
Effects of Climate Change on Salmonella Infections

Luma Akil,1 H. Anwar Ahmad,1 and Remata S. Reddy2

Abstract

Background: Climate change and global warming have been reported to increase spread of foodborne path-
ogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis
and neural network (NN) were used.
Methods: Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL)
were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were
collected and the correlation with salmonellosis was examined using regression analysis and NN.
Results: A seasonal trend in Salmonella infections was observed ( p < 0.001). Strong positive correlation was
found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL)
models (R2 = 0.554; R2 = 0.415, respectively). NN models showed a strong effect of rise in temperature on the
Salmonella outbreaks. In this study, an increase of 1�F was shown to result in four cases increase of Salmonella
in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was
observed.
Conclusion: There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively
correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in
the United States and specifically in the southern states may increase rates of Salmonella infections.

Introduction

Salmonella is an important foodborne pathogen
worldwide. A recent study estimated that approximately

93.8 million human cases of gastroenteritis and 155,000
deaths occur due to Salmonella infection around the world
each year (Hoelzer et al., 2011). In the United States alone,
Salmonella causes an estimated 1.4 million human cases,
15,000 hospitalizations, and more than 400 deaths annually
(Callaway et al., 2008). Emergence or resurgence of nu-
merous infectious diseases are strongly influenced by envi-
ronmental factors such as climate or land use change (Mills
et al., 2010). Climate, weather, topology, hydrology, and
other geographical characteristics of the growing site may
influence the magnitude and frequency of transfer of patho-
genic microorganisms from environmental sources (World
Health Organization Food Safety Report, 2011).

Diseases associated with climate change are estimated
already to comprise 4.6% of all environmental risks and
hazards. It has been estimated that climate change in the year
2000 contributed to about 2.4% of all diarrhea outbreaks in
the world, 6% of malaria outbreaks in certain developing
countries, and 7% of the episodes of dengue fever in some
industrial countries. In total, the estimates show that climate

change related mortalities has been 0.3%, whereas the related
burden of disease has been 0.4% (Kendrovski and Gjorgjev,
2012).

From 1906 to 2005, global average temperature has
warmed by 0.74�C, and since 1961, sea level has risen on
average by approximately 2 mm per year. Arctic sea ice ex-
tent has declined by 7.4% per decade, and snow cover and
glaciers have diminished in both hemispheres (Mills et al.,
2010). The rate of change in climate is faster now than in any
period in the last 1000 years. According to the United Nations
Intergovernmental Panel on Climate Change, in 90 years,
average global temperatures will increase between 1.8�C and
4.0�C and sea level will rise between 18 and 59 cm (Patz
et al., 2008; McMichael et al., 2006).

Weather, and particularly changes in expected weather
patterns, can be the reason for transfer of microbial con-
taminants to leafy vegetables and herbs. Dry periods can
cause dust storms that settle dust particles on leafy vegeta-
bles. Increased temperatures can increase the rate of micro-
bial growth. It may also influence the population of insects
and pests found in and around farms that transfer human
pathogens to leafy vegetables. Relative humidity has been
shown to have an effect on survival of human pathogens
(Hunter et al., 2003). Climate change scenarios predict a
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change distribution of infectious diseases with warming and
changes in outbreaks associated with weather extremes, such
as flooding and droughts.

Many infectious agents, vector organisms, nonhuman
reservoir species, and rate of pathogen replication are
sensitive to climatic conditions. Both Salmonella and Vi-
brio cholerae, for example, proliferate more rapidly at
higher temperatures: Salmonella in animal gut and food,
V. cholerae in water. In regions where low temperature,
low rainfall, or absence of vector habitat restrict trans-
mission of vectorborne disease, climatic changes could tip
the ecological balance and trigger epidemics (McMichael
et al., 2006). Further, strong linear associations have been
noted between temperature and notifications of Salmo-
nellosis in European countries and Australia, and a weak
seasonal relation exists for Campylobacter (McMichael
et al., 2006).

The United States is likely to experience increases in ex-
treme cold, extreme heat, hurricanes, floods, wildfires,
droughts, tornadoes, and severe storms (NOAA, 2012). The
health impacts of global climate change are anticipated to be
widespread, geographically myriad, and profoundly influ-
enced by preexisting social and economic disparities (Shef-
field and Landrigan, 2011).

The climate of the Southern states, including Mississippi’s,
has always been fluctuating and sometimes extreme. The
average temperatures in Mississippi have varied substantially
over the past century, with an average of 1�F increase since
the late 1960s. Extreme rainfall events, primarily thunder-
storms, have increased in this century. While rainfall totals
have changed little, seasonal trends are apparent; summers
have become slightly drier and winters slightly wetter (NOAA,
2012). On an average, 29 tornadoes are reported annually in
Mississippi; the highest number was in 2008 with 109 tor-
nadoes. In addition, during the past decade, Mississippi had
experienced multiple hits by hurricanes, including the dev-
astating Katrina (NOAA, 2012).

Climate change and global warming have contributed to
the spread of several foodborne pathogens (Patz, 2008; WHO
Food Safety Report, 2011). The current study was undertaken
to investigate the effects of climate change on Salmonella

infections and the correlation with temperature and precipi-
tation using various modeling approaches.

Materials and Methods

Monthly data of Salmonella outbreaks from 2002 to 2011
were obtained from Mississippi State Department of Health,
Department of Epidemiology; Alabama Department of
Public Health; and TN Department of Health, Communicable
Disease Interactive Data (available at http://health.state.tn
.us/ceds/WebAim/WEBAim_criteria.aspx). In addition, meteo-
rological data, including average air temperatures, minimum
and maximum, and total precipitation for the selected sta-
tion across the state and states’ averages (MS, AL, and TN)
were collected from the Southeast Regional Climate Center,
available at: http://www.sercc.com/climateinfo/monthly_
seasonal.html

Analysis of variance was performed to determine the sea-
sonal change in Salmonella outbreaks during the study period
using SAS 9.2 (SAS 9.2, Cary, NC; 2010). Time series analysis,
including the Mann–Kendall test and a Seasonal trend test, was
applied to quantify the relationships between the temperature
and the number of notified cases of Salmonella, using the SY-
STAT software package (SigmaPlot, 2009). Regression analysis
was performed using SAS 9.2 where temperature and precipi-
tation were used as independent (classification) variables and
Salmonella outbreaks as dependent (response) variable.

Neural Network (NN) models for temperature effects on
Salmonella outbreaks were developed using @RISK (Pali-
sade Corporation, 2011) and NeuroShell2 (Ward Systems
Group, 1993) software packages. NeuroShell2 is a program
that mimics the human brain’s ability to classify patterns or to
make predictions or decisions based upon past experience.
NeuroShell2 enables the building of sophisticated custom
problem-solving applications without programming. The
network is told the problem being predicted or classified, and
NeuroShell2 will be able to ‘‘learn’’ patterns from training
data and be able to make its own classifications, predictions,
or decisions when presented with new data. NN models are
particularly useful when there are implicit interactions and
complex relationships in the data.

FIG. 1. Total monthly Salmonella cases in Mississippi from 2002 to 2011. Highest rates of Salmonella were observed
during the summer.
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Monthly temperature and Salmonella data from 2002 to
2011 in MS were used to build these models. Temperature
was used as an input while Salmonella outbreaks as output
variables. A General Regression NN Model and Polynomial
Net Models were selected from the software design archi-
tecture. Twenty percent of the data were extracted for testing,
and 80% were used for training the NN models. A test data
file was applied to previously saved trained NN models and
thus outputs were generated. Results were exported to Excel,
where graphs were created to show the association between
actual data and the predicted model.

Results

To understand the effects of climate change, Salmonella
association with temperature and precipitation was examined
using regression analysis and NN modeling. No significant
change in temperature or precipitation rates was observed
during the study period ( p > 0.05). The highest temperature
was recorded in 2007 with an average of 64.95�F, while 2009
had the highest precipitation (68.64 inches) and the lowest in
2007 (42.33 inches).

Time series analysis, including Mann–Kendall test and a
Seasonal trend test, were applied to quantify the relationship

between the temperature and the number of notified cases of
Salmonella. A seasonal trend in Salmonella outbreaks data
was observed during 2002–2011 (Fig. 1). Highest outbreaks
of Salmonella were observed during the summer season with
peaks during July through September. Mann–Kendall Test
results are shown in Table 1 and Figure 2. Significant high
infections rates were observed during the summer season
( p < 0.01; Kendall Tau Statistic = 0.169 and Z = 2.35).

Regression analysis was performed to determine the cli-
mate effect on Salmonella. The temperature and precipitation
were used as classification (independent) variables and Sal-
monella infections as a response (dependent) variable. Two
regression analyses were performed; the first model was
created using Mississippi data, and the second model was
created with Mississippi, Alabama, and Tennessee data.
Strong positive correlation was found between the tempera-
ture and Salmonella outbreaks in Mississippi and for the
three-states model (R2 = 0.554, R2 = 0.415, respectively;
p < 0.01) (Figures 3 and 4). The results showed that a 1�F
increase in temperature will result in an increase of four cases
(3% increase of the current average) of Salmonella infec-
tions. However, no correlation was found between total
precipitation and Salmonella outbreaks in MS.

NN models for detecting temperature effect on Salmo-
nella outbreaks were developed. Monthly temperature
and Salmonella data, from 2002 to 2011 in MS, were used
to build the models. Temperature was used as an input
variable while Salmonella outbreaks were used as output
variable for the model. A General Regression NN Model
and Polynomial Net Models were selected from design
architecture. Results of the two models (Table 2) showed
that coefficient of determination R2 was 0.567 and 0.582,
respectively, when exposed to test data. The correlation
coefficients for the models were 0.757 and 0.763, respec-
tively, which shows a strong correlation between the out-
comes and the predicted values. NN models showed a strong
effect of rise in temperature on the Salmonella outbreaks, as
shown in Figure 5.

Discussion

In the current study, the effects of climate variation on
Salmonella infections in MS were examined. Results indi-
cated an increase in temperature is positively correlated with

Table 1. Mann–Kendall Test Results

Month
Number of

observations Statistic ASE Tau

January 10 - 5 11.091 - 0.111
February 10 9 10.970 0.200
March 10 20 11.136 0.444
April 10 13 10.970 0.289
May 10 - 4 11.136 - 0.089
June 10 3 11.180 0.067
July 10 9 11.180 0.200
August 10 13 11.180 0.289
September 10 13 11.180 0.289
October 10 - 7 11.180 - 0.156
November 10 12 11.136 0.267
December 10 15 11.180 0.333

ASE, asymptotic standard error; Tau, the Kendall correlation
coefficient; measures the strength of association.

FIG. 2. Time series analysis for Salmonella outbreaks from January 2002 to December 2011.
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Salmonella infections. A seasonal trend was also observed in
this study, with the highest outbreaks during the summer to
early fall. The positive relationship between temperature and
Salmonella infections, observed in this study, using regres-
sion and neural network models, was similar to recent find-
ings from Australia, Europe, North America, and Asia with
similar trends (D’Souza et al., 2005; Taylor et al., 2009; Zhang
et al., 2010). Endemic regions for Salmonella outbreaks include
developing countries in South Central and Southeast Asia, and
many parts of Africa, the Middle East, and Latin America. In
countries such as sub-Saharan Africa, nontyphoidal salmonel-
lae are consistently the most common bacterial bloodstream
isolates in both adults and children presenting with fever and
are associated with a case fatality of 20–25% (Feasey et al.,
2012). It is worth noting, however, that the foodborne outbreak
surveillance systems in developing countries cover < 1% of the
actual outbreaks (Tajkarimia et al., 2013).

In the current study, an increase of 1�F was shown to result
in four new cases of Salmonella in MS. Other studies also
found that weekly counts of enteric bacterial disease cases
generally increased with weekly temperature after adjusting
for seasonal and long-term trends (Fleury et al., 2006). Zhang
et al. (2010) had suggested that a potential 1�C rise in mean

weekly maximum temperature may be related to an 8.8%
increase in the weekly number of cases, and a 1�C rise in
mean weekly minimum temperature may lead to a 5.8% in-
crease in the weekly number of cases.

During the current study period, there was no significant
change in Salmonella cases in MS; however, a seasonal trend
was observed. Any such increase in Salmonella outbreaks
could be attributed to the implementation of better surveil-
lance systems, such as PulseNet, which allows Salmonella
cases to be grouped into an outbreak that otherwise would
have been considered as sporadic cases (Zhang et al., 2011).
Since we did not observe any such increase during our study
period, it remains a mere speculative assumption.

The southern states climate is generally warm and wet,
with mild and humid winters. Since 1970, average annual
temperatures in the region have increased by about 2�F, and
the average annual temperatures in the region are projected to
increase by 4 to 9�F by 2080 (Karl et al., 2009). Climate
change and extreme events may increase the spread of
foodborne illnesses in this region, particularly in disadvan-
taged states such as Mississippi.

Better growth of Salmonella at higher temperatures leads
to higher concentration of Salmonella in the food supply in

FIG. 3. Mississippi regression analysis between temperature and Salmonella. y = 3.5252x – 137.65; R2 = 0.554.

FIG. 4. Regression analysis between temperature and Salmonella in Mississippi, Tennessee, and Alabama. y = 2.2769x –
62.171; R2 = 0.4154.
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the warmer months. Inadequate cooking practices are also
more common during these months (picnics, barbecues, etc.).
Temperature may affect the transmission of Salmonella in-
fections via several causal pathways, such as direct effects on
bacterial proliferation and indirect effects on eating habits
during hot days. The optimum temperature for the growth of
Salmonellae is between 35�C and 37�C. The growth is greatly
reduced at < 15�C. Ambient temperature influences the de-
velopment of Salmonella at various stages in the food chain,
including bacterial loads on raw food production, transport,
and inappropriate storage ( Juneja, 2007; Zhang et al., 2010).

There is consistent evidence that gastrointestinal infection
with bacterial pathogens is positively correlated with ambient

temperature, as warmer temperatures enable more rapid repli-
cation. Annually, Salmonella notifications peak in summer and
the rate of notifications has been shown to be positively and
linearly correlated with the mean temperature of the previous
month or week (Bambrick et al., 2008; Russell et al., 2010).
Although some of the increase in summer months may be due to
changed eating behaviors (more ‘‘eating out’’ while on holidays
and attending outdoor functions such as barbecues), ambient
temperatures contribute directly to pathogen multiplication in
foods and thus likelihood of infection. Furthermore, it was noted
that enteric diseases in temperate latitudes have a seasonal
pattern, with the highest incidence of illnesses during the sum-
mer months. A study of foodborne illnesses in the United
Kingdom found a relationship between the incidence of disease
and the temperature in the month preceding the illness (Ben-
tham and Langford, 2001). It is believed that the survival and
growth of certain enteric pathogens are, within limits, positively
correlated with ambient temperature (Fleury et al., 2006).

Studies also predicted that notification rates of Salmonella
infection are expected to increase in future as climate change
causes ambient temperatures to rise above the previous av-
erage, contributing to around 1000 extra cases annually. This
relates to an annual difference of approximately 1200 lost
workdays and $120,000 in the cost of health care and sur-
veillance by 2050 (Bambrick et al., 2008). By considering a
suite of future climate scenarios, the Intergovernmental Panel
on Climate Change projected global surface temperature in-
creases between 1.1 and 6.4�C over the next century. Studies

Table 2. Results of Two Neural Network Models:

Effects of Temperature on Salmonella

Results GRNN GMDH

R2 0.567 0.582
r2 0.573 0.582
Mean squared error 1745 1688
Mean absolute error 32.82 31.62
Min. absolute error 0.085 0.0383
Max. absolute error 109 108
Correlation coefficient r 0.757 0.763

GRNN, General Regression Neural Network; GMDH, Group
Method of Data Handling, Polynomial Net.

FIG. 5. General Regression NN and Polynomial Net (Group Method of Data Handling, Polynomial Net) Models to
forecast the Salmonella outbreak from January 2002 through December 2011.
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had shown that the main health risks caused by climate
change include health impacts of weather disasters; health
impacts of temperature extremes, including heat waves;
mosquito-borne infectious diseases; foodborne infectious
diseases (including those due to Salmonella, Campylobacter,
and many other microbes); waterborne infectious diseases,
and other health risks from poor water quality; diminished
food availability (yields, costs/affordability); nutritional con-
sequences, increases in urban air pollution (e.g., ozone), and
the interaction of this environmental health hazard with me-
teorological conditions; changes in aeroallergens (spores,
pollens), potentially exacerbating asthma and other allergic
respiratory diseases; and mental health consequences of social,
economic, and demographic dislocations (e.g., in parts of rural
Australia, and via disruptions to traditional ways of living
in remote indigenous communities) (Bambrick et al., 2008;
Semenza and Menne, 2009; Petrescue et al., 2011).

On the other hand, no correlation between monthly aver-
age precipitation rate and Salmonella was observed in this
study. A better association with Salmonella outbreaks was
observed in studies using daily or weekly rates of precipita-
tion. In addition, no significant change in precipitation rates
was observed during the study period. Other studies, how-
ever, indicated that maximum and minimum temperatures,
relative humidity, and rainfall were all positively correlated
with the number of cases of Salmonella, with the lag values of
the effects being between 2 weeks and 2 months. They re-
ported that rainfall, especially heavy rainfall events, may
affect the frequency and level of contamination of drinking
water, and hence enteric infection. A strong association be-
tween drinking water quality, precipitation, and gastroen-
teritis was reported (Zhang et al., 2008).

Climatic changes can also impact the emergence or
re-emergence of infectious disease agents. There are some
general principles of pathogen emergence, which are associated
with changes in ecology and agriculture, technology and in-
dustry, globalization, human behavior and demographics, epi-
demiological surveillance, and microbial adaptation (Tauxe,
2002; Rose et al., 2001). It is important to recognize that path-
ogen emergence usually occurs as a consequence of a combi-
nation of two or more specific factors (Jaykus et al., 2011).

NN modeling of Salmonella and temperature

Over the last few years, artificial neural networks, as
nonlinear modeling techniques, had been proposed for use in
predictive microbiology (Ibarra and Yang, 1999; McKee
et al., 2000; Jacoboni et al., 2001; Garcı́aa-Gimeno et al.,
2003; Hervas et al., 2007; Valero et al., 2007; Khanzadi et al.,
2010). In the current study, two neural network models—
General Regression NN Model and Polynomial Net Model—
were used to predict the effects of temperature on Salmonella
outbreaks in MS. Several architectures of neural network
models were developed to determine the best-fitting models.
Both of the reported models showed a significant correlation
between temperature and Salmonella outbreak. Previous
studies had used a general regression neural network and
Monte Carlo simulation models for predicting survival and
growth of Salmonella on raw chicken skin as a function of
serotype, temperature, and time (Oscar, 2004).

Statistical methodologies and modeling were shown to be
useful tools to recognize the impact of fluctuating weather on

human health. Despite its connection to seasonal changes in
temperature, Salmonella infections have declined in Europe
and other parts of the world in the last decade, likely in part
due to ramped-up public health efforts (Zhang et al., 2010).
The decline raises hope that any effects of climate change
on foodborne illness might be counteracted with carefully
implemented health promotion and food safety policies.

Conclusions

Climate changes are likely to increase the severity, fre-
quency, timing, and duration of extreme weather events in the
United States, which in turn will increase health risks. The
transmission of Salmonella to humans is a complex ecological
process; warmer temperatures, in combination with differ-
ences in eating behavior, may contribute to enteric infections
including Salmonella infection. Regression and neural net-
work models were used to determine the correlation between
increase in temperature and increase in Salmonella outbreaks.
Both models showed strong positive correlation between in-
crease in temperature and Salmonella infections. However,
considering the seasonal variation, neural network models
turned out to be better predictor models.
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Zurera-Cosano G, Sanz-Tapi E. An artificial neural network
approach to Escherichia coli O157:H7 growth estimation.
J Food Sci 2003;68:639–645.

Hervás C, Martı́nez JA, Zurera G, Garcı́a RM, Martı́nez JA.
Optimization of computational neural network for its appli-
cation in the prediction of microbial growth in food. Food Sci
Technol Int 2007;7:159.

Hoelzer K, Isabel A, Switt M, Wiedmann M. Animal contact
as a source of human non-typhoidal salmonellosis. Vet Res
2011;42:34.

Hunter PR. Climate change and waterborne and vector-borne
disease. J Appl Microbiol 2003;94(Suppl):37S–46S.

Ibarra JG, Yang T. Estimation of internal temperature in chicken
meat by means of mid-infrared imaging and neural networks.
Precision Agric Biol Qual 1999;24. doi: 10.1117/12.336903.

Jacoboni I, Martelli PL, Fariselli P, De Pinto V, Casadio R.
Prediction of the transmembrane regions of b-barrel mem-
brane proteins with a neural network-based predictor. Protein
Sci 2001;10:779–787.

Jaykus L-A, Woolridge M, Frank JM, Miraglia M, McQuatters-
Gollop A, Tirado C, Clarke R, Friel M. Climate change:
Implications for food safety. FAO Rep 2011. Available at
ftp://ftp.fao.org/docrep/fao/010/i0195e/i0195e00.pdf

Juneja VK, Valenzuela Melendres M, Huang L, Gumudavelli
V, Subbiah J, Thippareddi H. Modeling the effect of tem-
perature on growth of Salmonella in chicken. Food Microbiol
2007;24:328–335.

Karl TR, Melillo JM, Peterson TC (eds.). Global Climate Change
Impacts in the United States. United States Global Change Re-
search Program. New York: Cambridge University Press, 2009.

Kendrovski V, Gjorgjev D. Climate change: Implication for
food-borne diseases (Salmonella and food poisoning among
humans in R. Macedonia). In: Structure and Function of Food
Engineering. Rijeka, Croatia: INTECH, 2012, pp. 151–170.

Khanzadi S, Gharibzadeh S, Raoufy RM, Razavilar V, Khaksar
R, Radmehr B. Application of artificial neural networks to
predict Clostridium botulinum growth as a function of Zataria
multiflora essential oil, pH, NaCl, and temperature. J Food
Safety 2010;30:490–505.

McKee KT, Shields TM, Jenkins PR, Zenilman JM, Glass GE.
Application of a geographic information system to the
tracking and control of an outbreak of shigellosis. Clin Infect
Dis 2000;31:728–733.

McMichael AJ, Woodruff RE, Hales S. Climate change and human
health: Present and future risks. Lancet 2006;367:859–869.

Mills JN, Gage KL, Khan AS. Potential influence of climate
change on vector-borne and zoonotic diseases: A review and
proposed research plan. Int J Health Geogr 2010;9:54.

[NOAA] National Oceanic and Atmospheric Administration.
U.S. Climate Extremes Index. 2012. Available at: http://www
.ncdc.noaa.gov/extremes/cei/, accessed April 20, 2012.

NOAA National Weather Service Weather Forecast General
Tornado Statistics for Mississippi 1950–2013. Available
at: http://www.srh.noaa.gov/jan/?n = gen_tor_stats, accessed
April 28, 2013.

Oscar TP. A Quantitative risk assessment model for Salmonella
and whole chickens. Int J Food Microbiol 2004;93:231–247.

Palisade Corporation. @Risk 4.0: A New Standard in Risk
Analysis. Ithaca, NY: Palisade Corporation, 2011. Available
at: http://www.palisade.com/risk

Patz JA, Olson SH, Uejio CK, Gibbs HK. Disease emergence
from global climate and land use change. Med Clin N Am
2008;92:1473–1491.

Petrescu C, Suciu O, Ionovici R, Herbarth O, Franck U, Schlink
U. Respiratory health effects of air pollution with particles
and modification due to climate parameters in an exposed
population: Long and short term study. Int J Energy Environ
2011;1:102–112.

Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM,
Patz JA. Climate variability and change in the United States:
Potential impacts on water and foodborne diseases caused
by microbiologic agents. Environ Health Perspect 2001;
109(Suppl 2):211–221.

Russell R, Paterson M, Lima N. How will climate change affect
mycotoxins in food? Food Res Int 2010;43:1902–1914.

SAS Institute Inc. SAS User’s Guide: Statistics Version 9.2 ed.
Cary, NC: SAS Institute Inc., 2010.

Semenza JC, Menne B. Climate change and infectious diseases
in Europe. Lancet Infect Dis 2009;9:365–375.

Sheffield PE, Landrigan PJ. Global climate change and chil-
dren’s health: Threats and strategies for prevention. Environ
Health Perspect 2011;119:291–298.

SigmaPlot; version 13. Chicago: SYSTAT Software, Inc., 2009.
Southeast Regional Climate Center. Available at: http://www

.sercc.com/climateinfo/monthly_seasonal.html, accessed
March 15, 2012.

Tajkarimia M, Ibrahimb SA, Fraserc AM. Food safety chal-
lenges associated with traditional foods in Arabic speaking
countries of the Middle East. Trends Food Sci Technol 2013;
29:116–123.

Tauxe RV. Emerging foodborne pathogens. Int J Food Micro-
biol 2002;78:31–41.

Taylor E, Kastner J, Renter D. Challenges involved in the
Salmonella Saintpaul outbreak and lessons learned. 2009.
Available at: http://krex.k-state.edu, accessed May 2013.

Tennessee Department of Health, Communicable Disease In-
teractive Data. Available at: http://health.state.tn.us/ceds/
WebAim/WEBAim_criteria.aspx, accessed March 6, 2012.

Valero A, Hervás C, Garcı́a-Gimeno RM, Zurera G. Product
unit neural network models for predicting the growth limits of
Listeria monocytogenes. Food Microbiol 2007;24:452– 464.

Ward Systems Group. 1993 NeuroShell 2 User’s Manual.
Frederick, MD: Ward Systems Group, Inc., 1993.

[WHO] World Health Organization—Food Safety Report. 2011.
Available at: http://www.who.int/foodsafety/en/, accessed
January 25, 2014.
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