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Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an
effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major sur-
face antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo
antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falcipa-
rum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burg-
dorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except
for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these
pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowl-
edge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T.
brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats.
Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a nat-
ural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing
the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this
review.

Trypanosoma brucei is a protozoan parasite that causes human
African trypanosomiasis and is transmitted by the tsetse fly

(Glossina spp.). The bloodstream form of T. brucei stays in extra-
cellular spaces in its mammalian host and is constantly exposed to
host immune surveillance. To evade elimination by its mamma-
lian host immune response, T. brucei undergoes antigenic varia-
tion and regularly switches its major surface antigen, variant sur-
face glycoprotein (VSG), through elaborated mechanisms that
often involve DNA recombination (1).

ANTIGENIC VARIATION IN T. BRUCEI

The T. brucei genome (2) has a large VSG gene pool. Recent deep-
sequencing analysis of the Lister 427 strain identified more than
2,500 VSG genes and pseudogenes (3). Most of these are in gene
arrays located at subtelomeric regions of the 11 pairs of megabase
chromosomes (Fig. 1A) (4). Individual VSG genes are found at
approximately one-third of all subtelomeres on �100 minichro-
mosomes (Fig. 1B) (3), which contain terminal telomere repeats
and central 177-bp repeats (5). Normally, VSG gene arrays and
minichromosome VSG genes are not transcribed but serve as a
large VSG gene pool for VSG switching. VSGs are transcribed by
RNA polymerase I exclusively from subtelomeric VSG expression
sites (ESs) located on megabase chromosomes and intermediate
chromosomes (Fig. 1C) (6, 7). Each ES contains a number of
ES-associated genes (ESAG), and ES promoters usually are 40 to 60
kb upstream of the VSG gene (8, 9), which is the last gene in any ES
and is located within 2 kb of the telomere repeats (10, 11). It is
noteworthy that about half of the annotated VSG genes have up-
stream 70-bp repeats (3). In the assembled ES sequences, 70-bp
repeats are 0.2 to 7.1 kb long (11). However, sequencing and as-
sembly of repetitive sequences are not completely reliable. The
70-bp repeats are underrepresented and can be several tens of kb

long in ESs. The 70-bp repeats upstream of individual VSG genes
and pseudogenes in VSG gene arrays generally are much shorter
and of only a few copies (12, 13). The 70-bp repeats upstream of
VSG genes presumably provide homologous sequences for effi-
cient DNA recombination in VSG switching (14–17) (see below).

There are multiple ESs in the T. brucei genome (e.g., 15 ESs in the
Lister 427 strain) (11, 18, 19). Although different ESs usually con-
tain different VSG genes, ES promoter sequences are highly con-
served (20–22). Different ESs also have very similar gene organi-
zations and exhibit �90% sequence identity (11). However, at any
moment, only one ES promoter is fully active, resulting in a single
type of VSG being expressed (23). This monoallelic VSG expres-
sion ensures that after a VSG switching event, the originally active
VSG no longer is expressed on the cell surface. Several mecha-
nisms of VSG expression regulation have been identified, includ-
ing specialized localization of the active ES at an extranucleolar ES
body (ESB) that is enriched with RNA polymerase I (24), regu-
lated transcription elongation along ESs (25, 26), modulation of
ES chromatin structure (27–32), modulation of ES promoter ac-
tivities (33–37), and telomere protein-mediated telomeric silenc-
ing (38, 39). VSG expression regulation has been reviewed else-
where recently (40, 41) and will not be discussed here in detail.
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VSG switching occurs through two major pathways. One in-
volves a transcriptional switch and the other DNA recombination
(Fig. 2). During an in situ switch, the originally active ES is silenced
while an originally silent ES is expressed (Fig. 2A) (19, 42, 43), but
no gene rearrangement is involved. In situ switch can be the most
frequent switching event, such as when the active VSG mRNA is
depleted by RNA interference (RNAi) (44), when T. brucei ORC1

(TbORC1) is depleted (45), and when switchers were selected
from infected mice (46).

Essentially all VSG genes have an invariant 14-bp (GATATATTT
TAACA) motif in their 3= untranslated region (UTR) (3). Fifty-four
(3) to 92% (47) of VSG genes also are associated with upstream 70-bp
repeats. In addition, ES-linked and minichromosome VSG genes are
flanked with downstream telomere repeats. Such organization appar-
ently facilitates DNA recombination between different VSG genes.
DNA recombination-mediated VSG switching can occur in several
ways. First, the active VSG gene can exchange places with a silent VSG
gene in a different ES, resulting in telomere exchange (TE) (also re-
ferred to as crossover, or CO) switches (Fig. 2B). In TE/CO switches,
the upstream recombination site is located mostly in the 70-bp re-
peats. However, because all ES sequences are highly homologous
(11), the recombination site can be upstream of the 70-bp repeats.

Gene conversion (GC) is more frequent than CO in VSG
switching events (48). In this case, a silent VSG gene is copied into
the active ES to replace the originally active VSG, which is lost after
the switch, while the newly expressed VSG gene is duplicated (Fig.
2C). The VSG donor in GC switches can originate from a silent ES,
a minichromosome subtelomere, or a VSG gene array. However,
ES-linked VSG genes appear to be preferably copied (48). In this
case, the upstream boundary of GC can be within the 70-bp re-
peats so that only the VSG gene and its adjacent sequences are
involved, which is often referred to as VSG GC. GC also can in-
volve a much larger portion of the ES, including markers up-
stream of the 70-bp repeats (49), markers immediately down-
stream of the ES promoter (50–53), and sometimes the ES

FIG 1 VSG genes are located mostly at subtelomeric regions in the T. brucei
genome. (A) Large subtelomeric VSG arrays, including both VSG genes and
pseudogenes. (B) Individual VSG genes often are found on minichromosomes
at subtelomeric regions. (C) A typical VSG expression site (ES). VSG is the last
gene in any ES and is located within 2 kb of the telomere repeats. A long stretch
of 70-bp repeats is upstream of the VSG gene. ESs also contain a number of
ESAG genes, which are upstream of the 70-bp repeats. The ES promoter is
often 40 to 60 kb upstream of the VSG gene. ESs are located on megabase and
intermediate chromosomes.
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FIG 2 Major VSG switching pathways. (A) In situ switch. The originally active ES is silenced, while an originally silent ES is expressed. (B) In telomere
exchange/crossover (TE/CO) switches, the active VSG and a silent VSG exchange places. A silent ES is depicted to participate in CO. However, a VSG gene at a
minichromosome subtelomere theoretically can be involved in a TE/CO event as well. (C) In gene conversion (GC) switches, the originally active VSG gene is lost
and an originally silent VSG gene is copied into the active ES. Top right, a silent ES-linked VSG serves as the GC donor; bottom left, a silent VSG gene at a
minichromosome subtelomere serves as the GC donor; bottom right, one or several VSG gene(s) in a VSG gene array serve(s) as the GC donor. Both a
break-induced replication (BIR) event that copies the whole telomeric region downstream of the VSG donor and a true GC event can occur when a silent
ES-linked or a minichromosome subtelomeric VSG gene serves as the GC donor. When a VSG gene array serves as the donor, a mosaic VSG can be built from
several silent VSG genes. TE/CO and GC switches are proposed to be initiated with breaks in the 70-bp repeats (shown as a red lightning bolt). Long red arrow,
active ES promoter; short blue arrow, silent ES promoter; red, orange, purple, and pink three-dimensional (3D) arrows, VSG genes; blue 3D arrows, ESAG genes;
green boxes with diagonal bars, 70-bp repeats; arrays of green arrowheads, telomere repeats; arrays of dark blue arrowheads, 177-bp repeats.
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promoter itself (11), which are termed ES GC. On the other hand,
when a VSG gene on a minichromosome or in a gene array acts as
the GC donor, the upstream boundary of GC is almost always
in the 70-bp repeats. When the GC donor is from a VSG gene
array, the downstream boundary of GC can extend to the 3= cod-
ing or noncoding parts of the VSG gene (Fig. 2C) (54). The down-
stream boundary of GC is less clear if an ES-linked or a minichro-
mosome VSG is used as the GC donor. Because no telomere
terminal marker is available, it is not known how often GC VSG
switching is a true gene conversion event, in which only a short
fragment downstream of the donor VSG gene is duplicated, and
how often it is actually a break-induced replication (BIR) event in
which all of the terminal portion of the chromosome downstream
of the VSG donor is replicated (Fig. 2C). GC appears to be the
preferred mechanism of VSG switching (55), particularly in sev-
eral recent studies when the Lister 427 strain is used in in vitro VSG
switching analysis (17, 45, 50–53, 56, 57).

Several more complicated VSG switching events also have been
observed. In one type of switch, the originally active ES is lost and a
different ES is expressed, resulting in an ES loss coupled to an in situ
switch. This event has been observed in several recent studies and
appears to be quite frequent (45, 50–53). In a similar situation, the
originally active VSG gene (possibly with its adjacent sequences) is
lost while a silent ES is expressed, resulting in a VSG loss coupled with
in situ switch. Although this is observed in in vitro studies (52), it
appears to be a relatively rare event. In addition, usually at late stages
of a T. brucei infection, segments of different VSG genes can be
copied into the active ES, resulting in a novel mosaic VSG gene
being expressed (Fig. 2C, bottom right) (58, 59). Most TE/CO and
GC VSG switches rely on TbRAD51-mediated homologous re-
combination (HR) (46). However, RAD51-independent micro-
homology-mediated end joining (MMEJ) also has been suggested
to contribute to VSG switching (60).

DSBs, DNA RECOMBINATION, AND VSG SWITCHING

DNA double-strand breaks (DSBs) are the most deleterious DNA
damages, and they usually result from DNA replication fork stall-
ing/collapse and ionizing irradiation, etc. (61, 62). It is well known
that two major pathways are involved in repair of DSBs: HR and
nonhomologous end joining (NHEJ). HR-mediated DSB repair is
more accurate but requires a donor with homologous sequence,
such as the sister chromatid, after DNA replication. NHEJ is more
error prone but more prevalent when homologous sequences are
not available. HR appears to be much more frequent than NHEJ in
yeast, but the reverse is true in most mammalian cells (63). In T.
brucei, no NHEJ events have been reported. However, MMEJ, an
alternative NHEJ pathway, has been identified (60, 64–66), but
HR is much more efficient and frequent than MMEJ (67).

When HR is necessary for proper chiasmata formation be-
tween homologous chromosomes during meiosis, DSBs are in-
duced by the Spo11 nuclease (68). A brief review of HR, NHEJ,
and MMEJ mechanisms will show why DSBs are required for these
DNA recombination processes (see below). In T. brucei, recent
studies have revealed that DSBs are a natural trigger for VSG
switching (17), and the location of the DSB influences the choice
of VSG switching mechanisms (69). Apparently, induction and
regulation of DSBs at subtelomeric regions in T. brucei are critical
for proper VSG switching.

(i) HR and its roles in VSG switching. In HR-mediated DSB
repair, the 5= end of the broken DNA first is cleaved by MRE11-

RAD50-XRS2 (yeast)/NBS1 (mammal) (70, 71) and Sae2 (yeast)/
CtIP (mammal) and then processed more extensively by the 5=-3=
exonuclease ExoI or the combined helicase/nuclease activities of
Sgs1/Dna2 (72–75) (Fig. 3A and Table 1). The exposed 3= single-
stranded DNA then is bound by RPA (replication protein A) that
removes DNA secondary structures (76), and a number of medi-
ators are necessary to displace RPA to promote subsequent bind-
ing of RAD51, a DNA-dependent ATPase, onto the 3= single-
stranded DNA (ssDNA) to form nucleoprotein filaments (77)
(Fig. 3A). In mammalian cells, BRCA2 is an important RAD51
mediator (78, 79), while in yeast, RAD52 mediates most of the
loading of RAD51 (80) (Table 1). The nucleoprotein filament then
searches for homologous sequences, and RAD51 catalyzes the
strand exchange (81). The extended strand invasion intermediate
has many potential outcomes, eventually resulting in NCO or CO
(Fig. 3A) (61).

In mitotic cells, a primary pathway to generate NCOs is syn-
thesis-dependent strand annealing (SDSA), where the newly syn-
thesized DNA strand (according to the homologous sequence as a
result from the strand invasion event) dissociates from the D-loop
to anneal to the other DNA end (Fig. 3A) (82–84). Alternatively,
the second end of the processed DSB can be captured by the D
loop to form a double Holliday junction (dHJ), an important HR
intermediate (85). dHJ can be resolved to form NCO or CO de-
pending on how the DNA strands are cleaved by resolvases (Fig.
3A, bottom) (86–89). In mitotic cells, dHJs also can be dissolved
by the branch migration and topoisomerase activity of the BLM
(Sgs1)/TOP3�/RMI complex, which leads to NCO (Fig. 3A) (90).

Homologous recombination is highly efficient in T. brucei (91–
94). It has been shown that a minimal 42 bp of homology is suffi-
cient for HR-mediated DNA integration in insect-stage T. brucei
cells (95). In bloodstream-form TbRAD51 wild-type (WT) cells,
as little as 24 bp of homology is sufficient for HR-mediated target-
ing, although the efficiency (2.5 � 10�7) is 4- to 5-fold lower than
targeting with homologous sequence of 200 to 300 bp (64).

Several RAD51 paralogs have been identified in vertebrate
cells, including RAD51B, RAD51C, RAD51D, XRCC2, and
XRCC3, which are bona fide HR factors and are required for HR-
mediated DNA damage repair (96). Sequence identities between
RAD51 and its paralogs are 20 to 30%, and the conserved se-
quences are primarily in the Walker A and B domains that are
essential for their DNA binding activities (97). The functions of
these paralogs are not well known, but they appear to function as
RAD51 mediators and facilitate RAD51 assembly at DSB sites, as
their deficiency prevents RAD51 focus formation even after ion-
izing radiation (96).

(ii) MMEJ may be an important mechanism of VSG switch-
ing. NHEJ includes the classical NHEJ (cNHEJ) and MMEJ (also
known as alternative NHEJ, or aNHEJ) (98, 99). NHEJ is the pre-
ferred pathway to HR in vertebrate cells throughout the cell cycle
(63). The Ku70/80 dimer, DNA-PKcs, and the DNA ligase com-
plex XRCC4-ligase IV-XLF (XRCC4-like factor) are the core com-
ponents of cNHEJ (98).

cNHEJ often causes short deletions and insertions at the junc-
tions, while MMEJ appears to be more error prone than cNHEJ
and often leads to chromosome translocations (100). As a result of
MMEJ, DNA junctions often have large deletions, microhomolo-
gies, or occasional insertions of large DNA segments of unknown
origin, although none of these features is invariably present (98).
In MMEJ, MRE11 and CtIP are involved in end resection
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(101–105), Rad52 or Rad59 is involved in annealing of DNA ends
with microhomologies (106, 107), and DNA ligase III appears to
promote the DNA ligation (108–110) (Fig. 3B). Recent studies
also suggest the existence of an additional alternative end-joining
pathway that relies on ligase I and is independent of preexisting
microhomologies in mammalian cells (99). However, whether
this pathway is conserved in all eukaryotic cells is unknown.

In T. brucei, after introducing a chromosomal DSB, most DNA
damage repairs were mediated by allelic HR (85% of all repaired
events) and the rest can occur through ectopic HR and MMEJ
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FIG 3 Schematic diagram of HR and MMEJ pathways. (A) Mechanisms of HR. DNA 5= ends at a DSB site initially are processed by the MRX complex and
Sae2 nucleases, followed by further resection by ExoI and Sgs1/Dna2. The resulting single-stranded 3= ends then are bound by RPA. With the help of
RAD51 mediators, RAD51 displaces RPA on the single-stranded DNA. Subsequently, RAD51 mediates homology search, strand invasion, and D-loop
formation steps. (Bottom left) Synthesis-dependent strand annealing leads to noncrossover products. (Bottom middle) Double Holliday junction (dHJ)
can lead to either noncrossover or crossover products depending on resolvase cleavage sites (shown as red arrowheads). (Bottom right) Branch migration
mediated by the BLM-Topo3�-RMI complex also can resolve dHJ into noncrossover products. (B) A current model of MMEJ. DNA ends at the DSB site
also are processed by MRX and Sae2 nucleases in MMEJ. Subsequently, Rad52 or Rad59 help DNA ends search and anneal at preexisting microhomologies.
Ligase 3 finishes the ligation of the broken ends in MMEJ. Yeast and mammalian homologues of different nucleases and Rad51 mediators are listed in
Table 1.

TABLE 1 List of yeast and mammalian homologs of HR players

Category

Homolog(s) in:

Yeast Mammal

5= to 3= nucleases MRX MRN
Mre11, Rad50, Xrs2 Mre11, Rad50, Nbs1
Sae2 CtIP

RecQ helicases SgsI BLM, WRN
RAD51 mediators RAD52 BRCA2, RAD51 paralogs
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(66). In contrast, cNHEJ events have never been reported in T.
brucei. Although T. brucei has Ku70/80 homologues (111, 112),
DNA ligase IV and XRCC4 homologs are missing (65), indicating
that cNHEJ is either absent or mechanistically divergent in T.
brucei.

In T. brucei, MMEJ initially was observed as a subsidiary
TbRAD51-independent pathway that mediates the integration of
transformed DNA into the genome (64). As short as 3 to 7 bp of
sequence homology with base mismatches, insertions, and dele-
tions is enough to mediate MMEJ, and 11 to 74 bp of sequences
was lost during the integration (64). MMEJ events also were ob-
served when T. brucei cell extract was used to join ends of linear
DNA molecules in vitro, which is mediated by a microhomology
of 6 to 16 bp long, often with at least one mismatched base (65).
MMEJ is independent of either TbRAD51 or Ku (65), indicating
that it is similar to the MMEJ observed in yeast and mammalian
cells (98).

By targeting an I-SceI site into the T. brucei genome and induc-
ing I-SceI expression, Glover et al. examined repair products of a
specific chromosomal DSB and identified that a small fraction
(�10%) of DNA damage repair occurred through MMEJ (11 to
13 bp of homology), which resulted exclusively in intrachromo-
somal joining (66). Using a negative selection, Glover et al. en-
riched the MMEJ-mediated DNA damage repair products (60),
among which both intra- and interchromosomal gene conversion
products were identified. Careful examination of MMEJ products
suggests that these resemble the micro-single-strand annealing
(SSA) events (60), which is the same as those observed in yeast
(107). Occasionally, products with one end repaired by HR and
the other by MMEJ were observed which appear to be TbRAD51
dependent (60). Importantly, MMEJ has been observed in a sub-
telomeric ES, contributing to 25% of DSB repair events, while
MMEJ represents only 5% of DSB repair at a chromosome inter-
nal locus (60). Since VSG ESs are at subtelomeric regions that
often lack allelic homologous sequences on the corresponding ho-
mologous chromosomes (2), MMEJ has been proposed to be an
important pathway for VSG switching (60).

(iii) HR proteins that influence VSG switching in T. brucei. A
number of DNA repair proteins have been examined for their
functions in VSG switching. So far, TbRAD51 (46), TbRAD51-3 (a
RAD51 paralog) (113), TbBRCA2 (114), and the TOPO3�/RMI1
complex (50, 51) are required for normal VSG switching.

TbRAD51 is not essential, but TbRAD51 null cells are sensitive
to the DNA damage reagent MMS (46). Infecting preimmunized
mice with a T. brucei strain containing antibiotic resistance mark-
ers in the active ES can yield switched trypanosome cells and allow
estimation of VSG switching frequency. When TbRAD51 double-
knockout (dko), single-knockout (sko), and WT cells were ana-
lyzed using this method, the VSG switching frequency was much
lower (6- to 50-fold) in TbRAD51 dko cells than in TbRAD51 sko
and WT cells, indicating that TbRAD51 is an important player for
VSG switching. Since TbRAD51 is required for DNA recombina-
tion, it was expected that deletion of TbRAD51 would mostly re-
duce HR-mediated VSG switching events. However, loss of
TbRAD51 did not change the distribution of VSG switchers that
arose from different pathways. In WT cells, �60% of switchers
arose from in situ switch, while the rest arose from HR-mediated
gene conversion. In TbRAD51 null cells, �51% of switchers were
in situ switchers, while the rest were gene conversion products
(46). Since TbRAD51 deletion did not abolish HR, it is speculated

that a TbRAD51-independent pathway exists in T. brucei. In yeast,
RAD51 and RAD50 mediate different HR events, particularly at
the subtelomeric regions (115). A TbRAD50 homolog has been
identified in the T. brucei genome, although no detailed charac-
terization of this gene has been reported. It is possible that
TbRAD50 can mediate some TbRAD51-independent DNA re-
combination events. In addition, MMEJ has been found to be
TbRAD51 independent (65), which has been proposed to contrib-
ute to VSG switching (60).

Besides TbRAD51, the T. brucei genome encodes five other
RAD51-related proteins: DMC1, TbRAD51-3, TbRAD51-4,
TbRAD51-5, and TbRAD51-6 (113). Among these, TbRAD51-3
and TbRAD51-5 are involved in DNA damage repair and HR
and are required for DNA damage-induced TbRAD51 subnuclear
foci. This is similar to the situation in mammalian cells, where
RAD51 paralogs are required for RAD51 focus formation in re-
sponse to DNA damage (116). However, only TbRAD51-3 is in-
volved in VSG switching, and TbRAD51-3 null cells have �10-
fold lower VSG switching frequency than WT cells (113).
Similarly, TbBRCA2, a mediator for RAD51 filament formation,
also plays an important role in HR, and deletion of TbBRCA2
leads to a 10-fold decrease in VSG switching frequency (114). In
particular, TbBRCA2 has multiple BRC repeats at its N terminus,
which are required for DNA damage-induced TbRAD51 sub-
nuclear foci (114).

In yeast, the RecQ helicase Sgs1 forms a complex with a type IA
topoisomerase, Top3, and RecQ-mediated genome instability 1
(RMI1) (117, 118). In human cells, a conserved complex also ex-
ists containing BLM, Topo3�, and BLAP75/18 (RMI1/2) (90,
119). This RTR complex plays an important function in dissolu-
tion of the HR intermediates and double Holliday junctions, and
it suppresses crossover in HR (120). Using a T. brucei strain in
which the active ES is marked with a thymidine kinase gene imme-
diately upstream of the active VSG gene, Kim and Cross were able
to negatively select VSG switchers by ganciclovir (GCV), a nucle-
oside analog, because TK-expressing T. brucei cells are sensitive to
GCV (50). The same strain also carries a Blasticidin resistance
(BSD) marker immediately downstream of the active ES pro-
moter. Therefore, by examination of antibiotic resistance pheno-
types and genotypes of BSD and the originally active VSG gene, it
is possible to determine the VSG switching pathway. Using this
method, it was shown that T. brucei Topo3� deletion led to a more
than 10-fold increase in VSG switching frequency, which is depen-
dent on TbRAD51 (50). In addition, VSG GC events were most
frequent in Topo3� null cells (50). Similarly, deletion of TbRMI1
also leads to a 5-fold increase in VSG switching frequency, and
most VSG switchers arose through VSG GC (51).

Deletion of mismatch repair proteins does not affect VSG
switching (67). However, it is surprising that deletion of
TbMRE11 does not influence VSG switching frequency (121), as
the MRN complex is required for processing broken DNA ends in
both HR (70, 71) and MMEJ (101, 103, 104). It is possible that
additional nucleases are available in T. brucei for DNA end pro-
cessing.

(iv) DSBs are a key for initiation of VSG switching. HR-me-
diated VSG switching is the most frequent event in many switch-
ing assays (17, 45, 48, 50-53, 55), and HR initiates with DSBs.
Therefore, DSBs in ES have long been proposed to be the first step
of VSG switching (122, 123). Indeed, inducing an I-SceI-gener-
ated DSB adjacent to the 70-bp repeats and immediately upstream
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of the active VSG gene leads to an �250-fold increase in VSG
switching frequency (17). In addition, DSBs can be detected in
subtelomeric regions in both the active and silent ESs in WT cells
(17, 52, 69). In particular, using ligation-mediated PCR (LMPCR)
analysis, more DSBs with staggered ends were detected in the
70-bp repeats in the active ES than in a silent one (17). These
observations suggest that VSG switching initiates with DSBs in the
active ES.

Although DSBs are required for HR-mediated VSG switching,
not all DSBs in ESs induce VSG switching with equal efficiency,
and not all DSBs leads to DNA recombination-mediated VSG
switching (69). Specifically, very few survivors (8%) were VSG
switchers if the DSB is at the active ES promoter region, and only
28% of the survivors were VSG switchers if the DSB is downstream
of the active VSG gene (69). Particularly in the latter case, many
switchers have lost their originally active ES and survived after an
in situ switch, indicating that DSBs also can induce transcription-
mediated VSG switching.

In contrast, DSBs introduced immediately upstream of the ac-
tive VSG gene and next to the 70-bp repeats is most efficient at
inducing VSG switching; all survivors are VSG switchers (69).
Therefore, the 70-bp repeats upstream of the active VSG gene
appear to be a hot spot for VSG switching-inducing DSBs. Several
possibilities have been proposed as to why 70-bp repeats fre-
quently have DSBs: they consist of a large number of TTA repeats
that are known to be unstable for plasmids (59), and transcription
through these repeats makes the active ES unstable; the repetitive
sequence may form an unusual structure that is difficult to be
replicated, and they may be digested by a special T. brucei endo-
nuclease (1, 17).

TELOMERES INFLUENCE VSG SWITCHING

Since a considerable amount of DSBs can be detected at subtelo-
meric regions, it has been proposed that subtelomeres are fragile
sites in T. brucei (69), which presumably facilitates VSG switching
and contributes positively to antigenic variation. However, T. bru-
cei, like any other eukaryotic organism, needs to maintain a stable
genome. Therefore, it is a delicate task to balance between telo-
mere/subtelomere stability and plasticity in T. brucei.

It is well known that telomere proteins play important roles in
maintaining chromosome stability and genome integrity (124).
Our recent studies showed that TbTIF2, a telomeric protein, in-
deed is essential for maintaining subtelomere integrity and reduc-
ing DSB amounts at subtelomeres (52). Consequently, a transient
depletion of TbTIF2 led to increased VSG switching frequency,
with the majority of switchers arising through ES GC or ES loss
coupled with in situ switches (52). The TbTIF2 deficiency-induced
DSBs appear to be repaired by TbRAD51, as deletion of TbRAD51
and depletion of TbTIF2 concurrently resulted in a much higher
level of DSBs. Most interestingly, deletion of TbRAD51 increased
the TbTIF2 deficiency-induced DSBs in the active ES much more
strongly than in silent ESs, suggesting that WT TbRAD51 prefer-
ably repairs DSBs in the active ES (52). This may explain why
introducing DSBs in silent ESs seldom leads to VSG switching
(69). It is possible that the ends of DSBs in silent ESs are not
processed, so fewer DSBs with staggered ends are detected in silent
70-bp repeats than in active ones (17). Why are DSBs in the active
ES and silent ones not treated the same? One possibility is that the
chromatin structure in the two types of ESs is very different: the

active ES is largely depleted of nucleosomes, while the silent ones
are packed with nucleosomes (27, 28).

How does a protein associating with the telomere influence
switching of VSGs at subtelomeres? We found that TbTIF2 influ-
ences VSG switching by reducing the amount of DSBs in subtelo-
meric regions, including both active and silent ESs (52). What
could be the underlying mechanism of TbTIF2 in subtelomere
integrity maintenance? We anticipate two most likely possibilities.
First, telomere proteins have been shown to be important for telo-
mere DNA replication in yeast and vertebrate cells (125–128).
Loss of TbTIF2 may induce more replication fork stalling at telo-
meric and subtelomeric regions. The increased topological stress
may lead to elevated DSBs in subtelomeric ESs. Second, several
telomere proteins, including the TbTIF2 homolog TIN2, are im-
portant for telomere cohesion and sister telomere pairing (129,
130). TbTIF2 may have a similar function, and loss of TbTIF2 may
lead to premature dissociation of sister telomeres. In this case,
subtelomeric DSBs may not be efficiently repaired when the sister
homolog is not available.

Independent of TbTIF2’s function in subtelomere integrity
maintenance, it is possible that loss of TbTIF2 destabilizes the
telomere structure and leads to chromosome end-to-end fusions,
similar to that observed in mammalian cells with telomere dys-
functions (131). In support of this idea, transient depletion of the
duplex telomere DNA binding factor, TbTRF, also led to a signif-
icant increase in VSG switching frequency (53). In addition, the
DNA binding activity of TbTRF is required for its role in suppres-
sion of VSG switching (53). Loss of mammalian TRF2, the ho-
molog of TbTRF, led to chromosome end-to-end fusions (132).
Therefore, it is possible that loss of TbTRF results in similar de-
fects. Dicentric chromosome-induced breakage-fusion-bridge cy-
cles often result in the loss of large regions of terminal chromo-
somes (133), which can lead to increased VSG switching (69).
Although chromosome end fusions have not been identified in T.
brucei, this could be simply because of the insensitivity of cur-
rently available tools. NHEJ events have not been observed in T.
brucei, and XRCC4 and ligase IV homologs are absent from the T.
brucei genome (65); however, it is possible that telomere fusion
occurs through MMEJ. Interestingly, TbTIF2 and TbTRF interact
strongly (52), and transient induction of TbTRF and TbTIF2
RNAi lead to similarly increased VSG switching frequency, with
most switchers arising from ES GC and ES loss coupled with in situ
switches (52, 53). Therefore, it is possible that both proteins func-
tion in the same pathway in suppression of VSG switching. How-
ever, whether depletion of TbTRF also leads to increased subtelo-
meric DSB amounts is unknown, and more genetic analysis is
necessary before a conclusion is drawn on whether TbTIF2 and
TbTRF function in the same genetic pathway in VSG switching
regulation.

CONCLUSIONS AND PERSPECTIVES

Recent studies clearly showed that DSBs in the active ES, particu-
larly those in and near 70-bp repeats, are a key factor that induces
efficient VSG switching (17, 69). In addition, we have identified at
least one factor that influences the subtelomere DSB amount: te-
lomere-associated TbTIF2 (52). However, exactly how TbTIF2, as
a telomere-specific protein, regulates the subtelomere integrity is
still unknown. We have found that a second telomere protein,
TbTRF, also is important for suppressing VSG switching (53).

Minireview

March 2015 Volume 14 Number 3 ec.asm.org 201Eukaryotic Cell

http://ec.asm.org


However, the relationship between the functions of TbTIF2 and
TbTRF still is unclear.

Importantly, we learned that DSBs in 70-bp repeats of the ac-
tive ES induce efficient VSG switching (17, 69), and DSBs natu-
rally occur more frequently at subtelomeres than chromosome
internal regions (69). However, whether telomeres and transcrip-
tion through the active ES are the only factors contributing to
subtelomeric DSBs is not clear. Although DSBs in 70-bp repeats
are critical for initiation of antigenic variation, maintaining 70-bp
repeat stability also is important for maintaining a relatively stable
genome and a VSG gene pool in T. brucei. However, how are 70-bp
repeats maintained is completely unknown to us. Does any pro-
tein specifically bind the 70-bp repeats? The answer to this ques-
tion no doubt would contribute greatly to our understanding of
VSG switching regulation.

New molecular tools recently developed for T. brucei allowed
us to examine in greater detail the HR and MMEJ events, their
underlying mechanisms and players, their roles in VSG switching,
and their regulation. Our knowledge about players in HR has been
improved. However, MMEJ in T. brucei appears not to be com-
pletely conserved with that in vertebrates, and the key players in T.
brucei MMEJ still are unknown. Since MMEJ has been proposed
to be an important mechanism of VSG switching (60), identifying
key players in this pathway will contribute to our better under-
standing of VSG switching regulation.

We have shown that the telomere structure and telomere-as-
sociated proteins play important roles in VSG switching regula-
tion (52, 53). Similar to T. brucei, antigenic variation in several
other microbial pathogens also relies on HR-mediated gene con-
version, such as switching of the major surface glycoprotein
(MSG) in Pneumocystis jirovecii that causes pneumonia (134, 135)
and switching of the VlsE variant surface protein in Borrelia burg-
dorferi that causes Lyme disease (136, 137). However, molecular
tools for studying both P. jirovecii and B. burgdorferi still are very
limited. Therefore, studying DNA recombination-mediated anti-
genic variation and its regulation by telomeres in T. brucei also
serves as a good model for understanding similar processes in
other microbial pathogens.

REFERENCES
1. Barry JD, McCulloch R. 2001. Antigenic variation in trypanosomes:

enhanced phenotypic variation in a eukaryotic parasite. Adv Parasitol
49:1–70. http://dx.doi.org/10.1016/S0065-308X(01)49037-3.

2. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H,
Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme
U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B,
Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks
K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark
LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feld-
blyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris
BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J,
Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech
V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM,
Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock
CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter
C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson
AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D,
Wanless D, Wang S, White B, White O, Whitehead S, Woodward J,
Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD,
Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser
CM, Melville SE, El-Sayed NM. 2005. The genome of the African try-
panosome Trypanosoma brucei. Science 309:416 – 422. http://dx.doi.org
/10.1126/science.1112642.

3. Cross GAM, Kim HS, Wickstead B. 2014. Capturing the variant surface

glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister
427. Mol Biochem Parasitol 195:59 –73. http://dx.doi.org/10.1016/j
.molbiopara.2014.06.004.

4. Horn D, Barry JD. 2005. The central roles of telomeres and subtelom-
eres in antigenic variation in African trypanosomes. Chromosome Res
13:525–533. http://dx.doi.org/10.1007/s10577-005-0991-8.

5. Wickstead B, Ersfeld K, Gull K. 2004. The small chromosomes of
Trypanosoma brucei involved in antigenic variation are constructed
around repetitive palindromes. Genome Res 14:1014 –1024. http://dx
.doi.org/10.1101/gr.2227704.

6. Gunzl A, Bruderer T, Laufer G, Schimanski B, Tu LC, Chung HM, Lee
PT, Lee MG. 2003. RNA polymerase I transcribes procyclin genes and
variant surface glycoprotein gene expression sites in Trypanosoma brucei.
Eukaryot Cell 2:542–551. http://dx.doi.org/10.1128/EC.2.3.542-551
.2003.

7. de Lange T, Borst P. 1982. Genomic environment of the expression-
linked extra copies of genes for surface antigens of Trypanosoma brucei
resembles the end of a chromosome. Nature 299:451– 453. http://dx.doi
.org/10.1038/299451a0.

8. Kooter JM, van der Spek HJ, Wagter R, d’Oliveira CE, van der Hoeven
F, Johnson PJ, Borst P. 1987. The anatomy and transcription of a
telomeric expression site for variant-specific surface antigens in T. brucei.
Cell 51:261–272. http://dx.doi.org/10.1016/0092-8674(87)90153-X.

9. Johnson PJ, Kooter JM, Borst P. 1987. Inactivation of transcription by
UV irradiation of T. brucei provides evidence for a multicistronic tran-
scription unit including a VSG gene. Cell 51:273–281. http://dx.doi.org
/10.1016/0092-8674(87)90154-1.

10. Berriman M, Hall N, Sheader K, Bringaud F, Tiwari B, Isobe T,
Bowman S, Corton C, Clark L, Cross GA, Hoek M, Zanders T,
Berberof M, Borst P, Rudenko G. 2002. The architecture of variant
surface glycoprotein gene expression sites in Trypanosoma brucei. Mol
Biochem Parasitol 122:131–140. http://dx.doi.org/10.1016/S0166-6851
(02)00092-0.

11. Hertz-Fowler C, Figueiredo LM, Quail MA, Becker M, Jackson A,
Bason N, Brooks K, Churcher C, Fahkro S, Goodhead I, Heath P,
Kartvelishvili M, Mungall K, Harris D, Hauser H, Sanders M, Saun-
ders D, Seeger K, Sharp S, Taylor JE, Walker D, White B, Young R,
Cross GAM, Rudenko G, Barry JD, Louis EJ, Berriman M. 2008.
Telomeric expression sites are highly conserved in Trypanosoma brucei.
PLoS One 3:e3527. http://dx.doi.org/10.1371/journal.pone.0003527.

12. Pays E, Steinert S. 1988. Control of antigen gene expression in African
trypanosomes. Annu Rev Genet 22:107–126. http://dx.doi.org/10.1146
/annurev.ge.22.120188.000543.

13. Aline RF, Jr, MacDonald G, Brown E, Allison J, Myler P, Rothwell V,
Stuart K. 1985. (TAA)n within sequences flanking several intrachromo-
somal variant surface glycoprotein genes in Trypanosoma brucei. Nucleic
Acids Res 13:3161–3177. http://dx.doi.org/10.1093/nar/13.9.3161.

14. Aline RF, Jr, Scholler JK, Nelson RG, Agabian N, Stuart K. 1985.
Preferential activation of telomeric variant surface glycoprotein genes in
Trypanosoma brucei. Mol Biochem Parasitol 17:311–321. http://dx.doi
.org/10.1016/0166-6851(85)90005-2.

15. Timmers HT, T de Lange Kooter JM, Borst P. 1987. Coincident multiple
activations of the same surface antigen gene in Trypanosoma brucei. J Mol
Biol 194:81–90. http://dx.doi.org/10.1016/0022-2836(87)90717-0.

16. Michels PAM, van der Ploeg LHT, Liu AYC, Borst P. 1984. The
inactivation and reactivation of an expression-linked gene copy for a
variant surface glycoprotein in Trypanosoma brucei. EMBO J 3:1345–
1351.

17. Boothroyd CE, Dreesen O, Leonova T, Ly KI, Figueiredo LM, Cross
GAM, Papavasiliou FN. 2009. A yeast-endonuclease-generated DNA
break induces antigenic switching in Trypanosoma brucei. Nature 459:
278 –281. http://dx.doi.org/10.1038/nature07982.

18. Cully DF, Ip HS, Cross GAM. 1985. Coordinate transcription of variant
surface glycoprotein genes and an expression site associated gene family
in Trypanosoma brucei. Cell 42:173–182. http://dx.doi.org/10.1016
/S0092-8674(85)80113-6.

19. Zomerdijk JC, Ouellete M, ten Asbroek AL, Kieft R, Bommer AM,
Clayton CE, Borst P. 1990. The promoter for a variant surface glyco-
protein gene expression site in Trypanosoma brucei. EMBO J 9:2791–
2801.

20. Gottesdiener K, Chung H-M, Brown SD, Lee MG-S, van der Ploeg
LHT. 1991. Characterization of VSG gene expression site promoters and

Minireview

202 ec.asm.org March 2015 Volume 14 Number 3Eukaryotic Cell

http://dx.doi.org/10.1016/S0065-308X(01)49037-3
http://dx.doi.org/10.1126/science.1112642
http://dx.doi.org/10.1126/science.1112642
http://dx.doi.org/10.1016/j.molbiopara.2014.06.004
http://dx.doi.org/10.1016/j.molbiopara.2014.06.004
http://dx.doi.org/10.1007/s10577-005-0991-8
http://dx.doi.org/10.1101/gr.2227704
http://dx.doi.org/10.1101/gr.2227704
http://dx.doi.org/10.1128/EC.2.3.542-551.2003
http://dx.doi.org/10.1128/EC.2.3.542-551.2003
http://dx.doi.org/10.1038/299451a0
http://dx.doi.org/10.1038/299451a0
http://dx.doi.org/10.1016/0092-8674(87)90153-X
http://dx.doi.org/10.1016/0092-8674(87)90154-1
http://dx.doi.org/10.1016/0092-8674(87)90154-1
http://dx.doi.org/10.1016/S0166-6851(02)00092-0
http://dx.doi.org/10.1016/S0166-6851(02)00092-0
http://dx.doi.org/10.1371/journal.pone.0003527
http://dx.doi.org/10.1146/annurev.ge.22.120188.000543
http://dx.doi.org/10.1146/annurev.ge.22.120188.000543
http://dx.doi.org/10.1093/nar/13.9.3161
http://dx.doi.org/10.1016/0166-6851(85)90005-2
http://dx.doi.org/10.1016/0166-6851(85)90005-2
http://dx.doi.org/10.1016/0022-2836(87)90717-0
http://dx.doi.org/10.1038/nature07982
http://dx.doi.org/10.1016/S0092-8674(85)80113-6
http://dx.doi.org/10.1016/S0092-8674(85)80113-6
http://ec.asm.org


promoter-associated DNA rearrangement events. Mol Cell Biol 11:
2467–2480.

21. Pays E, Coquelet H, Tebabi P, Pays A, Jefferies D, Steinert M, Koenig
E, Williams RO, Roditi I. 1990. Trypanosoma brucei: constitutive activ-
ity of the VSG and procyclin gene promoters. EMBO J 9:3145–3151.

22. Zomerdijk JCBM, Kieft R, Shiels PG, Borst P. 1991. Alpha-amanitin-
resistant transcription units in trypanosomes: a comparison of promoter
sequences for a VSG gene expression site and for the ribosomal RNA
genes. Nucleic Acids Res 19:5153–5158. http://dx.doi.org/10.1093/nar
/19.19.5153.

23. Cross GAM. 1975. Identification, purification and properties of
clone-specific glycoprotein antigens constituting the surface coat of
Trypanosoma brucei. Parasitology 71:393– 417. http://dx.doi.org/10.1017
/S003118200004717X.

24. Navarro M, Gull K. 2001. A pol I transcriptional body associated with
VSG mono-allelic expression in Trypanosoma brucei. Nature 414:759 –
763. http://dx.doi.org/10.1038/414759a.

25. Vanhamme L, Poelvoorde P, Pays A, Tebabi P, Van Xong H, Pays E.
2000. Differential RNA elongation controls the variant surface glycopro-
tein gene expression sites of Trypanosoma brucei. Mol Microbiol 36:328 –
340. http://dx.doi.org/10.1046/j.1365-2958.2000.01844.x.

26. Kassem A, Pays E, Vanhamme L. 2014. Transcription is initiated on
silent variant surface glycoprotein expression sites despite monoallelic
expression in Trypanosoma brucei. Proc Natl Acad Sci U S A 111:8943–
8948. http://dx.doi.org/10.1073/pnas.1404873111.

27. Stanne TM, Rudenko G. 2010. Active VSG expression sites in Trypano-
soma brucei are depleted of nucleosomes. Eukaryot Cell 9:136 –147. http:
//dx.doi.org/10.1128/EC.00281-09.

28. Figueiredo LM, Cross GAM. 2010. Nucleosomes are depleted at the
VSG expression site transcribed by RNA polymerase I in African try-
panosomes. Eukaryot Cell 9:148 –154. http://dx.doi.org/10.1128/EC
.00282-09.

29. Povelones ML, Gluenz E, Dembek M, Gull K, Rudenko G. 2012.
Histone H1 plays a role in heterochromatin formation and VSG expres-
sion site silencing in Trypanosoma brucei. PLoS Pathog 8:e1003010. http:
//dx.doi.org/10.1371/journal.ppat.1003010.

30. Pena AC, Pimentel MR, Manso H, Vaz-Drago R, Pinto-Neves D,
Aresta-Branco F, Rijo-Ferreira F, Guegan F, Pedro Coelho L, Carmo-
Fonseca M, Barbosa-Morais NL, Figueiredo LM. 2014. Trypanosoma
brucei histone H1 inhibits RNA polymerase I transcription and is impor-
tant for parasite fitness in vivo. Mol Microbiol 93:645– 663. http://dx.doi
.org/10.1111/mmi.12677.

31. Batram C, Jones NG, Janzen CJ, Markert SM, Engstler M. 2014.
Expression site attenuation mechanistically links antigenic variation and
development in Trypanosoma brucei. eLife 3:e02324. http://dx.doi.org
/10.7554/eLife.02324.

32. Alsford S, Horn D. 2012. Cell-cycle-regulated control of VSG expres-
sion site silencing by histones and histone chaperones ASF1A and
CAF-1b in Trypanosoma brucei. Nucleic Acids Res 40:10150 –10160.
http://dx.doi.org/10.1093/nar/gks813.

33. Hughes K, Wand M, Foulston L, Young R, Harley K, Terry S, Ersfeld
K, Rudenko G. 2007. A novel ISWI is involved in VSG expression site
downregulation in African trypanosomes. EMBO J 26:2400 –2410. http:
//dx.doi.org/10.1038/sj.emboj.7601678.

34. Narayanan MS, Kushwaha M, Ersfeld K, Fullbrook A, Stanne TM,
Rudenko G. 2011. NLP is a novel transcription regulator involved in
VSG expression site control in Trypanosoma brucei. Nucleic Acids Res
39:2018 –2031. http://dx.doi.org/10.1093/nar/gkq950.

35. Denninger V, Fullbrook A, Bessat M, Ersfeld K, Rudenko G. 2010. The
FACT subunit TbSpt16 is involved in cell cycle specific control of VSG
expression sites in Trypanosoma brucei. Mol Microbiol 78:459 – 474.
http://dx.doi.org/10.1111/j.1365-2958.2010.07350.x.

36. Nguyen TN, Muller LS, Park SH, Siegel TN, Gunzl A. 2014. Promoter
occupancy of the basal class I transcription factor A differs strongly between
active and silent VSG expression sites in Trypanosoma brucei. Nucleic Acids
Res 42:3164–3176. http://dx.doi.org/10.1093/nar/gkt1301.

37. Lopez-Farfan D, Bart JM, Rojas-Barros DI, Navarro M. 2014.
SUMOylation by the E3 ligase TbSIZ1/PIAS1 positively regulates VSG
expression in Trypanosoma brucei. PLoS Pathog 10:e1004545. http:
//dx.doi.org/10.1371/journal.ppat.1004545.

38. Yang X, Figueiredo LM, Espinal A, Okubo E, Li B. 2009. RAP1 is
essential for silencing telomeric variant surface glycoprotein genes in

Trypanosoma brucei. Cell 137:99 –109. http://dx.doi.org/10.1016/j.cell
.2009.01.037.

39. Pandya UM, Sandhu R, Li B. 2013. Silencing subtelomeric VSGs by
Trypanosoma brucei RAP1 at the insect stage involves chromatin struc-
ture changes. Nucleic Acids Res 41:7673–7682. http://dx.doi.org/10.1093
/nar/gkt562.

40. Gunzl A, Kirkham JK, Nguyen TN, Badjatia N, Park SH. 2015.
Mono-allelic VSG expression by RNA polymerase I in Trypanosoma
brucei: expression site control from both ends? Gene 556:68 –73. http:
//dx.doi.org/10.1016/j.gene.2014.09.047.

41. Horn D. 2014. Antigenic variation in African trypanosomes. Mol
Biochem Parasitol 195:123–129. http://dx.doi.org/10.1016/j.molbiopara
.2014.05.001.

42. Horn D, Cross GAM. 1997. Analysis of Trypanosoma brucei vsg expres-
sion site switching in vitro. Mol Biochem Parasitol 84:189 –201. http://dx
.doi.org/10.1016/S0166-6851(96)02794-6.

43. Cross M, Taylor MC, Borst P. 1998. Frequent loss of the active site
during variant surface glycoprotein expression site switching in vitro in
Trypanosoma brucei. Mol Cell Biol 18:198 –205.

44. Aitcheson N, Talbot S, Shapiro J, Hughes K, Adkin C, Butt T, Sheader
K, Rudenko G. 2005. VSG switching in Trypanosoma brucei: antigenic
variation analysed using RNAi in the absence of immune selection. Mol
Microbiol 57:1608 –1622. http://dx.doi.org/10.1111/j.1365-2958.2005
.04795.x.

45. Benmerzouga I, Concepcion-Acevedo J, Kim HS, Vandoros AV, Cross
GAM, Klingbeil MM, Li B. 2013. Trypanosoma brucei Orc1 is essential
for nuclear DNA replication and affects both VSG silencing and VSG
switching. Mol Microbiol 87:196 –210. http://dx.doi.org/10.1111/mmi
.12093.

46. McCulloch R, Barry JD. 1999. A role for RAD51 and homologous
recombination in Trypanosoma brucei antigenic variation. Genes Dev
13:2875–2888. http://dx.doi.org/10.1101/gad.13.21.2875.

47. Marcello L, Barry JD. 2007. Analysis of the VSG gene silent archive in
Trypanosoma brucei reveals that mosaic gene expression is prominent in
antigenic variation and is favored by archive substructure. Genome Res
17:1344 –1352. http://dx.doi.org/10.1101/gr.6421207.

48. Morrison LJ, Marcello L, McCulloch R. 2009. Antigenic variation in the
African trypanosome: molecular mechanisms and phenotypic complex-
ity. Cell Microbiol 11:1724 –1734. http://dx.doi.org/10.1111/j.1462-5822
.2009.01383.x.

49. Pays E, van Assel S, Laurent M, Dero B, Michiels F, Kronenberger P,
Matthyssens G, van Meirvenne N, LeRay D, Steinert M. 1983. At least
two transposed sequences are associated in the expression site of a surface
antigen gene in different trypanosome clones. Cell 34:359 –369. http://dx
.doi.org/10.1016/0092-8674(83)90370-7.

50. Kim HS, Cross GAM. 2010. TOPO3alpha influences antigenic variation
by monitoring expression-site-associated VSG switching in Trypano-
soma brucei. PLoS Pathog 6:e1000992. http://dx.doi.org/10.1371/journal
.ppat.1000992.

51. Kim HS, Cross GAM. 2011. Identification of Trypanosoma brucei RMI1/
BLAP75 homologue and its roles in antigenic variation. PLoS One
6:e25313. http://dx.doi.org/10.1371/journal.pone.0025313.

52. Jehi SE, Wu F, Li B. 2014. Trypanosoma brucei TIF2 suppresses VSG
switching by maintaining subtelomere integrity. Cell Res 24:870 – 885.
http://dx.doi.org/10.1038/cr.2014.60.

53. Jehi SE, Li X, Sandhu R, Ye F, Benmerzouga I, Zhang M, Zhao Y, Li
B. 2014. Suppression of subtelomeric VSG switching by Trypanosoma
brucei TRF requires its TTAGGG repeat-binding activity. Nucleic Acids
Res 42:12899 –12911. http://dx.doi.org/10.1093/nar/gku942.

54. Bernards A, van der Ploeg LHT, Frasch ACC, Borst P, Boothroyd JC,
Coleman S, Cross GAM. 1981. Activation of trypanosome surface glyco-
protein genes involves a gene duplication-transposition leading to an altered
3= end. Cell 27:497–505. http://dx.doi.org/10.1016/0092-8674(81)90391-3.

55. Robinson NP, Burman N, Melville SE, Barry JD. 1999. Predominance
of duplicative VSG gene conversion in antigenic variation in African
trypanosomes. Mol Cell Biol 19:5839 –5846.

56. Dreesen O, Cross GAM. 2006. Consequences of telomere shortening at
an active VSG expression site in telomerase-deficient Trypanosoma bru-
cei. Eukaryot Cell 5:2114 –2119. http://dx.doi.org/10.1128/EC.00059-06.

57. Hovel-Miner GA, Boothroyd CE, Mugnier M, Dreesen O, Cross GAM,
Papavasiliou FN. 2012. Telomere length affects the frequency and mech-
anism of antigenic variation in Trypanosoma brucei. PLoS Pathog
8:e1002900. http://dx.doi.org/10.1371/journal.ppat.1002900.

Minireview

March 2015 Volume 14 Number 3 ec.asm.org 203Eukaryotic Cell

http://dx.doi.org/10.1093/nar/19.19.5153
http://dx.doi.org/10.1093/nar/19.19.5153
http://dx.doi.org/10.1017/S003118200004717X
http://dx.doi.org/10.1017/S003118200004717X
http://dx.doi.org/10.1038/414759a
http://dx.doi.org/10.1046/j.1365-2958.2000.01844.x
http://dx.doi.org/10.1073/pnas.1404873111
http://dx.doi.org/10.1128/EC.00281-09
http://dx.doi.org/10.1128/EC.00281-09
http://dx.doi.org/10.1128/EC.00282-09
http://dx.doi.org/10.1128/EC.00282-09
http://dx.doi.org/10.1371/journal.ppat.1003010
http://dx.doi.org/10.1371/journal.ppat.1003010
http://dx.doi.org/10.1111/mmi.12677
http://dx.doi.org/10.1111/mmi.12677
http://dx.doi.org/10.7554/eLife.02324
http://dx.doi.org/10.7554/eLife.02324
http://dx.doi.org/10.1093/nar/gks813
http://dx.doi.org/10.1038/sj.emboj.7601678
http://dx.doi.org/10.1038/sj.emboj.7601678
http://dx.doi.org/10.1093/nar/gkq950
http://dx.doi.org/10.1111/j.1365-2958.2010.07350.x
http://dx.doi.org/10.1093/nar/gkt1301
http://dx.doi.org/10.1371/journal.ppat.1004545
http://dx.doi.org/10.1371/journal.ppat.1004545
http://dx.doi.org/10.1016/j.cell.2009.01.037
http://dx.doi.org/10.1016/j.cell.2009.01.037
http://dx.doi.org/10.1093/nar/gkt562
http://dx.doi.org/10.1093/nar/gkt562
http://dx.doi.org/10.1016/j.gene.2014.09.047
http://dx.doi.org/10.1016/j.gene.2014.09.047
http://dx.doi.org/10.1016/j.molbiopara.2014.05.001
http://dx.doi.org/10.1016/j.molbiopara.2014.05.001
http://dx.doi.org/10.1016/S0166-6851(96)02794-6
http://dx.doi.org/10.1016/S0166-6851(96)02794-6
http://dx.doi.org/10.1111/j.1365-2958.2005.04795.x
http://dx.doi.org/10.1111/j.1365-2958.2005.04795.x
http://dx.doi.org/10.1111/mmi.12093
http://dx.doi.org/10.1111/mmi.12093
http://dx.doi.org/10.1101/gad.13.21.2875
http://dx.doi.org/10.1101/gr.6421207
http://dx.doi.org/10.1111/j.1462-5822.2009.01383.x
http://dx.doi.org/10.1111/j.1462-5822.2009.01383.x
http://dx.doi.org/10.1016/0092-8674(83)90370-7
http://dx.doi.org/10.1016/0092-8674(83)90370-7
http://dx.doi.org/10.1371/journal.ppat.1000992
http://dx.doi.org/10.1371/journal.ppat.1000992
http://dx.doi.org/10.1371/journal.pone.0025313
http://dx.doi.org/10.1038/cr.2014.60
http://dx.doi.org/10.1093/nar/gku942
http://dx.doi.org/10.1016/0092-8674(81)90391-3
http://dx.doi.org/10.1128/EC.00059-06
http://dx.doi.org/10.1371/journal.ppat.1002900
http://ec.asm.org


58. Thon G, Baltz T, Giroud C, Eisen H. 1990. Trypanosome variable
surface glycoproteins: composite genes and order of expression. Genes
Dev 4:1374 –1383. http://dx.doi.org/10.1101/gad.4.8.1374.

59. Morrison LJ, Majiwa P, Read AF, Barry JD. 2005. Probabilistic order in
antigenic variation of Trypanosoma brucei. Int J Parasitol 35:961–972.
http://dx.doi.org/10.1016/j.ijpara.2005.05.004.

60. Glover L, Jun J, Horn D. 2011. Microhomology-mediated deletion and
gene conversion in African trypanosomes. Nucleic Acids Res 39:1372–
1380. http://dx.doi.org/10.1093/nar/gkq981.

61. Jasin M, Rothstein R. 2013. Repair of strand breaks by homologous
recombination. Cold Spring Harb Perspect Biol 5:a012740. http://dx.doi
.org/10.1101/cshperspect.a012740.

62. Goodarzi AA, Jeggo PA. 2013. The repair and signaling responses to
DNA double-strand breaks. Adv Genet 82:1– 45. http://dx.doi.org/10
.1016/B978-0-12-407676-1.00001-9.

63. Rothkamm K, Kruger I, Thompson LH, Lobrich M. 2003. Pathways of
DNA double-strand break repair during the mammalian cell cycle. Mol
Cell Biol 23:5706 –5715. http://dx.doi.org/10.1128/MCB.23.16.5706
-5715.2003.

64. Conway C, Proudfoot C, Burton P, Barry JD, McCulloch R. 2002. Two
pathwaysofhomologousrecombinationinTrypanosoma brucei. Mol Micro-
biol 45:1687–1700. http://dx.doi.org/10.1046/j.1365-2958.2002.03122.x.

65. Burton P, McBride DJ, Wilkes JM, Barry JD, McCulloch R. 2007. Ku
heterodimer-independent end joining in Trypanosoma brucei cell ex-
tracts relies upon sequence microhomology. Eukaryot Cell 6:1773–1781.
http://dx.doi.org/10.1128/EC.00212-07.

66. Glover L, McCulloch R, Horn D. 2008. Sequence homology and mi-
crohomology dominate chromosomal double-strand break repair in Af-
rican trypanosomes. Nucleic Acids Res 36:2608 –2618. http://dx.doi.org
/10.1093/nar/gkn104.

67. Barnes RL, McCulloch R. 2007. Trypanosoma brucei homologous re-
combination is dependent on substrate length and homology, though
displays a differential dependence on mismatch repair as substrate length
decreases. Nucleic Acids Res 35:3478 –3493. http://dx.doi.org/10.1093
/nar/gkm249.

68. Baudat F, Imai Y, B de Massy. 2013. Meiotic recombination in mam-
mals: localization and regulation. Nat Rev Genet 14:794 – 806. http://dx
.doi.org/10.1038/nrg3573.

69. Glover L, Alsford S, Horn D. 2013. DNA break site at fragile subtelom-
eres determines probability and mechanism of antigenic variation in
African trypanosomes. PLoS Pathog 9:e1003260. http://dx.doi.org/10
.1371/journal.ppat.1003260.

70. Sung S, Li F, Park YB, Kim JS, Kim AK, Song OK, Kim J, Che J, Lee
SE, Cho Y. 2014. DNA end recognition by the Mre11 nuclease dimer:
insights into resection and repair of damaged DNA. EMBO J 33:2422–
2435. http://dx.doi.org/10.15252/embj.201488299.

71. Shibata A, Moiani D, Arvai AS, Perry J, Harding SM, Genois MM,
Maity R, S van Rossum-Fikkert Kertokalio A, Romoli F, Ismail A,
Ismalaj E, Petricci E, Neale MJ, Bristow RG, Masson JY, Wyman C,
Jeggo PA, Tainer JA. 2014. DNA double-strand break repair pathway
choice is directed by distinct MRE11 nuclease activities. Mol Cell 53:7–
18. http://dx.doi.org/10.1016/j.molcel.2013.11.003.

72. Nimonkar AV, Genschel J, Kinoshita E, Polaczek P, Campbell JL,
Wyman C, Modrich P, Kowalczykowski SC. 2011. BLM-DNA2-RPA-
MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection
machineries for human DNA break repair. Genes Dev 25:350 –362. http:
//dx.doi.org/10.1101/gad.2003811.

73. Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in
DNA double-strand break processing. Nature 455:770 –774. http://dx
.doi.org/10.1038/nature07312.

74. Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two
nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell
134:981–994. http://dx.doi.org/10.1016/j.cell.2008.08.037.

75. Sartori AA, Lukas C, Coates J, Mistrik M, Fu S, Bartek J, Baer R, Lukas
J, Jackson SP. 2007. Human CtIP promotes DNA end resection. Nature
450:509 –514. http://dx.doi.org/10.1038/nature06337.

76. Sugiyama T, Zaitseva EM, Kowalczykowski SC. 1997. A single-stranded
DNA-binding protein is needed for efficient presynaptic complex forma-
tion by the Saccharomyces cerevisiae Rad51 protein. J Biol Chem 272:
7940 –7945. http://dx.doi.org/10.1074/jbc.272.12.7940.

77. San Filippo J, Sung P, Klein H. 2008. Mechanism of eukaryotic homol-
ogous recombination. Annu Rev Biochem 77:229 –257. http://dx.doi.org
/10.1146/annurev.biochem.77.061306.125255.

78. San Filippo J, Chi P, Sehorn MG, Etchin J, Krejci L, Sung P. 2006.
Recombination mediator and Rad51 targeting activities of a human
BRCA2 polypeptide. J Biol Chem 281:11649 –11657. http://dx.doi.org
/10.1074/jbc.M601249200.

79. Yang H, Li Q, Fan J, Holloman WK, Pavletich NP. 2005. The BRCA2
homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA
junction. Nature 433:653–657. http://dx.doi.org/10.1038/nature03234.

80. Symington LS. 2002. Role of RAD52 epistasis group genes in homolo-
gous recombination and double-strand break repair. Microbiol Mol Biol
Rev 66:630 – 670. http://dx.doi.org/10.1128/MMBR.66.4.630-670.2002.

81. Sung P, Robberson DL. 1995. DNA strand exchange mediated by a RAD51-
ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell
82:453–461. http://dx.doi.org/10.1016/0092-8674(95)90434-4.

82. Lin FL, Sperle K, Sternberg N. 1984. Model for homologous recombi-
nation during transfer of DNA into mouse L cells: role for DNA ends in
the recombination process. Mol Cell Biol 4:1020 –1034.

83. Nassif N, Penney J, Pal S, Engels WR, Gloor GB. 1994. Efficient
copying of nonhomologous sequences from ectopic sites via P-element-
induced gap repair. Mol Cell Biol 14:1613–1625.

84. Ferguson DO, Holloman WK. 1996. Recombinational repair of gaps in
DNA is asymmetric in Ustilago maydis and can be explained by a migrat-
ing D-loop model. Proc Natl Acad Sci U S A 93:5419 –5424. http://dx.doi
.org/10.1073/pnas.93.11.5419.

85. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. 1983. The
double-strand break repair model for recombination. Cell 33:25–35.
http://dx.doi.org/10.1016/0092-8674(83)90331-8.

86. Ho CK, Mazon G, Lam AF, Symington LS. 2010. Mus81 and Yen1
promote reciprocal exchange during mitotic recombination to maintain
genome integrity in budding yeast. Mol Cell 40:988 –1000. http://dx.doi
.org/10.1016/j.molcel.2010.11.016.

87. Wechsler T, Newman S, West SC. 2011. Aberrant chromosome mor-
phology in human cells defective for Holliday junction resolution. Na-
ture 471:642– 646. http://dx.doi.org/10.1038/nature09790.

88. De Muyt A, Jessop L, Kolar E, Sourirajan A, Chen J, Dayani Y, Lichten
M. 2012. BLM helicase ortholog Sgs1 is a central regulator of meiotic
recombination intermediate metabolism. Mol Cell 46:43–53. http://dx
.doi.org/10.1016/j.molcel.2012.02.020.

89. Zakharyevich K, Tang S, Ma Y, Hunter N. 2012. Delineation of joint
molecule resolution pathways in meiosis identifies a crossover-specific re-
solvase. Cell 149:334–347. http://dx.doi.org/10.1016/j.cell.2012.03.023.

90. Wu L, Hickson ID. 2003. The Bloom’s syndrome helicase suppresses
crossing over during homologous recombination. Nature 426:870 – 874.
http://dx.doi.org/10.1038/nature02253.

91. Michels PAM, Bernards A, van der Ploeg L, Borst P. 1982. Character-
ization of the expression-linked gene copies of variant surface glycopro-
tein 118 in two independently isolated clones of Trypanosoma brucei.
Nucleic Acids Res 10:2353–2366. http://dx.doi.org/10.1093/nar/10.7
.2353.

92. Pays E, Delauw MF, Van Assel S, Laurent M, Vervoort T, Van Meirvenne
N, Steinert M. 1983. Modifications of a Trypanosoma b. brucei antigen
gene repertoire by different DNA recombinational mechanisms. Cell 35:
721–731. http://dx.doi.org/10.1016/0092-8674(83)90105-8.

93. Bernards A, De Lange T, Michels PA, Liu AY, Huisman MJ, Borst P.
1984. Two modes of activation of a single surface antigen gene of
Trypanosoma brucei. Cell 36:163–170. http://dx.doi.org/10.1016/0092
-8674(84)90085-0.

94. Pays E. 1985. Gene conversion in Trypanosoma antigenic variation. Prog
NAR Mol Biol 32:1–27.

95. Gaud A, Carrington M, Deshusses J, Schaller DRG. 1997. Polymerase
chain reaction-based gene disruption in Trypanosoma brucei. Mol
Biochem Parasitol 87:113–115. http://dx.doi.org/10.1016/S0166-6851
(97)00048-0.

96. Suwaki N, Klare K, Tarsounas M. 2011. RAD51 paralogs: roles in DNA
damage signalling, recombinational repair and tumorigenesis. Semin
Cell Dev Biol 22:898 –905. http://dx.doi.org/10.1016/j.semcdb.2011.07
.019.

97. French CA, Tambini CE, Thacker J. 2003. Identification of functional
domains in the RAD51L2 (RAD51C) protein and its requirement for
gene conversion. J Biol Chem 278:45445– 45450. http://dx.doi.org/10
.1074/jbc.M308621200.

98. Deriano L, Roth DB. 2013. Modernizing the nonhomologous end-joining
repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet
47:433–455. http://dx.doi.org/10.1146/annurev-genet-110711-155540.

Minireview

204 ec.asm.org March 2015 Volume 14 Number 3Eukaryotic Cell

http://dx.doi.org/10.1101/gad.4.8.1374
http://dx.doi.org/10.1016/j.ijpara.2005.05.004
http://dx.doi.org/10.1093/nar/gkq981
http://dx.doi.org/10.1101/cshperspect.a012740
http://dx.doi.org/10.1101/cshperspect.a012740
http://dx.doi.org/10.1016/B978-0-12-407676-1.00001-9
http://dx.doi.org/10.1016/B978-0-12-407676-1.00001-9
http://dx.doi.org/10.1128/MCB.23.16.5706-5715.2003
http://dx.doi.org/10.1128/MCB.23.16.5706-5715.2003
http://dx.doi.org/10.1046/j.1365-2958.2002.03122.x
http://dx.doi.org/10.1128/EC.00212-07
http://dx.doi.org/10.1093/nar/gkn104
http://dx.doi.org/10.1093/nar/gkn104
http://dx.doi.org/10.1093/nar/gkm249
http://dx.doi.org/10.1093/nar/gkm249
http://dx.doi.org/10.1038/nrg3573
http://dx.doi.org/10.1038/nrg3573
http://dx.doi.org/10.1371/journal.ppat.1003260
http://dx.doi.org/10.1371/journal.ppat.1003260
http://dx.doi.org/10.15252/embj.201488299
http://dx.doi.org/10.1016/j.molcel.2013.11.003
http://dx.doi.org/10.1101/gad.2003811
http://dx.doi.org/10.1101/gad.2003811
http://dx.doi.org/10.1038/nature07312
http://dx.doi.org/10.1038/nature07312
http://dx.doi.org/10.1016/j.cell.2008.08.037
http://dx.doi.org/10.1038/nature06337
http://dx.doi.org/10.1074/jbc.272.12.7940
http://dx.doi.org/10.1146/annurev.biochem.77.061306.125255
http://dx.doi.org/10.1146/annurev.biochem.77.061306.125255
http://dx.doi.org/10.1074/jbc.M601249200
http://dx.doi.org/10.1074/jbc.M601249200
http://dx.doi.org/10.1038/nature03234
http://dx.doi.org/10.1128/MMBR.66.4.630-670.2002
http://dx.doi.org/10.1016/0092-8674(95)90434-4
http://dx.doi.org/10.1073/pnas.93.11.5419
http://dx.doi.org/10.1073/pnas.93.11.5419
http://dx.doi.org/10.1016/0092-8674(83)90331-8
http://dx.doi.org/10.1016/j.molcel.2010.11.016
http://dx.doi.org/10.1016/j.molcel.2010.11.016
http://dx.doi.org/10.1038/nature09790
http://dx.doi.org/10.1016/j.molcel.2012.02.020
http://dx.doi.org/10.1016/j.molcel.2012.02.020
http://dx.doi.org/10.1016/j.cell.2012.03.023
http://dx.doi.org/10.1038/nature02253
http://dx.doi.org/10.1093/nar/10.7.2353
http://dx.doi.org/10.1093/nar/10.7.2353
http://dx.doi.org/10.1016/0092-8674(83)90105-8
http://dx.doi.org/10.1016/0092-8674(84)90085-0
http://dx.doi.org/10.1016/0092-8674(84)90085-0
http://dx.doi.org/10.1016/S0166-6851(97)00048-0
http://dx.doi.org/10.1016/S0166-6851(97)00048-0
http://dx.doi.org/10.1016/j.semcdb.2011.07.019
http://dx.doi.org/10.1016/j.semcdb.2011.07.019
http://dx.doi.org/10.1074/jbc.M308621200
http://dx.doi.org/10.1074/jbc.M308621200
http://dx.doi.org/10.1146/annurev-genet-110711-155540
http://ec.asm.org


99. Decottignies A. 2013. Alternative end-joining mechanisms: a historical per-
spective. Front Genet 4:48. http://dx.doi.org/10.3389/fgene.2013.00048.

100. Zhang Y, Gostissa M, Hildebrand DG, Becker MS, Boboila C, Chiarle R,
Lewis S, Alt FW. 2010. The role of mechanistic factors in promoting chro-
mosomal translocations found in lymphoid and other cancers. Adv Immu-
nol 106:93–133. http://dx.doi.org/10.1016/S0065-2776(10)06004-9.

101. Deriano L, Stracker TH, Baker A, Petrini JH, Roth DB. 2009. Roles for
NBS1 in alternative nonhomologous end-joining of V(D)J recombination
intermediates. Mol Cell 34:13–25. http://dx.doi.org/10.1016/j.molcel.2009
.03.009.

102. Lee-Theilen M, Matthews AJ, Kelly D, Zheng S, Chaudhuri J. 2011.
CtIP promotes microhomology-mediated alternative end joining during
class-switch recombination. Nat Struct Mol Biol 18:75–79. http://dx.doi
.org/10.1038/nsmb.1942.

103. Rass E, Grabarz A, Plo I, Gautier J, Bertrand P, Lopez BS. 2009. Role
of Mre11 in chromosomal nonhomologous end joining in mammalian
cells. Nat Struct Mol Biol 16:819 – 824. http://dx.doi.org/10.1038/nsmb
.1641.

104. Xie A, Kwok A, Scully R. 2009. Role of mammalian Mre11 in classical
and alternative nonhomologous end joining. Nat Struct Mol Biol 16:
814 – 818. http://dx.doi.org/10.1038/nsmb.1640.

105. Zhang Y, Jasin M. 2011. An essential role for CtIP in chromosomal
translocation formation through an alternative end-joining pathway.
Nat Struct Mol Biol 18:80 – 84. http://dx.doi.org/10.1038/nsmb.1940.

106. Sugawara N, Ira G, Haber JE. 2000. DNA length dependence of the
single-strand annealing pathway and the role of Saccharomyces cerevi-
siae RAD59 in double-strand break repair. Mol Cell Biol 20:5300 –5309.
http://dx.doi.org/10.1128/MCB.20.14.5300-5309.2000.

107. Kramer KM, Brock JA, Bloom K, Moore JK, Haber JE. 1994. Two
different types of double-strand breaks in Saccharomyces cerevisiae are
repaired by similar RAD52-independent, nonhomologous recombina-
tion events. Mol Cell Biol 14:1293–1301.

108. Boboila C, Alt FW, Schwer B. 2012. Classical and alternative end-
joining pathways for repair of lymphocyte-specific and general DNA
double-strand breaks. Adv Immunol 116:1– 49. http://dx.doi.org/10
.1016/B978-0-12-394300-2.00001-6.

109. Boboila C, Oksenych V, Gostissa M, Wang JH, Zha S, Zhang Y, Chai
H, Lee CS, Jankovic M, Saez LM, Nussenzweig MC, McKinnon PJ, Alt
FW, Schwer B. 2012. Robust chromosomal DNA repair via alternative
end-joining in the absence of X-ray repair cross-complementing protein
1 (XRCC1). Proc Natl Acad Sci U S A 109:2473–2478. http://dx.doi.org
/10.1073/pnas.1121470109.

110. Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, Lou J,
Zhang L, Li J, Rebar EJ, Gregory PD, Holmes MC, Jasin M. 2011. DNA
ligase III promotes alternative nonhomologous end-joining during chro-
mosomal translocation formation. PLoS Genet 7:e1002080. http://dx.doi
.org/10.1371/journal.pgen.1002080.

111. Conway C, McCulloch R, Ginger ML, Robinson NP, Browitt A, Barry
JD. 2002. Ku is important for telomere maintenance, but not for differ-
ential expression of telomeric VSG genes, in African trypanosomes. J Biol
Chem 277:21269 –21277. http://dx.doi.org/10.1074/jbc.M200550200.

112. Janzen CJ, Lander F, Dreesen O, Cross GAM. 2004. Telomere length
regulation and transcriptional silencing in KU80-deficient Trypanosoma
brucei. Nucleic Acids Res 32:6575– 6584. http://dx.doi.org/10.1093/nar
/gkh991.

113. Proudfoot C, McCulloch R. 2005. Distinct roles for two RAD51-related
genes in Trypanosoma brucei antigenic variation. Nucleic Acids Res 33:
6906 – 6919. http://dx.doi.org/10.1093/nar/gki996.

114. Hartley CL, McCulloch R. 2008. Trypanosoma brucei BRCA2 acts in
antigenic variation and has undergone a recent expansion in BRC repeat
number that is important during homologous recombination. Mol
Microbiol 68:1237–1251. http://dx.doi.org/10.1111/j.1365-2958.2008
.06230.x.

115. Chen Q, Ijpma A, Greider CW. 2001. Two survivor pathways that allow
growth in the absence of telomerase are generated by distinct telomere
recombination events. Mol Cell Biol 21:1819 –1827. http://dx.doi.org/10
.1128/MCB.21.5.1819-1827.2001.

116. Takata M, Sasaki MS, Tachiiri S, Fukushima T, Sonoda E, Schild D,
Thompson LH, Takeda S. 2001. Chromosome instability and defective
recombinational repair in knockout mutants of the five Rad51 paralogs.
Mol Cell Biol 21:2858 –2866. http://dx.doi.org/10.1128/MCB.21.8.2858
-2866.2001.

117. Ira G, Malkova A, Liberi G, Foiani M, Haber JE. 2003. Srs2 and Sgs1-Top3

suppress crossovers during double-strand break repair in yeast. Cell 115:
401–411. http://dx.doi.org/10.1016/S0092-8674(03)00886-9.

118. Mullen JR, Nallaseth FS, Lan YQ, Slagle CE, Brill SJ. 2005. Yeast
Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 com-
plex. Mol Cell Biol 25:4476 – 4487. http://dx.doi.org/10.1128/MCB.25.11
.4476-4487.2005.

119. Hartung F, Suer S, Knoll A, Wurz-Wildersinn R, Puchta H. 2008.
Topoisomerase 3alpha and RMI1 suppress somatic crossovers and are
essential for resolution of meiotic recombination intermediates in Ara-
bidopsis thaliana. PLoS Genet 4:e1000285. http://dx.doi.org/10.1371
/journal.pgen.1000285.

120. Bizard AH, Hickson ID. 2014. The dissolution of double Holliday junc-
tions. Cold Spring Harb Perspect Biol 6:a016477. http://dx.doi.org/10
.1101/cshperspect.a016477.

121. Robinson NP, McCulloch R, Conway C, Browitt A, Barry JD. 2002.
Inactivation of Mre11 does not affect VSG gene duplication mediated by
homologous recombination in Trypanosoma brucei. J Biol Chem 277:
26185–26193. http://dx.doi.org/10.1074/jbc.M203205200.

122. Borst P, Rudenko G, Taylor MC, Blundell PA, van Leeuwen F, Bitter
W, Cross M, McCulloch R. 1996. Antigenic variation in trypanosomes.
Arch Med Res 27:379 –388.

123. Barry JD. 1997. The relative significance of mechanisms of antigenic
variation in African trypanosomes. Parasitol Today 13:212–218. http:
//dx.doi.org/10.1016/S0169-4758(97)01039-9.

124. Stewart JA, Chaiken MF, Wang F, Price CM. 2012. Maintaining the
end: roles of telomere proteins in end-protection, telomere replication
and length regulation. Mutat Res 730:12–19. http://dx.doi.org/10.1016/j
.mrfmmm.2011.08.011.

125. Sfeir A, Kosiyatrakul ST, Hockemeyer D, MacRae SL, Karlseder J,
Schildkraut CL, de Lange T. 2009. Mammalian telomeres resemble
fragile sites and require TRF1 for efficient replication. Cell 138:90 –103.
http://dx.doi.org/10.1016/j.cell.2009.06.021.

126. Ye J, Lenain C, Bauwens S, Rizzo A, Saint-Leger A, Poulet A, Benar-
roch D, Magdinier F, Morere J, Amiard S, Verhoeyen E, Britton S,
Calsou P, Salles B, Bizard A, Nadal M, Salvati E, Sabatier L, Wu Y,
Biroccio A, Londono-Vallejo A, Giraud-Panis MJ, Gilson E. 2010.
TRF2 and apollo cooperate with topoisomerase 2alpha to protect human
telomeres from replicative damage. Cell 142:230 –242. http://dx.doi.org
/10.1016/j.cell.2010.05.032.

127. Miller KM, Rog O, Cooper JP. 2006. Semi-conservative DNA replica-
tion through telomeres requires Taz1. Nature 440:824 – 828. http://dx
.doi.org/10.1038/nature04638.

128. Muraki K, Nabetani A, Nishiyama A, Ishikawa F. 2011. Essential roles
of Xenopus TRF2 in telomere end protection and replication. Genes
Cells 16:728 –739. http://dx.doi.org/10.1111/j.1365-2443.2011.01520.x.

129. Canudas S, Houghtaling BR, Kim JY, Dynek JN, Chang WG, Smith S.
2007. Protein requirements for sister telomere association in human cells.
EMBO J 26:4867–4878. http://dx.doi.org/10.1038/sj.emboj.7601903.

130. Canudas S, Smith S. 2009. Differential regulation of telomere and cen-
tromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in
human cells. J Cell Biol 187:165–173. http://dx.doi.org/10.1083/jcb
.200903096.

131. de Lange T. 2005. Shelterin: the protein complex that shapes and safe-
guards human telomeres. Genes Dev 19:2100 –2110. http://dx.doi.org/10
.1101/gad.1346005.

132. Celli GB, de Lange T. 2005. DNA processing is not required for ATM-
mediated telomere damage response after TRF2 deletion. Nat Cell Biol
7:712–718. http://dx.doi.org/10.1038/ncb1275.

133. Murnane JP, Sabatier L. 2004. Chromosome rearrangements resulting
from telomere dysfunction and their role in cancer. Bioessays 26:1164 –
1174. http://dx.doi.org/10.1002/bies.20125.

134. Wada M, Nakamura Y. 1996. Unique telomeric expression site of ma-
jor-surface-glycoprotein genes of Pneumocystis carinii. DNA Res 3:55–
64. http://dx.doi.org/10.1093/dnares/3.2.55.

135. Keely SP, Stringer JR. 2009. Complexity of the MSG gene family of
Pneumocystis carinii. BMC Genomics 10:367. http://dx.doi.org/10.1186
/1471-2164-10-367.

136. Zhang JR, Norris SJ. 1998. Genetic variation of the Borrelia burgdorferi
gene vlsE involves cassette-specific, segmental gene conversion. Infect
Immun 66:3698 –3704.

137. Zhang JR, Norris SJ. 1998. Kinetics and in vivo induction of genetic
variation of vlsE in Borrelia burgdorferi. Infect Immun 66:3689 –3697.

Minireview

March 2015 Volume 14 Number 3 ec.asm.org 205Eukaryotic Cell

http://dx.doi.org/10.3389/fgene.2013.00048
http://dx.doi.org/10.1016/S0065-2776(10)06004-9
http://dx.doi.org/10.1016/j.molcel.2009.03.009
http://dx.doi.org/10.1016/j.molcel.2009.03.009
http://dx.doi.org/10.1038/nsmb.1942
http://dx.doi.org/10.1038/nsmb.1942
http://dx.doi.org/10.1038/nsmb.1641
http://dx.doi.org/10.1038/nsmb.1641
http://dx.doi.org/10.1038/nsmb.1640
http://dx.doi.org/10.1038/nsmb.1940
http://dx.doi.org/10.1128/MCB.20.14.5300-5309.2000
http://dx.doi.org/10.1016/B978-0-12-394300-2.00001-6
http://dx.doi.org/10.1016/B978-0-12-394300-2.00001-6
http://dx.doi.org/10.1073/pnas.1121470109
http://dx.doi.org/10.1073/pnas.1121470109
http://dx.doi.org/10.1371/journal.pgen.1002080
http://dx.doi.org/10.1371/journal.pgen.1002080
http://dx.doi.org/10.1074/jbc.M200550200
http://dx.doi.org/10.1093/nar/gkh991
http://dx.doi.org/10.1093/nar/gkh991
http://dx.doi.org/10.1093/nar/gki996
http://dx.doi.org/10.1111/j.1365-2958.2008.06230.x
http://dx.doi.org/10.1111/j.1365-2958.2008.06230.x
http://dx.doi.org/10.1128/MCB.21.5.1819-1827.2001
http://dx.doi.org/10.1128/MCB.21.5.1819-1827.2001
http://dx.doi.org/10.1128/MCB.21.8.2858-2866.2001
http://dx.doi.org/10.1128/MCB.21.8.2858-2866.2001
http://dx.doi.org/10.1016/S0092-8674(03)00886-9
http://dx.doi.org/10.1128/MCB.25.11.4476-4487.2005
http://dx.doi.org/10.1128/MCB.25.11.4476-4487.2005
http://dx.doi.org/10.1371/journal.pgen.1000285
http://dx.doi.org/10.1371/journal.pgen.1000285
http://dx.doi.org/10.1101/cshperspect.a016477
http://dx.doi.org/10.1101/cshperspect.a016477
http://dx.doi.org/10.1074/jbc.M203205200
http://dx.doi.org/10.1016/S0169-4758(97)01039-9
http://dx.doi.org/10.1016/S0169-4758(97)01039-9
http://dx.doi.org/10.1016/j.mrfmmm.2011.08.011
http://dx.doi.org/10.1016/j.mrfmmm.2011.08.011
http://dx.doi.org/10.1016/j.cell.2009.06.021
http://dx.doi.org/10.1016/j.cell.2010.05.032
http://dx.doi.org/10.1016/j.cell.2010.05.032
http://dx.doi.org/10.1038/nature04638
http://dx.doi.org/10.1038/nature04638
http://dx.doi.org/10.1111/j.1365-2443.2011.01520.x
http://dx.doi.org/10.1038/sj.emboj.7601903
http://dx.doi.org/10.1083/jcb.200903096
http://dx.doi.org/10.1083/jcb.200903096
http://dx.doi.org/10.1101/gad.1346005
http://dx.doi.org/10.1101/gad.1346005
http://dx.doi.org/10.1038/ncb1275
http://dx.doi.org/10.1002/bies.20125
http://dx.doi.org/10.1093/dnares/3.2.55
http://dx.doi.org/10.1186/1471-2164-10-367
http://dx.doi.org/10.1186/1471-2164-10-367
http://ec.asm.org

	DNA Double-Strand Breaks and Telomeres Play Important Roles in Trypanosoma brucei Antigenic Variation
	DSBs, DNA RECOMBINATION, AND VSG SWITCHING
	(i) HR and its roles in VSG switching.
	(ii) MMEJ may be an important mechanism of VSG switching.
	(iii) HR proteins that influence VSG switching in T. brucei.
	(iv) DSBs are a key for initiation of VSG switching.

	TELOMERES INFLUENCE VSG SWITCHING
	CONCLUSIONS AND PERSPECTIVES
	REFERENCES


