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Abstract

We examined how variation in working memory (WM) capacity due to aging or individual 

differences among young adults is associated with intrinsic or resting-state anticorrelations, 

particularly between (1) the medial prefrontal cortex (MPFC), a component of the default-mode 

network (DMN) that typically decreases in activation during external, attention-demanding tasks, 

and (2) the dorsolateral prefrontal cortex (DLPFC), a component of the fronto-parietal control 

network that supports executive functions and WM and typically increases in activation during 

attention-demanding tasks. We compared the magnitudes of MPFC-DLPFC anticorrelations 

between healthy younger and older participants (Experiment 1) and related the magnitudes of 

these anticorrelations to individual differences on two behavioral measures of working memory 

capacity in two independent groups of young adults (Experiments 1 and 2). Relative to younger 

adults, older adults exhibited reductions in working memory capacity and in MPFC-DLPFC 

anticorrelations. Within younger adults, greater MPFC-DLPFC anticorrelation at rest correlated 

with greater working memory capacity. These findings show that variation in MPFC-DLPFC 

anticorrelations, whether related to aging or to individual differences, may reflect an intrinsic 

functional brain architecture supportive of working memory capacity.
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1. Introduction

Working memory (WM) capacity, defined as the amount of goal-relevant information that 

can be both maintained and manipulated, declines with age (Craik et al. 1990) and varies 

considerably among individuals (Engle, 2002). In contrast to measures of simple short-term 

maintenance of information (e.g. digit span), greater WM capacity is associated with 

superior performance in a broad range of high-level cognitive domains, including reading 

comprehension, problem solving, and inhibitory control (Conway et al., 2003). WM 

capacity is thought to reflect central executive capability (Baddeley, 1992; Engle, 2002), and 

to depend on dorsolateral prefrontal cortex (DLPFC), parietal cortex, anterior cingulate 

cortex, and the basal ganglia (D’Esposito et al., 1999; D’Esposito et al., 2007; Frank et al., 

2001; Levy and Goldman-Rakic, 2000). Here, we asked whether a relationship exists 

between variation in WM capacity, due to aging or across younger individuals, and the 

intrinsic functional architecture of the human brain as measured by resting-state functional 

connectivity.

Spontaneous fluctuations in functionally related brain regions are correlated with each other 

in the absence of external stimuli, and the patterns of these correlations have been thought to 

reveal intrinsic relations of brain regions (Beckmann et al., 2005; Biswal et al., 1995; 

Greicius et al., 2003). During rest, in young adults, there are strong correlations between 

components of the default-mode network (DMN), brain regions that are commonly 

deactivated during external or attention-demanding tasks involving mental control (Fox et 

al., 2005, Fransson, 2005, Greicius et al., 2003; Raichle et al., 2001). Anatomically, the 

DMN includes medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), left and 

right lateral parietal (LLP and RLP) cortices, and bilateral medial temporal lobe (MTL) 

regions (Buckner et al., 2008).

Resting-state correlations among the components of the DMN appear to be significantly 

reduced in age-associated pathologies (Greicius et al., 2004; Hedden et al., 2009) and in 

typically aging older adults (Andrews-Hanna et al., 2007; Balsters et al., 2013; Damoiseaux 

et al., 2008; Grady et al., 2010; Mowinckel et al., 2012; Sala-Llonch et al., 2012; Sambataro 

et al., 2010). This may be due, in part, to the particular vulnerability of long-range DMN 

functional connections to the effects of normal aging (Allen et al., 2011; Andrews-Hanna et 

al., 2007; Hafkemeijer et al., 2012; Fillippini et al., 2012; Tomasi & Volkow, 2012) or a 

consequence of more motion-related artifactual time points in elderly participants (Power et 

al., 2012; Van Dijk et al., 2012). Although widespread reductions in resting functional 

connectivity are observed with advancing age, some studies also report localized increases 

in resting-state functional connectivity. Older adults, relative to younger adults, have shown 

increased frontal-lobe coherence (Filippini et al., 2012) and increased functional 

connectivity within fronto-parietal cortical regions (Mowinckel et al., 2012).
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Networks in the brain appear to have an intrinsic organization such that different networks 

may exhibit negative functional connectivity, or are anticorrelated with one another at rest. 

In young adults, components of the DMN are negatively correlated with brain networks 

comprised of regions commonly activated for external tasks that demand attention and 

mental control, including the DLPFC (Fox et al., 2005; Fransson, 2005). Evaluation of 

negatively correlated networks has proven controversial due to global signal regression, a 

method used commonly to mitigate physiological noise in resting-state functional imaging 

studies. Global signal regression is known to mathematically generate anticorrelations 

(Murphy et al., 2009; Saad et al., 2012). Given these issues, valid analysis of negatively 

correlated networks has developed into a topic of particular interest in the field (Chang and 

Glover, 2009; Fox et al., 2009; Hampson et al., 2010; Saad et al., 2012; Van Dijk et al., 

2010; Weissenbacher et al., 2009). With the caveat that prior studies of the influence of age 

on anticorrelations have employed global signal regression, there is evidence that healthy 

aging is also characterized by reduced negative correlations at rest between the DMN and 

cortical regions commonly recruited during attention-demanding tasks (Wu et al., 2011).

Variation in DMN connectivity has been associated with variation in executive functions 

and WM capacity. Among older adults, reduced MPFC-PCC connectivity correlated with 

worse performance on executive-function and other cognitive measures (Andrews-Hanna et 

al., 2007) and reduced connectivity in a DMN network dominated by the MPFC correlated 

with worse performance on a trail-making test (Damoiseaux et al., 2008). Neither study 

reported a correlation between these brain measures and variation among young adults, 

because that was either not examined (Andrews-Hanna et al., 2007) or was not significant in 

10 participants (Damoiseaux et al., 2008). For young adults, there is a report of a positive 

correlation between magnitude of MPFC-DLPFC anticorrelation and WM capacity, as 

measured by an n-back task (Hampson et al., 2010). The relation between reduced MPFC-

DLPFC resting-state anticorrelation and reduced WM capacity is consistent with findings 

from patients with schizophrenia (Whitfield-Gabrieli et al., 2009).

Although variability in resting-state functional connectivity has been associated with 

variation in WM in relation to aging and to individual differences among young adults, there 

are two major gaps in the current understanding of that association. First, studies of aging 

have implicated positive correlations with the MPFC as being related to age-associated 

reduction in WM capacity, whereas the one study of variation among young adults has, 

instead, implicated negative correlations with MPFC. This leaves open the question about 

whether age-related changes in WM and individual differences among young adults in WM 

capacity are associated with shared or distinct variations in intrinsic functional connectivity 

(no one study has discovered such common variation in both younger and older adults). 

Second, the above functional connectivity findings were reported before it was well 

understood that greater movement in older than younger adults can produce artifactual 

results (Power et al., 2012; Van Dijk et al., 2012) or that global signal regression can 

mathematically generate anticorrelations (Murphy et al., 2009; Saad et al., 2012). Therefore, 

it is unknown whether the prior findings would hold when methodological improvements 

were implemented.
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Here, we explored whether there exists shared or distinct characteristics of intrinsic brain 

function for age-related declines in WM capacity and for individual differences among 

young adults in WM capacity. We focused on MPFC positive and negative functional 

connectivity because bi-directional correlations of the MPFC with different regions have 

been implicated across studies of aging or of individual differences among young adults in 

relation to executive functions and WM capacity (Andrews-Hanna et al., 2007; Damoiseaux 

et al., 2007; Hampson et al., 2010). We examined the relation of MPFC-DLPFC 

anticorrelations and MPFC-PCC positive correlations to WM capacity (Experiment 1) in 27 

younger and 27 older healthy adults with capacity measured by the Letter-Number 

Sequencing subtest from the Wechsler Adult Intelligence Scale (WAIS-III), and in 70 

younger adults (Experiment 2) with a composite measure of Operation and Reading Span 

tests (Turner & Engle, 1989; Unsworth et al., 2005). In both experiments, we implemented 

methods that minimize the influence of motion artifacts and physiological noise and allow 

for valid interpretations of negative correlations (Behzadi et al., 2007; Chai et al., 2012; 

Whitfield-Gabrieli and Nieto Castanon, 2012).

2. Materials and Methods

2.1 Experiment 1

2.1.1 Participants—Participants were 27 older adults (15 women) between 65 and 89 

years of age (M = 75.7 years, SD = 6.7) and 27 younger adults (15 women) between 20 and 

33 years of age (M = 24.8, SD = 3.4). Written informed consent for participation in the study 

was obtained from all participants and approved by the MIT Institutional Review Board. All 

participants were healthy, right-handed individuals (Oldfield, 1971) from the Boston 

metropolitan area who satisfied the following criteria: native English speakers; no 

contraindications to MRI; and absence of neurological or psychiatric impairments or 

associated medications. All participants had normal or corrected-to-normal vision. No 

participant exhibited evidence of mild cognitive impairment or dementia; participants were 

excluded if they scored <27 on the Mini-Mental State Examination (Folstein & Folstein, 

1975).

2.1.2 Neuropsychological and Demographic Measures—The Letter-Number 

Sequencing subtest from the Wechsler Adult Intelligence Scale (WAIS-III) was used as the 

measure of WM capacity. Participants were read a combination of numbers and letters, and 

then asked to recall first the numbers in ascending order and then the letters in alphabetical 

order. The score was the maximum number of items reordered and recalled correctly from 

WM (Wechsler, 2002). Two measures were used to assess comparability of the age groups. 

The American version of the National Reading Test (AMNART) (Grober & Sliwinksi, 

1991) was used to estimate crystallized IQ. Socioeconomic status (SES) was measured with 

the Hollingshead SES scale, which separately ranks an individual’s educational and 

occupational attainment on scales ranging from 1–7. A weighted score was computed by 

multiplying the educational score by 4 and the occupational score by 7 and summing the 2 

scores (Hollingshead, 1957). Lower scores indicate higher SES. Because the majority of 

younger participants had not yet completed their educations, we compared the older group to 

the SES scores for the parents of the younger group.
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2.1.3 MRI Data Acquisition—Functional magnetic resonance imaging (fMRI) data were 

acquired using a 3-Tesla Siemens Tim Trio scanner (Siemens, Erlangen, Germany) paired 

with a 12-channel phased-array whole-head coil. Head motion was restrained with foam 

pillows and extendable padded head clamps--3D T1-weighted magnetization prepared rapid 

acquisition gradient echo (MP-RAGE) anatomical images were collected with the following 

parameters: time repetition (TR) = 2530ms, time echo (TE) = 3.39ms, flip angle (FA) = 7°, 

1.33 x 1.0 x 1.33 mm resolution, 2x acceleration. Functional T2*-weighted images were 

acquired using a gradient-echo echo-planar pulse sequence sensitive to bold oxygenation 

level-dependent (BOLD) contrast (Kwong et al., 1992; Ogawa et al., 1992) with the 

following parameters: TR = 2000ms, TE = 30ms, FA = 90°, 3.0mm isotropic resolution. 

Thirty-six transverse slices covered the whole brain and were acquired in an interleaved 

fashion. Functional data were acquired while the participant was instructed to rest with eyes 

open for a period of 5 minutes consisting of 150 volumes. To allow for T1-equilibration 

effects, 4 dummy volumes were discarded prior to acquisition. Online prospective 

acquisition correction (PACE) was applied to the EPI sequence.

2.1.4 Resting State Preprocessing—Resting-state fMRI data were first preprocessed 

in SPM5 (Wellcome Department of Imaging Neuroscience, London, UK; (http://

www.fil.ion.ucl.ac.uk/spm/spm5.html). Images were realigned (motion corrected), spatially 

normalized to the Montreal Neurological Institute (MNI) stereotactic space, and smoothed 

with a six mm kernel. Quality assurance was performed on the functional time series in 

order to detect outliers in the motion and global signal intensity using the in-house software 

art (http://www.nitrc.org/projects/artifact_detect). From each participant, an image was 

identified as an outlier if composite movement from a preceding image exceeded 0.5mm, or 

if the global mean intensity was greater than 3 standard deviations from the mean image 

intensity for the run in which it was collected. This composite motion measure was defined 

by the art tool. By default, art converts the 6 rotation/translation head motion parameters 

into another set of 6 parameters characterizing the trajectories of 6 points located on the 

center of each of the faces of a bounding box around the brain. It then computes the 

maximum scan-to-scan movement of any of these points as the single ‘composite’ scan-to-

scan movement measure, which is thresholded to determine outliers. Identified outliers were 

included as nuisance parameters, as one regressor per outlier, within the first level general 

linear models.

2.1.5 Functional Connectivity Analysis—Functional connectivity analysis was 

performed with a seed-driven approach using the in-house, custom software Conn (http://

www.nitrc.org/projects/conn; Whitfield-Gabrieli & Nieto-Castanon, 2012). The MPFC seed 

was defined a priori from the literature (Fox et al., 2005; Whitfield-Gabrieli et al., 2009) as 

10mm spheres around the coordinates for the MPFC (−1, 47, −4) in MNI space. 

Physiological and other spurious sources of noise were estimated using the aCompcor 

method (Behzadi et al., 2007; Chai et al. 2012; Whitfield-Gabrieli et al., 2012), and removed 

together with movement-related and artifactual covariates. The residual BOLD time-series 

was band-pass filtered (0.009Hz to 0.08Hz). Each participant’s structural image was 

segmented into white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF) using 

SPM8. WM and CSF masks were eroded by one voxel to avoid partial volume effects with 
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adjacent gray matter. The first 3 principal components of the signals from the eroded WM 

and CSF noise ROIs were removed with regression.

First-level correlation maps were produced by extracting the residual BOLD time course 

from the MPFC seed and computing Pearson’s correlation coefficients between that time 

course and the time courses of all other voxels in the brain. Correlation coefficients were 

Fisher transformed into ‘Z’ scores, which increases normality and allows for improved 

second-level General Linear Model analyses. All reported clusters were significant at an 

FDR cluster-corrected threshold of p < .05.

Within Group Analyses: MPFC seed-to-voxel group analyses were separately performed 

using one-sample t-tests for within the young cohort (n = 27), and the older cohort (n = 27).

Between Group Analyses (Older vs. Younger): MPFC seed-to-voxel between group 

connectivity analyses were performed using two sample t-tests.

MPFC functional connectivity correlation with WM: We investigated the relationship of 

(a) the magnitude of resting-state correlations from the MPFC that were either positively 

correlated with the PCC or negatively correlated with the bilateral DLPFC regions and (b) 

the measure of WM performance assessed outside of the scanner (Letter-Number 

Sequencing task). We performed a one-sample t-test for the entire group (n = 54) and 

functionally defined (a) the left and right DLPFC clusters (within BA 46/9) that were 

significantly anticorrelated with the MPFC, and (b) the PCC cluster (BA30/31) that was 

significantly positively correlated with the MPFC seed. We then extracted the mean Z-

values from the bilateral DLPFC and PCC clusters for each participant of both cohorts and 

correlated those values with their WM capacities (as defined by the letter-number 

sequencing task) within both groups. Thus, the ROIs were unbiased because they were 

derived from all participants and independently from any behavioral measures.

2.1.6 Matched Groups on Motion Artifacts—To ensure that between group results 

were not driven by age-related differences in motion artifacts, we performed additional 

between-group analyses of subgroups of older and younger adults who did not differ 

significantly on movement and other artifacts. Within each cohort, 5 participants were 

removed (n = 44) to create groups equated for artifacts. Two-sample t-tests were performed 

to directly compare the connectivity maps between older and younger adults in the 

movement and artifact-matched groups.

2.2 Experiment 2

2.2.1 Participants—Participants were 70 younger adults (39 women) between the ages of 

18 and 29 years of age (M = 21.6 years, SD = 2.6). Written informed consent was approved 

by the MIT Institutional Review Board. Participants were required to be adults between the 

ages of 18 and 45, right-handed, in good health, and not taking any drugs. They were 

recruited through web advertisements, physical flyers, and e-mail to the Northeastern and 

Tufts college mailing lists.
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2.2.2 Neuropsychological and Demographic Measures—The automated Operation 

Span and Reading Span tasks were used as measures of complex WM capacity (Unsworth et 

al., 2005). For the Operation Span task, participants were presented with alternating letters 

and math equations, and asked to remember the letters while assessing whether each 

equation was valid. Set sizes ranged from 3-letters to 7-letters, with each set size presented 

for 3 trials over the course of the task, in a random order. At the end of each trial, 

participants reported the letters in the order they were presented. The dependent measure 

was the sum of all perfectly remembered letter sets. For the Reading Span task, participants 

were presented with alternating letters and sentences, and asked to remember the letters 

while assessing whether each sentence was sensical. Set sizes and scoring were identical to 

the automated Operation Span. Finally, Operation Span and Reading Span scores were 

summed to create a single measure estimating a participant’s complex WM capacity 

(composite score).

2.2.3 MRI Data Acquisition—Data were acquired on a 3T Tim Trio Siemens scanner 

using a 32-channel head coil. T1-weighted whole brain anatomical images (MPRAGE 

sequence, 256x256 voxels, 1x1.3-mm in-plane resolution, 1.3-mm slice thickness) were 

acquired. All participants underwent a resting functional MRI scan of 6 min with the 

instructions “keep your eyes closed and think of nothing in particular”. Resting scan images 

were obtained in 62 2-mm thick transverse slices, covering the entire brain (interleaved EPI 

sequence, T2*-weighted images; repetition time = 6 s, echo time = 30 ms, flip angle = 90, 

67 slices with 2x2x2 mm voxels). PACE was applied to the EPI sequence.

2.2.4 Data Analysis—Resting-state fMRI data for Experiment 2 were first preprocessed 

in SPM8 (Wellcome Department of Imaging Neuroscience, London, UK; http://

www.fil.ion.ucl.ac.uk/spm), using standard spatial preprocessing steps. Images were slice-

time corrected, realigned and resliced, normalized in MNI space and smoothed with a 4-mm 

kernel.

2.2.5 Functional Connectivity Analysis—The first four scans were excluded from 

analysis, as there were no dummy scans during initial acquisition. The preprocessing, 

artifact detection and rejection, aCompCor denoising to address physiological aliasing and 

subsequent seed driven functional connectivity analyses were identical to those in 

Experiment 1. Importantly, the left and right DLPFC clusters were defined from the entire 

group’s anticorrelation with the MPFC (independent of WM) and the mean DLPFC Z-

values from the clusters were then correlated with the complex WM scores.

2.3 Results

2.3.1 Neuropsychological Measures for Experiment 1—There was no significant 

difference between younger (M = 119.74, SD = 5.8) and older (M = 120.37, SD = 7.6) 

groups for AMNART scores (t(52) = 0.36, p = 0.73) or for the Hollingshead SES scale 

(younger: M = 28.37, SD = 10.0; older: M = 31.96, SD = 11.6; (t(52) = 1.22, p = 0.22). The 

younger group (M = 15.15, SD = 3.4) performed significantly better than the older group (M 

= 10.70, SD = 2.5) on the Letter-Number Sequencing Test (t(52) = 5.44, p < 0.001)). 

Analyses of behavioral measures were performed with two-tailed t tests.
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2.3.2 Artifact detection—Relative to younger adults (M = 1.1% of 150 time points, SD = 

1.6%), older adults (M = 2.4% of 150 time points, SD = 3.0%) had significantly more 

artifacts (the union of motion and intensity outliers) (t(52) = 2.05, p < 0.05). MPFC 

correlations and anticorrelations increased post artifact detection and rejection, most 

noticeably in the older adults.

In order to make certain that group differences between younger and older adults were not 

were not driven by age-related differences in motion artifacts, we performed between group 

analyses on the groups who were matched on motion artifacts (after eliminating five 

participants from each cohort (n = 44)). For these matched groups, there was no significant 

difference in motion and other artifacts (t(42) = 0.00, p = 1.00).

2.3.3 Group Differences in Intrinsic Functional Organization—Using a seed-to-

voxel analysis, the positive correlation between the MPFC seed and the PCC was 

significantly reduced in older relative to younger adults, (p < 0.05, cluster-level, FDR 

corrected). With the MPFC seed, there was a significant reduction in bilateral DLPFC 

anticorrelations in older relative to younger adults (Figure 1.A, top row; Table 1). There was 

a significant reduction in the magnitude of bilateral DLPFC anticorrelations with the MPFC 

seed in the artifact-matched groups (Figure 1.A, second row). The magnitude of the bilateral 

DLPFC anticorrelations defined by the entire (n = 54) group with respect to the MFPC seed 

was not significantly different from zero in older participants (right: t(52) = 0.61, p = 0.53, 

left: t(52) = 0.52, p = 0.61) (Figure 1.B). In fact, there were no observed MPFC-DLPFC 

anticorrelations in the elderly cohort, even when evaluated at a liberal threshold of p = 0.05 

uncorrected (Figure 1.A, third row).

2.3.4 Correlations with WM performance—There was not a significant correlation 

between greater MPFC-PCC correlation and superior performance on the Letter-Number 

Sequencing task within either the older (r = 0.01, p = 0.95) or the younger group (r = 0.18, p 

= 0.38). Greater anticorrelation between the MPFC and the right DLPFC was significantly 

associated with better performance within the younger group (r = −0.43, p < 0.05), but not 

within the older group (r = −0.11, p = 0.51) (Figure 2). The lack of association within the 

older group may be attributable to a restricted range of variance in the greatly reduced 

anticorrelation between MPFC and right DLPFC. Correlations in the younger adults 

remained significant after removing a young adult with an apparent outlier value in the 

MPFC/DLPFC anticorrelations. The left DLPFC was not significantly correlated with WM 

performance within either group.

2.3.5 Results for Experiment 2—We replicated and extended our findings in 

Experiment 1 (that greater resting-state MPFC-DLPFC anticorrelation was associated with 

greater WM capacity among young adults) with a new independent group with a larger 

sample size (n=70). The primary analysis was performed with the composite score from two 

complex WM measures (i.e. Operation Span and Reading Span). Greater MPFC-left DLPFC 

anticorrelations were significantly correlated with composite WM scores (r = −0.24, p = 

0.04) (Figure 3).
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3. Discussion

We found convergent evidence from aging and from individual differences among young 

adults of a relation between greater WM capacity and greater magnitude of MPFC-DLPFC 

anticorrelation. Older adults exhibited both reduced WM and reduced MPFC-DLPFC 

anticorrelation relative to younger adults. Furthermore, greater WM capacity was associated 

with greater MPFC-DLPFC anticorrelation in two independent cohorts of young adults (total 

n = 97) with two different WM measures.

3.1 Age-Related Differences in WM Capacity and MPFC-DLPFC Anticorrelation

The behavioral findings were consistent with those generally observed in healthy aging 

(Hedden & Gabrieli, 2004, 2005). Younger and older participants scored similarly on the 

AMNART, a measure of vocabulary knowledge, consistent with evidence that crystallized 

knowledge or intelligence remains relatively intact during healthy aging (Park et al., 2002; 

Schaie, 1996). In contrast, older participants scored significantly less well on the measure of 

WM capacity, consistent with evidence that WM or fluid intelligence abilities decline in 

healthy aging (Park et al., 2002; Schaie, 1996). The validity of comparing these two groups 

of younger and older participants was supported by similar AMNART scores and similar 

SES status (with the use of parental SES for the younger adults who have often not 

completed education or reached final career and economic status).

There was also a significant age-related reduction in MPFC-DLPFC resting-state 

anticorrelation. This finding is consistent with a prior study that employed a potentially 

problematic method of global signal regression to examine anticorrelations (Wu et al., 

2011). In addition, older adults, relative to younger adults, exhibited significant reductions 

in MPFC-PCC positive correlations. Reduced positive MPFC-PCC correlations are 

consistent with prior reports of reduced functional connectivity in normal aging (Andrews-

Hanna et al., 2007; Damoiseaux et al., 2008). Aging appeared to have a more severe impact 

on the MPFC-DLPFC anticorrelation because that anticorrelation was statistically absent, 

whereas the reduced MPFC-PCC positive correlation remained significantly above zero in 

the older adults.

Unlike prior studies reporting associations between MPFC-PCC positive correlations and 

measures of WM or other executive functions (Andrews-Hanna et al., 2007; Damoiseaux et 

al., 2008), we did not observe such a correlation within either younger or older adults in 

Experiment 1. This difference across studies may be due to variations in analytic 

approaches, sample characteristics, choice of neuropsychological tests, or other factors. For 

example, some studies do not measure resting-state correlations as in the present study, but 

perform correlations on the residuals of an event-related activation design (e.g., Andrews-

Hanna et al., 2007). Another study found a significant correlation between DMN 

anticorrelations during a 3-back task and WM performance on the 3-back task (Sala-Llonch 

et al, 2012). This relationship was not found in any of the less demanding n-back levels, but 

the anticorrelation during the interleaved fixation periods also correlated with WM 

performance during the 3-back condition (there was no report of the DMN anticorrelations 

during the pure rest condition and WM performance on the 3-back task). However, there is 

evidence that an active n-back task influences the rest periods within the task design, and 
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therefore may be different from calculating the anticorrelations from pure rest (Pyka et al. 

2009). In the present study, all resting-state measures were taken from pure resting-state 

scans, and are therefore not confounded with task performance.

The age-associated alteration in functional connectivity may be associated with age-related 

alteration in structural connectivity of white matter pathways as measured by diffusion 

tensor imaging (DTI). Older adults exhibit reduced integrity relative to younger people, 

especially in anterior regions near the DLPFC (e.g., Head et al., 2004; Pfefferbaum et al., 

2005; Salat et al., 2005). Altered integrity of anterior white-matter pathways has been 

associated with age-related reductions in cognitive control and executive functions (Charlton 

et al., 2006; Deary et al., 2006; Grieve et al., 2007; O’Sullivan et al., 2001, Penke et al., 

2010). Indeed, such region-specific alterations of white matter in typical aging have been 

related to individual differences in cognitive control among older adults, whereas cortical 

thickness and age-related alterations of temporal and parietal lobe white matter were 

unrelated (Ziegler et al., 2010).

Because many neural and psychological changes occur in concert with aging, it is difficult to 

make strong causal assertions between specific neural and specific psychological changes 

(Salthouse, 2010). Nevertheless, it is noteworthy that the MPFC is particularly vulnerable to 

aging functionally as the MPFC-DLPFC anticorrelation was statistically eliminated (also 

Wu et al., 2011).

3.2 Individual Differences in WM Capacity and MPFC-DLPFC

Greater MPFC-DLPFC anticorrelation at rest was associated with greater WM capacity 

across two independent samples totaling 97 young adults and using two different measures 

of WM capacity. In Experiment 1, greater WM capacity among young adults, as measured 

by a Letter-Number Sequencing task, was associated with greater right-lateralized MPFC-

DLPFC anticorrelation. In Experiment 2, greater WM capacity among young adults, as 

measured by a composite score from the Operation-Span and Reading-Span tasks, was 

associated with greater left-lateralized MPFC-DLPFC anticorrelation. Importantly, all of 

these correlations were observed in an analysis in which MPFC-DLPFC anticorrelations 

were defined consistently and independently from the WM capacity measures. The 

observation that greater MPFCDLPFC anticorrelation was associated with greater WM 

capacity regardless of the specific measure of WM capacity indicates that this brain-

behavior relation is generalizable.

Among young adults, the laterality of the MPFC-DLPFC anticorrelation shifted across 

different measures of WM capacity, and it is unclear what factor explains this difference. All 

three WM capacity measures involved simultaneous maintenance and manipulation of 

information in WM, with variation in the amount of that information. An advantage of such 

complex tasks is that they tax WM capacity, but a disadvantage is all the tasks involve many 

kinds of mental operations. In Experiment 2, the primary WM measure was a composite of 

the Operation-Span and Reading-Span tasks. Such a composite has the virtue that it provides 

a task-independent latent measure of the underlying construct of WM capacity that is not 

overly sensitive to the measurement properties of a single task. It is also possible that 

different WM measures are related to different neural circuits. Overall, however, the two 
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experiments converged in showing that greater magnitudes of MPFC-DLPFC resting-state 

anticorrelations were associated with greater WM capacity among young adults.

3.3 Methodological Considerations

Compared to previous resting-state fMRI studies examining aging and individual 

differences, the present study had a number of potential methodological advantages. First, 

we used the aCompCor method of noise reduction (Behzadi et al., 2007) as implemented in 

Conn (Whitfield-Gabrieli and Nieto Castanon, 2012). This method avoids explicit global 

signal regression, a widely used preprocessing technique known to mathematically generate 

anticorrelations (Murphy et al., 2009; Saad et al., 2012; Van Dijk et al, 2010; Wong et al., 

2012) which as a result renders anticorrelations uninterpretable (e.g., Chang & Glover, 

2009) and may compromise the interpretability of positive correlations (Saad et al., 2012). 

The approach used in the present study is more likely to yield interpretable negative 

correlations and provides higher sensitivity and specificity for positive correlations (Chai et 

al., 2012). The differences in anticorrelations observed across age groups and individual 

differences within age groups observed in the present study are therefore less likely 

attributable to artifacts from data processing methods and may reflect biological processes. 

Second, we employed a method of artifact rejection above and beyond motion regression in 

order to reduce motion-related artifacts common in aging. As expected, the older adults had 

significantly more artifactual time points removed from analysis (although the percentage of 

time points removed was small for both groups). After artifact rejection, there was an 

apparent increase of posterior anticorrelations in the older adults, whereas frontal 

anticorrelations remained eliminated even at a liberal threshold of p = 0.05 uncorrected. 

These findings suggest that aging disproportionately degrades MPFC-DLPFC 

anticorrelations.

Greater movement in older relative to younger adults raised the possibility that differential 

connectivity findings could reflect differential movement. This appears unlikely, however, 

because age-related differences were also found when comparing younger and older groups 

after they were matched for movement and artifact outliers. Thus, the age-related differences 

are more likely to reflect actual differences in intrinsic brain organization.

Finally, the major findings regarding individual differences in intrinsic functional brain 

organization in relation to WM capacity were based on brain imaging correlations 

independent of behavioral measures. Specifically, the DLPFC regions were defined without 

reference to the WM behavior. Thus, the relations between the MPFC-DLPFC 

anticorrelations and WM performance were not contingent upon a whole-brain search for 

correlations with performance.

4. Limitations

One limitation to this study is that the older adult population may have substantially more 

cortical atrophy and more CSF, which may have differentially affected the normalization 

procedure. Another limitation is that although the use of different WM measures in 

Experiments 1 and 2 promote the generalizability of the findings, the different measures 

precluded a direct replication. Finally, anticorrelations are consistently found in young 
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adults between specific neuroanatomical systems (e.g., the default mode network and the 

frontal-parietal network) and the magnitude of these anticorrelations relate to individual 

differences in behavior (e.g., WM performance), but the neural mechanisms underlying 

these anticorrelations remain unknown.

5. Conclusion

In older adults, there was reduced WM capacity and the apparent elimination of MPFC-

DLPFC anticorrelation. In younger adults, there were associations between greater 

magnitudes of WM capacity and greater MPFC-DLPFC anticorrelations. These results 

suggest that intrinsic anticorrelations between the MPFC, a node in the DMN, and DLPFC, a 

cortical region involved in cognitive control, may serve as a shared indicator of WM 

capacity both in aging and in individual differences among young adults. Also, just as WM 

capacity declines in older adulthood, WM capacity grows markedly in development from 

childhood to young adulthood, and so do MPFC-DLPFC anticorrelations (Chai et al., 2014).

Differences in intrinsic functional organization in the resting state may reflect the ongoing 

history of interactions among brain regions during active cognitive performance in everyday 

life. Ultimately, it will be valuable to relate directly such resting-state and active-

performance network dynamics. Resting-state studies are limited in interpretation by the 

absence of ongoing behavioral measures. Conversely, active performance studies are limited 

by the interpretation of brain activations occurring at different levels of performance in 

younger and older adults or among younger adults. Thus, one study reported that age-related 

reductions in activation during a WM task can be understood essentially in terms of 

variation in WM capacity (Schneider-Garces et al., 2009). Conversely, another study 

reported that age-related differences activation cannot be explained solely by variation in 

WM capacity (Bennett et al., 2013). Future studies that integrate resting-state and active-

performance measures in younger and older adults with varying WM capacities in both age 

groups may clarify the extent to which individual differences among younger adults and 

age-related declines in older adults reflect shared and unique brain differences.
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Figure 1. 
(A) Resting-state anticorrelations for the medial prefrontal cortex (MPFC) seed are reduced 

in older adults; (top row) for younger adults (left column), older adults (middle column), and 

younger > older adults (right column). Top row depicts results from all participants. Second 

row depicts results from groups matched for motion artifacts. Results thresholded at p < 

0.05, FDR cluster corrected in top two rows. The third row shows the same analyses at a 

more liberal threshold (p = .05, unc), and reveals that age-related differences occur only in 

frontal regions even at this threshold. (B) Resting-state anticorrelation for younger (gray) 
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and older (black) adults between MPFC and bilateral DLPFCs; only younger adults 

exhibited significant anticorrelations in left and right DLPFC.
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Figure 2. 
Correlation between the magnitudes of MPFC-right DLPFC anticorrelation and WM 

performance (Letter-Number Sequencing) for younger (A) and older (B) adults for 

Experiment 1.
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Figure 3. 
Correlation between the magnitudes of MPFC–left DLPFC anticorrelation and WM 

performance (composite of Operation and Reading Span) for in younger adults for 

Experiment 2.
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Table 1

MPFC Anticorrelations Young > Old, FDR cluster corrected (p < 0.05)

Clusters (x,y,z) (MNI) Clusters BA k

(38, 34, 28) right DLPFC 9 166

(30, 6, 8) right Insular Cortex 13 131

(48, 38, 4) right DLPFC 46 130

(−40, 40, 30) left DLPFC 9 113

(−18, 2, 60) left Premotor Cortex 6 185

(18, 22, 6) right Anterior Cingulate 33 100

(20, 52, −6) right Anterior PFC 10 98

(32, 38, 0) right Inferior PFG 47 102

(30, 6, 8) right Insular Cortex 13 229

(38, 34, 28) right DLPFC 9 61

(48, 38, 4) right DLPFC 46 179

BA=Brodmann Area, k=spatial extent(voxel), FDR=false discovery rate

Cortex. Author manuscript; available in PMC 2016 March 01.


