

(3)

Gaussian32 functions and gamma functions67 of the type

(4)

More common choices include the Canonical HRF, defined as the difference of two gamma 

functions33

(5)

and the inverse logit function77, which is generated as a superposition of three separate 

inverse logit functions, that is,

(6)

with L(x) = 1/(1 + e−x).

Several Bayesian approaches to models of type (1) have been investigated in the literature 

and successfully applied to fMRI data24,29,43,48,50,57,62,70,93,94,97,108,109,127,132,139.

These employ hierarchical models that make explicit assumptions on the model parameters, 

allowing inference via posterior densities. A remarkable feature of such approaches is their 

flexibility in modeling temporal and spatial correlation features of the data.

Temporal Modeling

Clearly, some of the temporal correlation of fMRI data is captured via the modeling of the 

HRF, as described above. As temporal characteristics of the HRF vary across brain voxels, 

and across subjects, some authors have employed Bayesian models of type (1) where the 

parameters of the HRFs are voxel-dependent97,127,139, while Xia et al.132 have proposed to 

model the HRF at each voxel non-parametrically.

A significant amount of work has been done in capturing temporal correlation in fMRI data 

via the choice of the noise structure. One approach, often used in the classical literature on 

fMRI data, is to prewhiten the data by obtaining an initial estimate of the autocorrelation 

structure, based on the data, and then removing this correlation by applying a transformation 

to the data31. Other approaches, particularly in the Bayesian literature, look at directly 

modeling the error term. The most common choice is to impose an autoregressive structure 

of order q (AR(q)) on ∈υ in (1),
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(7)

with wυ = (ωυ,1, …, ωυ,q)T a q × 1 vector of AR coefficients and zυ,t a white noise, assuming 

prior distributions on the AR coefficients70,93,94,127. An important source of variability in 

the signal results from scanner drift, which induces slow changes in voxel intensity over 

time (low-frequency noise), and physiological noise, due to patient motion, respiration and 

heartbeat causing fluctuations in signal across both space and time. To account for this, a 

level shift or deterministic trend, modeled, for example, as a pth order polynomial function, 

can be included in model (1)76,131. Alternatively, wavelet transforms can be used to filter 

noise125. In the Bayesian literature, Jeong et al.57 and Zhang et al.139 considered a general 

error structure

(8)

with Συ(m, n) = [γ(|m − n|)] and γ(h) the auto-covariance function of the process generating 

the data, and modeled the correlated noise as being from a 1/f long memory process107. The 

authors applied discrete wavelet transforms (DWT) to model (1), transforming the data into 

the following model in the wavelet domain

(9)

with  and W an orthogonal T × T matrix representing the 

wavelet transform, and performing inference on the model parameters based on the 

transformed data. Wavelet transforms have the advantage of “whitening” the data, i.e., 

reducing the dense covariance matrix structure of the long memory to i.i.d. errors 11,22,84.

Spatial Modeling

Spatial correlation is expected in a voxel-level analysis of fMRI data because the response at 

a particular voxel is likely to be similar to the responses of neighboring voxels. In Bayesian 

modeling, spatial dependence between brain voxels is captured by imposing spatial priors on 

the model parameters. Many approaches use Gaussian Markov random field (GMRF) priors 

on the jth regression coefficient vector β(j) = (β1,j, …, βV,j)T43,97 of the type

(10)

with precision matrix Q having elements

(11)
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with nυ the number of neighbors of voxel υ, and with υ ∼ k denoting that voxels υ and k are 

neighbors. Prior (10) with precision matrix Q as in (11) is equivalent to

(12)

from which we have

(13)

where β−υ,j = {βl,j; l ≠ υ}. Similarly, Penny et al.94 considered a spatial prior on the 

regression coefficient vector β(j) of the type

(14)

with S a V × V spatial kernel matrix equal to the Laplacian operator L, i.e., if w(j) = Lβ(j) then 

ωυ,j is equal to the sum of the differences between βυ,j and its neighbors, for υ = 1, …, V, 

and αj a spatial precision parameter. Each element of w(j) follows a zero-mean Gaussian 

distribution with precision αj. Other spatial prior constructions on the regression coefficients 

that have been investigated in the literature include the diffusion-based spatial priors of 

Harrison et al.50 and the conditional autoregressive (CAR) priors of Harrison and Green48, 

while Flandin and Penny24 used sparse spatial basis function (SSBF) priors on wavelet-

based regression coefficients.

Alternative modeling approaches to those described above look at the task of selecting 

activated voxels as a variable selection problem, that is the identification of the nonzero βυ,j 

in model (1). A common class of priors adopted in the Bayesian literature on variable 

selection specifies mixture distributions with a spike at zero (commonly called spike-and-

slab priors) on the regression coefficients9,38,106. For model (1) we can write

(15)

with γυ = (γυ,1, …, γυ,p) binary indicators representing the activation status, i.e., βυ,j = 0 if 

γυ,j = 0, for inactive voxels, and βυ,j ≠ 0 if γυ,j = 1, for active voxels, for j = 1, …, p, and 

with I(A) the indicator function equal to 1 if A is true and 0 otherwise62,70,108,139. Kalus et 

al.62 considered the case p = 1 and specify a spatial probit model for the prior probabilities 

of activation, that is P(γυ = 1) = Φ(αυ), with Φ the standard normal cdf and α = (α1, …, αV)T 

following a Gaussian Markov random field (GMRF) prior. Specifically, the authors 

considered a first order intrinsic GMRF (IGMRF) prior
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(16)

with Q as in (11) and ξ2 a variance parameter determining the degree of smoothness, or a 

CAR prior of the type

(17)

with P = I + τ2 Q and τ2 > 0 modeled by a positively truncated Normal prior. Alternatively, 

Zhang et al.139 specified a Markov Random Field (MRF) prior on γυ, parameterizing its 

conditional probability as

(18)

with Nυ the set of neighboring voxels of voxel υ, d ∈ (−∞,∞) a sparsity parameter 

controlling the expected prior number of activated voxels and e > 0 the smoothing parameter 

which affects the probability of identifying a voxel as active according to the activation of 

its neighbors. Smith and Fahrmeir108 and Lee et al.70 considered spatial MRF priors for the 

case p > 1, incorporating anatomical prior information as well as spatial interaction between 

voxels. They wrote the prior on γ = {γυ,j, υ = 1, …, V, j = 1, …, p} as , 

where γ(j) = (γ1,j, …, γV,j)T and

(19)

with , called the “external field”, capturing anatomical prior information, 

typically as a linear combination of the parameters αυ,j(γυ,j) = αυ,jγυ,j, with scalars αυ,j fixed 

a priori, and with the second term in the exponential function being the interaction effect of 

neigbouring voxels υ and k, with pre-specified weights ωυ,k (typically, it is assumed θυ,k,j = 

θj). Smith et al.109 and Xia et al.132 also considered a spatial prior of type (19).

As a point of summary, among the contributions we have described above, Lee et al.70 and 

Penny et al.94 model both temporal and spatial correlations but assume pre-specified HRFs, 

while Zhang et al.139 also include the estimation of the HRF. Woolrich et al.127 impose a 

nonseparable space-time vector autoregressive structure on the error term of the model and 

incorporate the estimation of the HRF. Flandin and Penny24, Gössl et al.43, Harrison and 

Green48, Kalus et al.62, Quirós et al.97, Smith and Fahrmeir108, Smith et al.109 make use of 

spatial priors on the model parameters but assume independent error terms. Gössl et al.43 

and Quirós et al.97 also incorporate the estimation of the HRF.
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MCMC and Scalability

Many of the Bayesian approaches described above achieve posterior inference via numerical 

integration methods, such as Markov Chain Monte Carlo (MCMC) sampling 

algorithms43,57,62,70,97,108,109,127,132,139. These models are often fit to single 2D slices, as 

the large dimensionality of the data makes it impossible to model the entire 3D map of the 

data at once. Nevertheless, MCMC requires a large amount of computer time, even when 

inference is limited to single slices. This has motivated many authors to investigate 

alternative techniques for Bayesian inference that do not rely on numerical integration. A 

common approach is to employ Variational Bayes (VB) methods. Penny et al.93 first 

proposed the use of a VB method for inference in a general linear model of type (1) with AR 

errors, and several other authors have adopted VB methods since then24,48,94,128. The basic 

idea of VB methods is to approximate the true posterior density with an analytically 

tractable form by using a factorization of the posterior distribution over the model 

parameters.

Posterior Probability Maps

For posterior inference, the major goal is to produce a spatial mapping of the activated brain 

regions. This can be achieved via inference on the regression parameters βυ's in model (1). 

In particular, activations can be detected by constructing posterior probability maps (PPMs) 

based on the estimated regression parameters, for example as done by Friston et al.26 and 

Friston and Penny29. These authors proposed to detect activations by mapping the estimates 

of the model parameters at each voxel of single slices of imaging data and then thresholding 

the corresponding conditional posterior probabilities at a specified confidence level. 

Specifically, at each voxel the conditional posterior probability that a particular effect, 

specified by a contrast weight vector w, exceeds some threshold κ is calculated as

(20)

with Mβυ|Y and Cβυ|Y the posterior mean and covariance of the parameter βυ, respectively. 

PPMs can be displayed as images, see Figure 4 for an example.

When spike-and-slab priors of type (15) are employed, PPMs can be obtained directly by 

thresholding the activation probabilities p(γυ,j = 1|Y). In particular, an individual voxel can 

be classified as active if p(γυ,j = 1|Y) > ϱ, and as inactive otherwise, with ϱ a threshold to be 

chosen. There are several ways to decide the value of the threshold. Smith et al.109, Smith 

and Fahrmeir108 and Lee et al.70 suggested ϱ = 0.8722, following Raftery98 who considered 

the statistic −2log(1 − p(γυ,j = 1|Y))/p(γυ,j = 1|Y) approximately distributed χ2(1) and solved 

the threshold at a critical value of 3.841, for a p value of 0.05. Kalus et al.62 suggested 

choosing the threshold based on the Bayesian false discovery rate (FDR)88. The decision on 

the optimal threshold can also be formulated in a compound decision theoretic framework, 

by minimizing a loss function defined as a linear combination of false positive and false 

negative counts87. Sun et al.116 have recently shown that procedures thresholding posterior 
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probability maps allow to control also the frequentist FDR in large-scale spatial multiple 

testing.

Nonlinear and Mixed Models

Many investigators have acknowledged the presence of nonlinearities in BOLD responses, 

particularly for event-related designs34,124, both across brain regions and stimuli. Among the 

Bayesian contributions, Genovese37 presented a nonlinear Bayesian hierarchical model that 

included the estimation of the drift function and the HRF, assuming independent error terms 

and without taking into account spatial correlation. Also, Yue et al.135 proposed a Bayesian 

adaptive spatial smoothing approach to capture non-stationary spatial correlation, with a 

Gaussian smoothing kernel varying across space and time. Their model can be written as

(21)

for j = 1, …, n1 and k = 1, …, n2, with yjk the fMRI response data observed at location [uj, 

uk], at a given time point, and with f an unknown function representing the smoothed image. 

The authors applied their model to the raw fMRI data at each time point, independently, 

imposing a spatially adaptive IGMRF prior on the function f and assuming independent 

errors.

Another class of models that has been quite successful for the analysis of fMRI data, 

particularly in the Bayesian literature, is mixture models. Here the idea is to characterize the 

spatial distribution of the data via a (possibly infinite) mixture of distributions, each 

capturing a distinct cluster of activations. These models are often applied to processed data, 

either “contrast” maps, obtained by estimating the β coefficients of a general linear model 

fitted to the fMRI time-series data, or simple z-statistic images. Woolrich et al.129 first 

considered finite mixture models with adaptive spatial regularization priors on the model 

parameters. Their model was implemented in the software FSL. Other authors have 

considered infinite mixture model with Dirichlet process (DP) priors that enable learning on 

the number of components from the data58,66.

A formal definition of a DP, a stochastic process commonly used in Bayesian nonparametric 

inference, was first given by Ferguson23. Here it suffices to consider a DP as a prior on a 

class of probability distribution. Let G denote such random probability measure on the 

distribution space, with

(22)

indicating that the model depends on two parameters, the base measure G0 and the total 

mass parameter η. The base measure G0 is the prior mean of G, i.e. E(G) = G0. Typically, 

the unknown G is centered around a known parametric model, while the total mass 

parameter η determines the variation of the random measure around the prior mean, with 

smaller values of η implying higher uncertainty. Any realization G from a DP defines a 

discrete distribution almost surely. Let φi | G ∼ G, i = 1, …, n, be an i.i.d. sample from a 

distribution G, then G can be almost surely written as a mixture of point masses,
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(23)

with , Vj ∼ Beta(1, η), j = 1, …, h, and atoms , h = 1, …, ∞. 

The discreteness of the DP is best appreciated by looking at the predictive distribution of φi, 

conditional on all the other values φ− i = {φj : j ≠ i},

(24)

which gives positive probability to ties, therefore implying that the φi's can form clusters. 

The parameter η acts as a weight, i.e., the larger η, the higher the probability that φi is 

sampled from the base measure G0 and thus the larger the number of clusters.

For fMRI data analysis, Kim et al.66 used mixture models with DP priors to model 

processed data of the type yυ, υ = 1, …, V, with yυ the estimate of the β coefficient of a 

GLM fitted to fMRI time-series data at voxel υ at position xυ = (xυ1,xυ2),

(25)

with C a set of component labels, p(yυ|c, xυ,θ) a Gaussian-shaped surface model for each of 

the mixture components, and with a DP prior imposed on the component label cυ, υ = 1, …, 

V. Also, Johnson et al.58 considered an infinite mixture model applied to z-scores yυ, υ = 1, 

…, V. The model is conditional upon a latent activation state cυ ∈ {−1, 0, 1}, υ = 1, …, V, 

with labels -1, 0, and 1 denoting three classes/states as deactivated, null, and activated, 

respectively. With a non-parametric hidden Markov random field model (Potts model) 

imposed on c, the model is given by

(26)

with Fm a Gaussian distribution with parameters  and Gm0 a Gaussian 

distribution with mean μm0 and .

Multiple-subject Modeling

Spatio-temporal models of type (1) have been also extended to multiple subjects6,103. The 

model becomes

(27)
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with βiυ = (βiv1, …, βiυp) and βiυk the effect corresponding to condition k on voxel υ for 

subject i.

The computational challenge of fitting spatio-temporal models of type (27) to voxel-wise 

data on multiple subjects has motivated researchers to adopt approaches where voxels are 

grouped into regions of interest (ROIs) and “summary statistics” are calculated for each 

ROI, so that inference at the group level is based on the summary statistics from the lower 

level. This approach has also been dominant in the frequentist literature, under the name of 

group analysis, where GLM-based estimates of the regression parameters obtained at the 

voxel level are treated as summary statistics at the group level53. One Bayesian approach to 

group analysis was proposed by Su et al.115, who used a hierarchical model with shrinkage 

estimation of residual variance by combining information across voxels.

Other Bayesian approaches have used two-stage modeling. Bowman et al.6 combined 

whole-brain voxel-by-voxel modeling and ROI analysis within a Bayesian hierarchical 

framework aiming at the detection of task-related activated brain regions. At the first stage a 

voxel-wise general linear model is fitted for each subject, assuming serially correlated errors 

and a pre-specified HRF. At the second stage, the authors considered an anatomical 

parcellation of the brain consisting of G regions and defined a contrast fMRI BOLD 

response vector associated with stimulus j as βigj = (βig(1)j, …, βig(Vg)j)T, with Vg the number 

of voxels in region g = 1, …, G. They then fit a spatial hierarchical model of the type

(28)

with μgj = (μg(1)j, …, μg(Vg)j)T, and αij = (αi1j, …, αiGj)T.

A different two-stage modeling approach was put forward by Sanyal and Ferreira103, who 

first fit a general linear model of type (27), assuming independent errors and regressor Xiυ as 

convolution of the stimulus function with an empirically derived subject-specific HRF. The 

authors first estimated the regression coefficients by an empirical Bayes methodology and 

then transformed the estimated standardized coefficients via discrete wavelet transforms to 

obtain a model in the wavelet space, where they imposed spike-and-slab priors on the 

wavelet coefficients, extending the wavelet basis prior of Flandin and Penny24 from one 

subject to multiple subjects.

Bayesian mixture models have also been successfully applied in multi-subject fMRI studies, 

to capture clusters of activation. Xu et al.133 developed a spatial model for multiple-subject 

fMRI data to capture the inter-subject variability in activation locations. The authors 

considered scalar t-images, obtained by fitting an intra-subject fMRI model to each subject, 

and modeled those via a Gaussian mixture with an unknown number of components. 

Bayesian nonparametric methods for infinite mixtures were employed by Thirion et al.117 to 
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model the spatial positions of brain regions. For subject s and ROI j, their model can be 

written as

(29)

with  the spatial coordinates of the center of the areas related to  which is the 

corresponding ROI for subject s, j = 1, …, I(s), and with  denoting the cluster to which 

is associated. The model infers spatial ROIs activations at group level while computing 

inter-subject correspondence via Bayesian network models. Jbabdi et al.56 imposed a 

hierarchical Dirichlet process mixture model on voxel-wise connectivity scores.

Brain Connectivity

While constructing maps of brain regions activated by specific stimuli is certainly of major 

interest in imaging studies, another important task, which has received increased interest in 

recent years, is to infer brain connectivity. In general terms, connectivity looks at how brain 

regions interact with each other and how information is transmitted between them, with the 

aim of uncovering the actual mechanisms of how our brain functions. General interest in 

connectivity studies may be in comparing connectivity properties among subgroups of 

subjects and between different scanning sessions. Such studies often look at resting state 

data, as opposed to task data. Also, of major interest is to understand the role that 

connectivity patterns, and their disruption, play in mental health disorders and brain 

diseases.

As defined in the fMRI literature27, two types of connectivity can be inferred based on fMRI 

data: Functional connectivity is defined as the undirected association, or temporal 

correlation, between BOLD signals from spatially remote brain regions, while effective 

connectivity is the directed influence of one brain region on other regions. Friston28 

provided a nice review on functional and effective connectivity.

Functional Connectivity

Functional connectivity aims at identifying parts of the brain showing similar temporal 

characteristics and, as such, can be quantified using statistical measures of dependence 

among remote neurophysiological events. In the classical literature, simple approaches to 

capture functional connectivity are based on temporal correlations between regions of 

interest, or between a “seed” region and other voxels throughout the brain137. Alternative 

approaches include clustering methods, to partition the brain into regions that exhibit similar 

temporal characteristics, and multivariate methods for dimension reduction, such as 

Principal Components Analysis (PCA)1 and Independent Components Analysis (ICA)14,82, 

which determine spatial patterns that account for most of the variability in the time series 

data. Approaches that allow to estimate partial correlations between predefined regions of 
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interest (ROIs) have also been proposed, for example by using the graphical Lasso 

(GLasso), which estimates a sparse precision matrix16,122.

Initial efforts in the development of Bayesian methods to assess functional connectivity 

were put forward by Patel et al.91,92, who dichotomised the time series data based on a 

threshold to indicate presence or absence of elevated activity at a given time point and then 

modeled the relationship between pairs of distinct brain regions by comparing expected joint 

and marginal probabilities of elevated neural activity. In their two-stage modeling approach, 

Bowman et al.6 employed a measure of the strength of task-related intra-regional (or short-

range) connectivity based on model (28) defined as

(30)

where  reflects the similarity in the neural activity between voxels within a given brain 

region g and  is gth diagonal element of Γj. The authors also defined an interregional (or 

long-range) connectivity between regions g1 and g2 (see Figure 5 (a)) as

(31)

In their estimation approach to spatio-temporal Bayesian models of type (1), Zhang et al.139 

allow clustering of spatially remote voxels that exhibit fMRI time series with similar 

characteristics (see Figure 5 (b)), by imposing Dirichlet Process (DP) prior on the 

parameters of long memory error term (8). The induced clustering can be viewed as an 

aspect of functional connectivity, as it naturally captures statistical dependencies among 

remote neurophysiological events.

In addition, there has been recent interest in dynamic functional connectivity models that 

investigate temporal dynamic interactions among brain regions. Zhang et al.138 proposed a 

dynamic Bayesian variable partition model that simultaneously infers global functional 

interaction patterns within brain networks and their temporal transition boundaries.

Effective Connectivity

Non-generative modeling measures of connectivity based on statistical dependence, such as 

temporal correlation, can be affected by spurious results, as they can change between 

conditions or groups simply due to changes in, for example, the signal-to-noise ratio (SNR) 

in the data28. Effective connectivity employs biologically plausible generative models of a 

typically small network of connected brain regions, assessing the statistical significance of 

the individual directed connections and effectively modeling the SNR. Being activity-

dependent, effective connectivity is dynamic, that is, time-varying, in nature. Effective 

connectivity refers to causal dependence, as opposed to simple association. Commonly used 

approaches therefore include many of the methods typically employed to represent causal 
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analysis. The most successful have been Structural Equation Modeling (SEM)10,83, 

Dynamic Causal Modeling (DCM)35, vector autoregressive (VAR) models49, Granger 

causality40 and Bayesian networks140. It should be pointed out, however, that even though 

such methods allow inference on directed connections between brain regions, none of them 

is able to measure physiological causality, as the direct influence of one region on another, 

which is ultimately where the scientific interest lies.

Structural Equation Modeling (SEM) was proposed for use in econometrics, and then 

applied to functional brain imaging data by Mclntosh and Gonzalez-Lima83. Most of the 

existing methods use frequentist approaches, with the exception of Scheines et al. 105.

Granger causality (GC) was first defined by Granger44 for temporally structured data, such 

as time-series data. In its most general terms, GC does not rely on the prior specification of a 

structural model, but it is rather based on the idea that causes always precede effects. 

Therefore, past signal values from one brain region can be used to predict current values in 

another region. However, methods that directly model Granger causality cannot be applied 

to fMRI data, due mostly to the mismatch between the sampling interval of the data and the 

much faster timings of the neurodynamics events110,111, resulting in GC mainly estimating 

causal interactions in the observed BOLD signals, rather than in the underlying neuronal 

responses. GC also does not properly take into account the experimentally induced 

modulatory effects while estimating causal interactions25.

A certain type of Granger causality can be expressed in a state space form via vector 

autoregressive (VAR) models, as these models nicely account for time-varying 

parameters51. Let yg(t) be the measured BOLD response for the gth region at time t, with g = 

1, …, G and t = 1, …, T, and let xg(t) be the expected BOLD response. Then a model for the 

observed fMRI signal can be specified as

(32)

where αg and βg(t) are the baseline and time-varying activation coefficients for the gth 

region at the tth time point. Assume that xg(·) = x(·), βg(t) can be modeled in terms of the 

noise-free BOLD response in the other regions at the previous time point t − 1 as

(33)

where ωg(t) are independent zero-mean normal distributed errors and the effective 

connectivity parameter γgl(t) is the influence of the lth region on the gth region at time t. 

Equations (32) and (33) specify a type of VAR model. The objective is to make inference on 

the parameters γgl(t), that capture effective connectivity. In the Bayesian literature, 

Bhattacharya et al.4 proposed a symmetric random walk model for γgl(t),

(34)
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with δgl independent zero-mean normal distributed errors, while Bhattacharya and Maitra3 

used nonparametric DP priors on Γgl = (γgl(1), …, γgl(T))T,

(35)

with g, l = 1, …, G, and with G(T) a T-variate distribution with mean  being the T-

variate distribution implied by a standard time series such as AR(1). Yu et al.134 used a 

slightly different model, by imposing a VAR-type structure on the noise term in (32), 

defining effective connectivity in terms of the corresponding VAR coefficients, and then 

using spike-and-slab priors on the VAR parameters to select the effective connectivities. 

Their model also leads to a measure of conditional and overall functional connectivity 

between ROIs based on precision matrix of the temporally uncorrelated noise component. 

As inference on VAR models is computationally challenging, due to the large size of the 

model space, applications of such models are typically done by considering a relatively 

small number of pre-selected regions, on single subjects. Recently, Gorrostieta et al.42 have 

developed a Bayesian hierarchical VAR model for effective connectivity in multiple 

subjects, accounting for the variability in the connectivity structure within and between 

subjects.

Other much more sophisticated classes of state space models have recently been developed 

to model effective connectivity. For example, Ryali et al.101 proposed a class of multivariate 

dynamical models that used vector autoregressive state-space models incorporating both 

intrinsic and modulatory causal interactions. Intrinsic interactions reflect causal influences 

independent of external stimuli and task conditions, while modulatory interactions reflect 

context dependent influences. Causal interactions are modeled at the level of latent signals, 

rather than at the level of the observed BOLD-fMRI signals.

Directed acyclic graphs, or Bayesian networks (BNs), represent putative causal links 

between a set of variables in terms of conditional independence. Dynamic Bayesian 

networks (DBNs), which takes into account the dynamic nature of the process, make use of 

VAR-type time series modeling to represent Granger causality. These approaches have been 

recently used to reveal effective connectivity among brain regions65,73,74,75,99. Kim et al. 65 

used a discrete dynamic Bayesian network (dNBN) to discriminate brain regions between 

schizophrenic patients and healthy controls, measuring effective connectivity by the relative 

likelihood of correlations between brain regions in one group versus another. Rajapakse and 

Zhou99 employed dynamic Bayesian networks and Li et al.73 compared multiple-subject 

approaches that either pool the data or learn a separate BN for each subject or place the same 

BN structure on each of the subjects. Li et al.74 and Li et al.75 inferred effective connectivity 

among multiple resting-state networks (RSNs) in the brain by using a group independent 

component analysis (ICA) first, to identify the RSNs, and then applied a BN learning 

approach to infer the conditional dependencies among RSNs.

Another popular approach to effective connectivity is Dynamic Causal Modeling (DCM), 

originally proposed by Friston et al.35. Stephan et al.112 offered a nice review of the 
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approach and its applications to fMRI data. DCM models interactions among brain regions 

directly at the neuronal level using fMRI time series at the hemodynamic level. These 

models heavily rely on complex biological assumptions, such as how the neuronal states 

enter a region-specific hemodynamic model to produce the BOLD responses. These 

assumptions have not yet been adequately verified119. The basic idea under DCM is to treat 

the brain as a nonlinear dynamic system with multiple inputs and outputs. Effective 

connectivity is parameterized in terms of the coupling among unobserved neuronal activity 

in different regions. The coupling parameters are estimated via perturbing the system, 

adapting to the fMRI experimental inputs (e.g. stimulus function), and measuring the 

response. The gen eral mathematical framework of DCM is based on differential equations. 

More specifically, DCM for fMRI models state changes in a system (or network) of n 

interactive brain regions, with each region being represented by a state variable, via a 

bilinear differential equation of the type

(36)

where θ = (A, B, C) are the neuronal parameters defining connectivity, or coupling, and 

interactions between brain regions. In particular, the matrix A is a fixed connectivity matrix 

representing the intrinsic connectivity among the brain regions in the absence of inputs, Bj 

represents changes in connectivity induced by the jth input and the matrix C reflects the 

strength of extrinsic influence of the inputs on neuronal activity. Based on state equation 

(36), the parameters θ can be written as

(37)

DCM models are quite complex in structure and inference is usually infeasible with more 

than a few regions. Bayesian approaches have been particularly helpful for model parameter 

estimation20,30,36,71,113. Typically, Normal priors are placed on the model parameters and an 

optimization scheme is used to estimate parameters that maximize the posterior probability. 

The posterior density is then used to make inferences about the significance of the 

connections between various brain regions. Stephan et al. 113 proposed a nonlinear extension 

of DCM, augmenting the state equation (36) with additional nonlinear terms representing 

how connection strengths change due to the activity of other brain regions (see Figure 6). 

Daunizeau et al.20, Li et al.71 used stochastic dynamic models that accommodate for random 

fluctuations in neuronal states, allowing application to resting-state fMRI data. Friston et 

al.36, Friston and Penny 30 used DCM for network discovery, to detect the dependence graph 

structure which best fits the observed fMRI data.

Classification and Prediction

Another important task in studies based on fMRI data is the ability to do classification or 

prediction. Some studies look at predicting individuals' brain activity. For example, the 

prediction of post-treatment brain activity may be of interest to clinicians as a guide to 
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individualized treatment selection. Other studies consider the prediction of a clinical or a 

behavioral response.

For prediction of brain activity, Guo et al.46 developed a two-stage hierarchical Bayesian 

model using patient's pre-treatment scans of fMRI, in combination with other relevant 

patient characteristics, to predict the brain activity of the patient following a specific 

treatment. At the first-stage, the authors considered a GLM for the dependent variable 

 with Yi1(υ) and Yi2(υ) the (T1 × 1) pre- and (T2 × 1) post-

treatment serial BOLD responses for subject i, measured at voxel υ, which is given by

(38)

where  are design matrices convolved with a HRF and  are high-

pass filtering matrices. At the second stage, the subject-specific effects Bij(υ), j = 1, 2 are 

modeled via a linear model with design matrix containing covariates including treatment 

assignment and other relevant patient characteristics, to capture the association between pre- 

and post-treatment neuroimaging measurements. Prediction is done via the conditional 

distribution of the post-treatment effects Bi2(υ) given the pre-treatment effects Bi1(υ). 

Derado et al.21 proposed an extension of the model of Bowman et al.6 that takes into account 

the spatial correlations between neighboring brain regions and intra-regional voxels in 

addition to capturing the temporal correlations between scans. Even though they applied the 

model in a study using positron emission tomography (PET) data, their proposed method is 

applicable to fMRI studies as well.

Linear regression models have been used for the prediction of clinical or behavioral 

outcomes based on fMRI data. Michel et al.85 developed a multiclass sparse Bayesian 

regression model, based on a clustering of the voxels, for the prediction of cognitive states. 

van Gerven et al.121 employed a Bayesian logistic regression model with a multivariate 

Laplace prior on the regression coefficients to predict experimental conditions (i.e., 

handwritten digits), based on BOLD response data. Morcom and Friston86 used a 

multivariate Bayesian model to infer which activity patterns predict memory formation.

Furthermore, scalar-on-image regression models of the type

(39)

with Y a n × 1 response variable (for instance, measurements of subjects' emotion) and X a n 

× p matrix of imaging-related predictors at p voxels, have recently attracted significant 

interest. Goldsmith et al.41 considered spike-and-slab priors on η, with an Ising prior on the 

selection indicator. Li et al.72 proposed priors of the type

(40)
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to select voxels that are predictive of the subjects' response while simultaneously achieving 

clustering of similar regression coefficients.

Integrative Imaging

An important recent trend in the literature on fMRI data is the use of multi-modal 

techniques, that is, combining measurements originated from multiple imaging methods, to 

overcome the limitations when only one modality is used and to aid estimation and 

prediction13. Also, nowadays more and more studies look at collecting both imaging and 

genetics data on the same subjects, making it possible to develop statistical models that aim 

at linking neural activity across multiple individuals to their genetic information78,118. As 

patterns of brain connectivity in fMRI scans are known to be related to the subjects' genome, 

the ability to model the link between the imaging and genetic components could indeed lead 

to improved diagnostics and therapeutic interventions.

Multi-Modal Techniques

A number of Bayesian methods have been proposed for the integration of fMRI data with 

other neuroimaging techniques that provide information on the brain function or structure. 

Electroencephalography (EEG)89 is a functional neuroimaging technique that achieves a 

direct recording of the brain's electrical activity via multiple electrodes placed on the scalp 

that measure voltage fluctuations from ionic current flows within the brain's neurons. 

Magnetoencephalography (MEG)47 maps brain activity by measuring the magnetic fields 

resulting from electrical current in the brain via magnetic field sensors. Unlike fMRI, EEG 

and MEG have a very high temporal resolution (in the order of milliseconds) but poor 

spatial resolution. In addition, Diffusion tensor imaging (DTI)69 is a noninvasive magnetic 

resonance imaging technique that measures the diffusion of water in biological tissues to 

produce neural tract images of the brain in vivo, therefore capturing structural information. 

Clearly, the ability to combine neuroimaging techniques could enable researchers to obtain a 

more comprehensive understanding of the brain.

The complementary characteristics of temporal and spatial resolutions of EEG/MEG and 

fMRI techniques makes their integration highly desirable. Jorge et al.59 presented a review 

on integrative methods. Information from EEG/MEG data has been incorporated in some of 

the modeling approaches for fMRI data that we have previously described. For example, 

Kalus et al.61 extended the approach in Kalus et al.62 by using EEG-informed spatial priors 

in their Bayesian variable selection approach to detect brain activation. Specifically, they 

relate the prior activation probabilities to a latent predictor stage ζ = (ζ1, …, ζV)T via a probit 

link p(γυ = 1) = Φ(ζυ), with Φ the standard normal cdf and ζυ consisting of an intercept term 

and an EEG effect, that is

(41)
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where Jυ, υ = 1, …, V is the continuous spatial EEG information and where 0, glob and flex 

indicate three types of predictors: predictor 0 contains a spatially-varying intercept ς0 = 

(ς0,1, …, ς0,V)T, and corresponds to an fMRI activation detection scheme without 

incorporating EEG information; predictor glob contains a global EEG effect ςG in addition 

to the intercept; predictor flex contains a spatially-varying EEG effect ς = (ς1, …, ςV)T. With 

an IGMRF, the priors of ς0 and ς are of the form in (16). Other approaches focus on 

incorporating information from fMRI into models for EEG/MEG data. A common approach 

to EEG/MEG data looks at source localization as an ill-posed inverse problem and uses 

other imaging techniques to determine prior information that impose constraints on source 

activity and locations18,52,60,81,95,104. Automatic Relevance Determination (ARD) priors on 

the variance of the source current at each source location were used by Sato et al.104, fMRI-

based activity maps as priors on the source location by Phillips et al.95, Mattout et al.81 and 

Henson et al.52, exponential distribution as fMRI-based prior on the source locations by Jun 

et al.60. Babajani-Feremi et al.2 explored variational Bayesian expectation maximization 

methods for the estimation of the model parameters.

A truly joint model of EEG/MEG and event-related fMRI data was first proposed by 

Daunizeau et al.19. These authors consider a linear system of equations of the type

(42)

where M represents the p × t1 matrix of EEG data, with p the number of sensors and t1 the 

number of time points, G is a p × n matrix associated with the position and orientation of the 

dipoles, J is a n × t1 matrix of the unknown time courses of the dipoles, Y is the t2 × n 

matrix of voxel-wise fMRI data, with t2 the number of time points and n the number of 

voxels, h is the k×n matrix of unknown HRFs at each voxel and B is the t2 × k design 

matrix. The authors considered a finite parcellation of the cortical surface into q 

anatomically and functionally homogeneous regions, associating a time course to each 

region Pi (i = 1, …, q). They then defined a bioelectric event-related response for source J as

43

with X being an unknown q × t1 matrix of the q time courses, C the known n × q matrix 

describing the cortex parcelling (Cji = 1 if j ∈ Pi, and Cji = 0 otherwise), wEEG a n × 1 

unknown vector describing the spatial profile of each active cortical source, and R a residual 

bioelectric activity. Similarly, they specify a hemodynamic event-related response of the 

type

(44)

with Z an unknown k × q matrix of the HRF temporal shape of the q regions, wfMRI an 

unknown n × 1 vector associated with the spatial profile of the hemodynamic activity 

sources and L a residual term. The author assume wEEG = wfMRI=w and specify priors for 
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the cortical currents and the HRF, as well as spatial priors based on a spatial Laplacian on w. 

See also Ou et al.90 and Luessi et al.80 for extensions to more general and flexible prior 

models.

An interesting avenue for future research is the development of methods for the integration 

of fMRI and DTI data141. DTI is an MRI technique that provides information regarding the 

structure of white matter in the brain (see Figure 7). Axons, neuron fibers that serve as lines 

of transmission in the nervous system, form bundles of textured fibers in the white matter. 

This extensive system of white-matter bundles directly links some brain structures. DTI non-

invasively maps these white-matter fiber tracts in the brain by measuring the diffusion of 

water molecules, therefore providing a measure of the so-called anatomical (or structural) 

connectivity, which refers to how different brain regions are physically connected. Many of 

the existing approaches to modeling functional connectivity by supplementing fMRI data 

with information from DTI data use frequentist models8,17,45, while Iyer et al.55 employ 

Bayesian networks informed by DTI data.

Imaging Genetics

It is generally known that human brain mapping and connectivity can be affected by the 

individual's genetic characteristics. Studies that allow to investigate how particular subsets 

of polymorphisms can affect functional brain activity are of paramount importance. In 

addition, such studies could facilitate the identification of the genetic determinants of 

complex brain-related disorders such as autism, dementia and schizophrenia. Imaging 

genetics refers, in particular, to situation where structural and functional neuroimaging 

techniques are applied to study subjects carrying genetic risk variants that relate to a 

psychiatric disorder.

Recently proposed approaches for integrative analyses of fMRI and genetic data use 

frequentist methods, such as classical regression models or PCA-ICA dimension reduction 

techniques15,79,123. In the Bayesian literature, Stingo et al.114 proposed a hierarchical 

mixture model based on ROI summary measures of BOLD signal intensities measured on 

schizophrenic patients and healthy subjects. Their model incorporates spatial MRF priors for 

the selection of features (e.g. ROIs) that discriminate schizophrenic from healthy controls 

and mixture components that depend on selected covariates (e.g. single nucleotide 

polymorphisms - SNPs) measured on the individual subjects. Posterior inference results into 

the simultaneous selection of a set of discriminatory ROIs and the relevant SNPs, together 

with the reconstruction of the correlation structure of the selected regions. Salazar et al.102 

proposed a joint model of ordered/categorical questionnaire data, fMRI and S NP data. Their 

approach aims at predicting questionnaire answers based on fMRI and SNP data and brain 

responses to external stimuli based on SNP data and answers to questionnaires.

Imaging genetic studies have great potential for the discovery of biomarkers implicated in 

brain functions and are expected to be the topic of much research in the future. One 

interesting area of research, for example, is the study of family data, in particular twin 

studies. With family data, the genetic similarity (on average) between the subjects within a 

family allows to infer the heritability of a phenotype. Even though this type of experimental 

design has been used primarily on structural data, some contributions also exist in fMRI 

Zhang et al. Page 20

Wiley Interdiscip Rev Comput Stat. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies, see for example Glahn et al.39 and van den Berg et al.120 for an early Bayesian 

model.

Conclusions

There has been a continued interest in the use of fMRI data, and this has motivated a very 

rapid development of statistical techniques for the analysis of such data. In this review paper 

we have focused on Bayesian methods. Unlike many of the classical inferential techniques, 

Bayesian models allow for flexibility, mainly via spatial and adaptive priors that can readily 

incorporate external information, and can be easily fitted via full MCMC or approximate 

computational techniques.

In this review paper we have divided methods according to the objective of the analysis. 

First, we have described spatio-temporal hierarchical models for the estimation of the task-

related activation patterns. We have then addressed methods for functional and effective 

brain connectivity. We have also touched upon methods for prediction of a psychological 

condition or a treatment response and, finally, have presented a discussion of models that 

aim at combining multi-modal imaging techniques, particularly fMRI data with EEG/MEG 

and DTI data. We have also briefly discussed the emerging field of imaging genetics. The 

latter topics, on integrative models, are quite recent and certainly represent interesting 

avenues for further developments of Bayesian methodologies. Indeed, many more important 

contributions are to be expected by Bayesian statisticians working in the area of fMRI data 

analysis.

Throughout the paper we have highlighted that fMRI experiments produce massive amount 

of spatially and temporally correlated data, posing challenges to statistical analysis, for both 

classical and Bayesian procedures. Even though posterior inference can be often carried out 

via standard MCMC methods, the dimensionality of the data may limit the practical use of 

Bayesian methodologies. We have briefly discussed alternative posterior approximation 

methods, such as Variational Bayes, which drastically reduce the computation times. Further 

research is needed in the development of those estimation schemes, especially in order to 

accurately assess the trade-off between the gain in computation time and the precision of the 

resulting estimates. For example, while Variational Bayes methods may lead to good 

approximations of the posterior means, it is generally well-understood that they may 

underestimate the posterior variance and also poorly estimate the correlation structure of the 

data5,100.

Many software tools have been developed for fMRI data analysis. The most popular are 

FMRIB Software Library (FSL) http://fsl.fmrib.ox.ac.uk/fsl, Statistical Parametric Mapping 

(SPM) http://www.fil.ion.ucl.ac.uk/spm, Analysis of Functional NeuroImages (AFNI) http://

afni.nimh.nih.gov and Brain Voyager http://www.brainvoyager.com. Among those, both 

FSL and SPM include Bayesian methods. For example, the models of Friston et al.26, Penny 

et al.93,94 are implemented in SPM and the method of Woolrich et al.130 in FSL, allowing 

the option of either a full MCMC or a Variational Bayes algorithm for posterior inference. 

In SPM, for example, spatio-temporal models of type (1) can be fitted with priors as 

Unweighted Graph Laplacian (UGL), Weighted Graph Laplacian (WGL), Gaussian Markov 
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Random Field (GMRF), etc, and with AR or independent error terms. A list of choices for 

the HRF are also available.

In spite of our best efforts, the coverage of Bayesian approaches for fMRI data analysis we 

have presented in this paper is, of course, not comprehensive. For example, we have not 

discussed meta-analysis, which is an important area in fMRI. Since multi-subject studies 

often have limited sample sizes, it is important to adopt strategies to determine whether task-

related changes in brain activity, or networks of activated brain regions, are consistent across 

studies. Some of the recent methodological developments use Bayesian hierarchical models 

with spatial point processes63,64 and Bayesian nonparametric regression models136. Studies 

with larger sample sizes are also beginning to emerge, as the result of collaborative efforts 

among various teams of researchers.
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Figure 1. 
Typical fMRI experiment: 3D maps are acquired over time while the subject lies in the 

scanner, producing time series of fMRI BOLD responses measured at each brain voxel. 

Selected 2D arrays, corresponding to axial slices across the third dimension, are shown.
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Figure 2. 
Outline of the Bayesian methods for fMRI data reviewed in this paper. Methods are divided 

according to the objective of the analysis.
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Figure 3. 
Typical modeling of the BOLD signal at a given voxel, for both block and event-related 

designs. The BOLD signal is modeled as the convolution of the experimental stimulus and 

the hemodynamic response function (HRF).
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Figure 4. 
Top left: An Example of PPMs generated with the software SPM8 (http://

www.fil.ion.ucl.ac.uk/spm). Top right: Design matrix. Bottom: Overlay of χ2 statistic values 

showing regions where activity is different between active and rest conditions.
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Figure 5. 
Functional connectivity. (a) Matrix of posterior estimates of inter-regional correlations 

(Bowman et al.6); (b) Posterior clustering map of spatially remote voxels (Zhang et al. 139).
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Figure 6. 
Effective connectivity. Maximum a posteriori estimates of parameters measuring effective 

connectivity in an fMRI study on attention to motion (Stephan et al.113).
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Figure 7. 
Example of Diffusion Tensor Imaging (DTI) data.
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