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Objectives. Here we developed a unique training system, a patient specific virtual reality simulator, for laparoscopic renal surgery.
To develop the simulator, it was important to first identify the physical properties of the organ. Methods. We recorded the force
measured during laparoscopic surgery performed on pigs by using forceps with pressure sensors. Several sensors, including strain
gauges, accelerometers, and a potentiometer, are attached to the forceps. Results. Throughout the experiment, we measured the
reaction force in response to the forceps movement in real time. Conclusions. The experiment showed the possibility of digitizing
these physical properties in humans as well.

1. Background

Laparoscopic surgery has become an increasingly common
practice in recent years because it is less invasive than
traditional methods [1]. However, surgeons must be highly
skilled to perform laparoscopic surgery since it is one of the
most difficult surgical techniques to learn and involves a steep
learning curve [1]. Surgeons must acquire laparoscopic skills
before performing laparoscopy in the operating room [2–6].

Like flight and driving simulators, laparoscopy simulators
must provide a virtual yet accurate simulation of the task
at hand. For example, in a flight simulator, the view and
sounds in the cockpit are very real. Someflight simulators also
demonstrate acceleration.

The latest laparoscopy simulators can reproduce an entire
laparoscopic surgery [7–9]. Some training systems that sim-
ulate surgical processes are commercially available. Such
systems are useful for basic training. They demonstrated
initial construct validity regarding force and position sensing
and capable of detecting differences between novices and

experts in a laparoscopic suturing task with respect to force
and position [10, 11]. However, they do not provide surgeons
with the necessary experience to respond to specific condi-
tions in individual patients. Therefore, we have developed a
unique training system, called a PSVR type simulator, for
laparoscopic surgery [12–15]. Using data specific to each indi-
vidual patient, this system facilitates “rehearsal” operations
for surgeons. We use multislice CT imaging technology in
laparoscopic surgery, and CT images of individual patients
who are scheduled to undergo surgery are transferred into
the simulation system (Figure 1). Each patient’s specific organ
volume data are extracted by our simulator to allow surgeons
to perform a preoperative “rehearsal.” Some PSVR simulators
are reportedly in commercial use, but no PSVR simulator is
currently available in the field of urology [16, 17].

In an effort to make our simulator performance more
“real,” we considered the importance of the subjective sen-
sation that surgeons feel while using it. Other commercial
surgical simulators are validated by the adjustment of the
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Figure 1: To make our simulator performance more “real,” we considered the importance of the subjective sensation that surgeons feel while
using it.
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Figure 2: The forceps we developed.

physical parameters of the deformable model and reliance on
the surgeon’s subjective sensation [11, 16, 17].Those simulators
might present a reaction force to the surgeon that is similar
to a certain degree to that of a real operation. However,
an evaluation that relies only on the surgeon’s sensation is
subjective and lacks objectivity.Ourmechanicalmodel, based
on the corotated finite element method [15, 18], has not been
numerically verified with real soft tissue during surgery.

To resolve these issues, the collection of numerical data
such as the forceps reaction force, grabbing angle, andmoving
speed is necessary. Unfortunately, no such measurement data
currently exist.Therefore, as a first step, we recorded the force
measured during laparoscopic surgery performed on pigs by
using forceps with pressure sensors. During the experiment,
we measured the reaction force and gripping force of the
membrane, kidney, liver, and vessels.

2. Materials and Methods

We developed a multimodal measuring device that interferes
very little with the surgeon’s movements. The system was
developed through collaboration among Yokohama City
University, Mitsubishi Precision, and Yokohama National
University (our homepage: http://www-user.yokohama-cu
.ac.jp/∼urology/kenkyu/surgicalsimulatorindex.html). The
measuring device is illustrated in Figure 2 and Table 1.

Figure 2 shows the forceps and the sensor wires. The
running sensor wires are packed inside of the instrument and
we use special guide when we insert the forceps to the trocar.
So the forceps is free from contact or damage and we can
observe the accurate measurements.

The block diagram is presented in Figure 3. Several sen-
sors (e.g., strain gauges, accelerometers, and a potentiometer)



Advances in Urology 3

Measuring forceps

Up
Blade force

fs fp
fU

fR

ACCOrgan
Axial

Right/left
Grabbing

Angle
𝜃

fC

Force

Acceleration

Angle

Operational
image Camera

Strain gauge
KFG-2-120
KFP-2-120

(5CH input)

Accelerometer
Potentiometer

Measuring forceps

Real laparoscopic device

Bridge circuit

U1-16A

8CHX2

720 × 480 pixel
Composite image

Sensor amplifier

Sensor amplifier

PCD-300B
24bits

4CHX2

Lablack
U3HV-LJ

Converter
PC-SDVC/

U2G

1kHz

Sampling

Sampling

Sampling

USB USB

USB

1kHz

30Hz Driver

Driver

Driver

S/W: measuring
control program

Laptop PC

PDC300B

UH3HV

GUI

Quantitative data
Blade force
X, Y, and Z directional force
Grabbing angle
Grabbing force

Figure 3: The system we developed to detect the sensation of the forceps.

Table 1: The equipment we used.

Name Type
1 Forceps K33310MD, KARL STORZ

2 Controller &
amplifier PDC300B, Kyowa

3 Controller &
amplifier U3HV, Lab Jack

4 Bridge U1-16A, Kyowa

5 Laptop PC CF-S10, Panasonic,
Windows 7 64 bits

6 Acc. CXL17LF3, Crossbow
7 Converter PC-SDVC/U2G, BUFFALO

are attached to the forceps to measure the𝑋/𝑌/𝑍 directional
forces, blade force, grabbing force, grabbing angle, and accel-
eration. All of these parameters are measured over 0.1ms and
stored on a hard disk drive for later analysis. To synchronize
the acquired physical quantities, such as the reaction force,
with the corresponding surgical operations, we adopted a
method to overlap a plotted graphical image of quantitative
data.

We calibrated the system and then checked the control.
Under this condition, we performed a laparoscopic nephrec-
tomy on a pig by using multimodal measuring forceps.

We performed the laparoscopic nephrectomy as follows:
(1) we made an incision in the peritoneum and displaced the
colon; (2) we exposed the ureter and renal artery and vein; (3)
we exposed the renal capsule; (4(A)) we ruptured the kidney
by using forceps; (5) we sutured the ruptured kidney by using
a surgical needle; and (6) we dissected the renal artery and
vein after ligation.

During and after the nephrectomy, we measured the
reaction force of the organs as follows: (B) we gripped the
gonadal vein; (C) we pulled on the renal artery; (D) we pulled
on the renal vein; (E) we pulled on the ureter; (F) we gripped
the liver softly; (G) we gripped the liver strongly; (H) we
gripped and pulled the liver; (I) we gripped the kidney softly;
(J) we gripped the kidney strongly; and (K) we gripped and
pulled the kidney.

The forceps used for the measurements are fragile, so we
used normal forceps or energy devices when not taking the
measurements. We collected these measurements three or
four times to obtain an appropriate average reaction force as
well as themax reaction force.This experiment was examined
by ethical committee of Yokohama City University and
accepted (Research number B100902033: the measurement
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Figure 4: To synchronize the acquired physical quantities, such as the reaction force, with the corresponding surgical operations, we adopted
a method to overlap a plotted graphical image of quantitative data.

of transformation and physical properties of organ by the
external force). The experiment was performed under the
ethical consideration.

3. Results

The results are shown in Table 2. The force (N) is determined
as the maximum force during the experiment.

The sample results presented in Figures 4 and 5 show the
reaction force on the blade and the corresponding grabbing
force. The green line represents the 𝑋 directional force, the
red line represents the grabbing force, and the blue line
represents the sum of the 𝑌 and 𝑍 directional forces. The
angles of the blade are shown as a purple line, and the
measurements are synchronized with the blade opening and
closing, suggesting that the experimental data interference is
small.

(A) Rupture the Kidney. The surgeon tried to rupture the
kidney by using the tip of the closed forceps. When the tip
of the blade pushed on the kidney, the forceps received a
reaction force (green line). When we pushed kidney with
4.5N, it ruptured. As such, we assume that the reaction
force required to rupture the kidney was 4.5N from the 𝑋
directional force with the tip of the closed forceps (Figure 6).
(B) Grip the Gonadal Vein. When the surgeon gripped the
gonadal vein softly and strongly, the gripping force reached

Table 2: The results of the experiments.

Pulling/𝑋
directional force

(N)

Gripping
force (N)

(A) Rupture the kidney 5 4

(B) Grip the gonadal vein — 2 (soft)–17
(strong)

(B) Pull on the gonadal vein 3 8–15
(C) Pull on the renal artery 3 15–20
(D) Pull on the renal vein 2 15–20
(E) Pull on the ureter 2 10–16
(F) Grip the liver softly — 2–4
(G) Grip the liver strongly — 18–42
(H) Grip and pull on the
liver 9 26

(I) Grip the kidney softly — 10–13
(J) Grip the kidney strongly — 11–18
(K) Grip and pull on the
kidney 4 12

2 and 17N, respectively. A total of 8–15N of gripping force
and 3N of pulling force were required (Figure 7).
(C) Grip and Pull on the Renal Artery. When we gripped the
renal artery softly and strongly to stop the blood flow, the
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Figure 6: Experiment (A), rupture the kidney.

gripping force reached 6 and 16N, respectively. When the
surgeon pulled and gripped the renal artery to stretch it, 8–
10N of gripping force and 3N of pulling force were needed
(Figure 8).
(D) Grip and Pull on the Renal Vein. When we gripped the
renal vein softly and strongly to stop the blood flow, the
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Figure 7: Experiment (B), grip the gonadal vein.

gripping forces reached 10 and 16N, respectively. We gripped
and pulled the renal vein, and just before it tore off, it needed
15–20N of gripping force and 2N of pulling force (Figure 9).
(E) Grip and Pull the Ureter. The ureter required 10–16N
of gripping force and 2N of pulling force to be torn off
(Figure 10).
(F) Grip of Liver Softly; (G) Grip the Liver Strongly; (H) Grip
and Pull on the Liver. When the surgeon gripped the liver
softly, the forceps received 2–4N of force. On the other
hand, when the surgeon gripped the liver strongly, the forceps
received 18–42N of force.Moreover, he could tear off the liver
by gripping the forceps with 26N of force and pulling with
9N of force (Figure 11).
(I) Grip the Kidney Softly; (J) Grip the Kidney Strongly; (K)
Grip and Pull on the Kidney. When the surgeon gripped the
liver softly, the forceps received 10–13N of force. On the other
hand, when the surgeon gripped the liver strongly, the forceps
received 11–18N of force.Moreover, the liver was torn offwith
12N of gripping force and 4N of pulling force (Figure 12).
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Figure 8: Experiment (C), grip and pull on the renal artery.

4. Discussion

When the surgeon pulled on the renal artery, renal vein,
gonadal vein, and ureter just before tearing them off, the
forceps received large gripping forces. As such, we believe the
following: the renal artery bears 10N of gripping force and
3N of pulling force; the renal vein bears 20N of gripping
force and 2N of pulling force; the gonadal vain bears 15N
of gripping force and 3N of pulling force; and the ureter
bears 16N of gripping force and 2N of pulling force. These
findings show that if a surgeon grips and pulls the renal artery,
renal vein, gonadal vein, or ureter rather roughly, each can
resist the surgical force to some extent. To stop the blood flow
during an operation, wemust know blood pressure and vessel
properties.These propertiesmay be changed by patient age or
history [19], so we need to perform more experiments.

We gripped and pulled the liver and kidney, to measure
their properties anddetermine the force atwhich they tear off.
The edge of the liver is flat, while that of the kidney is round,
so the surgeon can easily grip the liverwith less gripping force.
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Figure 9: Experiment (D), grip and pull on the renal vein.
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Figure 11: Experiment (F), grip liver softly; (G) grip the liver strongly; (H) grip and pull on the liver.

However, more force is needed to tear it off. This shows that
the liver is solid compared with the kidney.

Figure 6 shows that, to rupture the kidney, for example,
the surgeon gripped the forceps strongly to push the forceps
into the kidney. He initially gripped the forceps too strongly.
The red line demonstrated 8N of force. After he got used
to handling the forceps and was familiar with the moderate
amount of power needed to grip and push the kidney, the
gripping force tended to decrease (red line demonstrated 2N
of force). The gripping force increased to 4N the moment of
rupture, as the surgeon gripped the forceps strongly because
he noticed the sudden shock when the kidney was ruptured.

These findings demonstrated that the operator tends to
grip the forceps strongly when he notices the sudden shock of
the forceps. As such, it may be possible to use gripping force
to detect an operator’s skill level since beginners tend to grip
the forceps strongly. The gripping force as well as the moving
speed or acceleration may be signs of operator proficiency.
Thus, surgical techniques between operators can be evaluated
and scored. Indeed, Yoshida et al. examined forceps forces
and application time, and their results suggest that experts

should try to keep the instrument tip within the operative
field [20]. Trejos et al. also show that force-based metrics
were able to provide stronger correlations with experience
than those foundwith task completion time or position based
metrics [11].

Many experiments have tried to detect the properties of
the organs ormaterials using operative devices or other kinds
of equipment [10, 11, 19–24]. While many other experiments
have been performed in a Dry-Box with a metal cylinder, our
experiment was performed in a real operative environment
and with real forceps that can measure gripping force, direc-
tional force, and the blade’s angle. Here we used Maryland-
type dissecting forceps. If the shape of the blade is changed,
the 𝑋 directional force or gripping force may be changed.
In fact, it has been shown that 15N of force is needed to
destroy liver tissue by using a rubber plate [21], whereas our
experimental data showed that 30–42N is required to destroy
liver tissue and 26N is required to tear it off.

Some experiments have been performedwith real forceps
and dead pig organs [20, 23]. These gripping or directional
forces are assumed by the gripping of the handle’s angle and
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Figure 12: Experiment (I), grip the kidney softly; (J) grip the kidney strongly; (K) grip and pull on the kidney.

the force or sensor attached to the forceps shaft or handle.
On the other hand, our dynamic sensors are attached to
not only the shaft and handle but also the tip of the blade.
Since our forceps directly detect the gripping force from the
shaft and the directional force from the blade, our results
are free of functional noise. Moreover, our forceps can be
used in a real operative environment and can be inserted
with the trocar in laparoscopic surgery, making it technically
possible to perform such experiments in humans. However,
there are associated ethical problems. Of course, we should
also perform this kind of experiment in a Dry-Box to fine-
tune our simulator and complement the shortage of actual
experiments. We never have an intention to perform our
experiment on living human body but we may perform
this kind of experiment in a Dry-Box with use of extracted
organs by carcinoma with patient’s agreement. In that case,
we will compare measurement data of pig with human and
improve the simulator’s sensors. Certainly, this experiment
does not improve our “patient specific” simulation. However,
this acquired data improves general sensation or action of

our simulator and is efficacious for good compulsory training
programs. As such we believe that our result is realistic and
will lead to a more “real” simulation experience.

5. Conclusions

Here we recorded the force measured during laparoscopic
surgery performed on pigs by using forceps with pressure
sensors and performed a laparoscopic nephrectomy on a
pig by using multimodal measuring forceps. The forceps
measured the𝑋/𝑌/𝑍 directional forces, blade force, grabbing
force, and grabbing angle in real operative situations within
a pig.The experiment showed the possibility of digitizing the
physical properties in humans as well.

Abbreviations and Acronyms

CT: Computed tomography
PSVR: Patient specific virtual reality.
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