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Abstract

This paper proposes a new method for estimating sparse precision matrices in the high 

dimensional setting. It has been popular to study fast computation and adaptive procedures for this 

problem. We propose a novel approach, called Sparse Column-wise Inverse Operator, to address 

these two issues. We analyze an adaptive procedure based on cross validation, and establish its 

convergence rate under the Frobenius norm. The convergence rates under other matrix norms are 

also established. This method also enjoys the advantage of fast computation for large-scale 

problems, via a coordinate descent algorithm. Numerical merits are illustrated using both 

simulated and real datasets. In particular, it performs favorably on an HIV brain tissue dataset and 

an ADHD resting-state fMRI dataset.

Keywords

Adaptivity; Coordinate descent; Cross validation; Gaussian graphical models; Lasso; Convergence 
rates

1. Introduction

Estimating covariance matrices is fundamental in multivariate analysis. It has been popular 

to estimate the inverse covariance (or precision) matrix in the high dimensional setting, 

where the number of variables p goes to infinity with the sample size n (more precisely, in 
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this paper, p ≫ n and (log p)/n = o(1)). Inverting the sample covariance matrix has been 

known to be unstable for estimating the precision matrix. Recent proposals usually 

formulate this objective as regularized/penalized optimization problems, where 

regularization is employed to control the sparsity of the precision matrix. Besides the 

challenge of solving such large optimization problems, there is an important issue on how to 

choose an appropriate regularization level that is adaptive to the data. To address these two 

challenges, we propose a fast and adaptive method, and establish the theoretical properties 

when the regularization level is chosen by cross validation.

Let X = (X1,…, Xp)T be a p-variate random vector with a covariance matrix Σ or its 

corresponding precision matrix Ω := Σ−1. Suppose we observe independent and identically 

distributed random samples {X1, …, Xn} from the distribution of X. To encourage a sparse 

and stable estimate for Ω, regularized/penalized likelihood approaches have been proposed. 

Here, sparsity means that most of the entries in Ω are exactly zero. Popular penalties include 

the ℓ1 penalty [1] and its extensions, for example, [2], [3], [4], and [5]. In particular, [3] 

developed an efficient algorithm, glasso, to compute the penalized likelihood estimator, and 

its convergence rates were obtained under the Frobenius norm [5] and the elementwise ℓ∞ 

norm and spectral norm [6]. Other penalties were also studied before. For example, the ℓ1 

penalty was replaced by the nonconvex SCAD penalty [7, 8, 9]. Due to the complexity of 

the penalized likelihood objective, theoretical analysis and computation are rather involved. 

Moreover, the theory usually relies on some theoretical assumptions of the penalty, and thus 

it provides limited guidance for applications.

Recently, column-wise or neighborhood based procedures have caught much attention, due 

to the advantages in both computation and analysis. [10] proposed to recover the support of 

Ω using ℓ1 penalized regression, aka LASSO [1], in a row by row fashion. This can be 

computed efficiently via path-following coordinate descent [11] for example. A Dantzig 

selector proposal, replacing the LASSO approach, was proposed recently by [12], and the 

computation is based on standard solvers for linear programming. [13] proposed a 

procedure, CLIME, which seeks a sparse precision matrix under a matrix inversion 

constraint. Their procedure is also solved column by column via linear programming. 

Compared with the regularized likelihood approaches, their convergence rates were obtained 

under several matrix norms mentioned before, without imposing the mutual incoherence 

condition [6], and were improved when X follows polynomial tail distributions. However, 

all these procedures are computational expensive for very large p, and again these estimators 

were analyzed based on theoretical choices of the penalty.

Cross validation on the other hand has gained popularity for choosing the penalty levels or 

tuning parameters, because it is adaptive and usually yields superior performance in 

practice. Unfortunately, the theoretical understanding of cross validation is sparse. For a 

related problem on estimating sparse covariance matrices, [14] analyzed the performance of 

covariance thresholding where the threshold is based on cross validation. [15] provided a 

different approach using self-adaptive thresholding. However, these covariance estimation 

results cannot be extended to the inverse covariance setting, partly due to the problem 

complexity. This paper will provide theoretical justification for cross validation when 

estimating the precision matrix. This result is made possible because we propose a new 
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column-wise procedure that is easy to compute and analyze. To the best of our knowledge, 

this paper is among the first to provide theoretical justification of cross validation for sparse 

precision matrix estimation.

The contributions of this paper are several folds. First, we propose a novel and penalized 

column-wise procedure, called Sparse Columnwise Inverse Operator (SCIO), for estimating 

the precision matrix Ω. Second, we establish the theoretical justification under mild 

conditions when its penalty is chosen by cross validation. The theory for cross validation is 

summarized as follows. A matrix is called sp-sparse if there are at most sp non-zero elements 

on each row. It is shown that the error between our cross validated estimator Ω̂ and Ω 

satisfies , where ||·||F is the Frobenius norm. Third, theoretical 

guarantees for the SCIO estimator are also obtained under other matrix norms, for example 

the element-wise ℓ∞ norm which achieves graphical model selection [16]. Fourth, we 

provide a fast and simple algorithm for computing the estimator. Because our algorithm 

exploits the advantages of conjugate gradient and coordinate descent, and thus it provides 

superior performance in computational speed and cost. In particular, we reduce two nested 

loops in glasso [3] to only one. An R package of our method, scio, has been developed, and 

is publicly available on CRAN.

The rest of the paper is organized as follows. In Section 2, after basic notations and 

definitions are introduced, we present the SCIO estimator. Finite sample convergence rates 

are established with the penalty level chosen both by theory in Section 3 and by cross 

validation in Section 4. The algorithm for solving SCIO is introduced in Section 5. Its 

numerical merits are illustrated using simulated and real datasets. Further discussions on the 

connections and differences of our results with other related work are given in Section 6. 

The supplementary material includes additional results for the numerical examples in 

Section 5 and the proof of the main results.

The notations in this paper are collected here. Throughout, for a vector a = (a1, …, ap)T ∈ 

IRp, define  and . All vectors are column vectors. For a 

matrix A = (aij) ∈ IRp×q, we define the elementwise l∞ norm |A|∞ = max1≤i≤p,1≤j≤q |aij |, the 

spectral norm ||A||2 = sup|x|2≤1 |Ax|2, the matrix ℓ1 norm , the 

matrix ∞ norm , the Frobenius norm , and 

the elementwise ℓ1 norm . Ai,· and A·,j denote the ith row and jth 

column respectively. I denotes an identity matrix. 1 {·} is the indicator function. The 

transpose of A is denoted by AT. For any two matrices A and B of proper sizes, 〈A, B〉 = 

Σi(AT B). For any two index sets T and T′ and a matrix A, we use ATT′ to denote the |T|×|T′| 

matrix with rows and columns of A indexed by T and T′ respectively. The notation A ≻ 0 

means that A is positive definite. For two real sequences {an} and {bn}, write an = O(bn) if 

there exists a constant C such that |an| ≤ C|bn| holds for large n, an = o(bn) if limn→∞ an/bn = 

0, and an ≍ bn if an = O(bn) and bn = O(an). Write an = OP(bn) if an = O(bn) holds with the 
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probability going to 1. The constants C, C0, C1, … may represent different values at each 

appearance.

2. Methodology

Our estimator is motivated by adding the ℓ1 penalty [1] to a column loss function, which is 

related to conjugate descent and a constrained minimization approach CLIME [13]. The 

technical derivations that lead to the estimator is provided in the supplementary material. 

Denote the sample covariance matrix by Σ̂. Let a vector β̂
i be the solution to the following 

equation:

(1)

where β̂
i = (β̂

i1, …, β̂
ip)T, ei is the ith column of a p × p identity matrix, and λni > 0 is a 

tuning parameter. The tuning parameter could be different from column to column, adapting 

to different magnitude and sparsity of each column.

One can formulate a precision matrix estimate where each column is the corresponding βî. 

However, the resulting matrix may not be symmetric. Similar to a symmetrization step 

employed in CLIME, we define the SCIO estimator Ω̂ = (ω̂
ij)p×p, using the following 

symmetrization step,

(2)

As we will establish in Section 3, similar to the results of CLIME, the convergence rates 

shall not change if the diagonal of the sample covariance Σ̂ is added by a small positive 

amount, as long as in the order of n−1/2 log1/2 p. With this modification, (1) is then strictly 

convex and has a unique solution. In Section 5, we will present an efficient coordinate 

descent algorithm to solve it.

The SCIO estimator, like other penalized estimators, depends on the choice of λni. We allow 

λni to be different from column to column, so that it is possible to adapt to each column’s 

magnitude and sparsity, as we will illustrate in Section 4. More importantly, due to the 

simplified column loss function (1), we are able to establish, in Section 4, the theoretical 

guarantees when λni is chosen by cross validation. In comparison, the theory of cross 

validation for glasso [3] and CLIME [13] has not been established before, to the best of our 

knowledge.

3. Theoretical guarantees

3.1. Conditions

Let  be the support of Ω·,i, the ith column of Ω = (ωij)p×p. Define the sp-sparse matrices 

class
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where c0 is a positive constant, Λmin(Ω) and Λmax(Ω) are the minimum and maximum 

eigenvalues of Ω respectively. The sparsity sp is allowed to grow with p, as long as it 

satisfies the following condition.

(C1). Suppose that Ω ∈  with

(3)

and

(4)

for some 0 < α < 1.

As we will see from Theorem 1, condition (3) is required for proving the consistency. 

Condition (4) is in the same spirit as the mutual incoherence or irrepresentable condition for 

glasso [6], but it is slightly relaxed, see Remark 2. In general, this type of conditions is 

believed to be almost necessary for penalization methods to recover support.

Let Y = (Y1, …, Yp)T = ΩX − Ωμ where μ = EX. The covariance matrix of Y is thus Ω. The 

second condition is on the moments of X and Y.

(C2). (Exponential-type tails) Suppose that log p = o(n). There exist positive numbers η > 0 

and K > 0 such that

(C2*). (Polynomial-type tails) Suppose that for some γ, c1 > 0, p ≤ c1nγ, and for some δ > 0

We will assume either one of these two types of tails in our main analysis. These two 

conditions are standard for analyzing sparse precision matrix estimation, see [13] and 

references within.
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3.2. Convergence rates of Ω̂ − Ω

The first theorem is on the convergence rate under the spectral norm. It implies the 

convergence rates of eigenvalues and eigenvectors, which are essential in principle 

component analysis for example. The convergence rate under the spectral norm may also be 

important for classification, for example linear/quadratic discriminant analysis as we 

illustrate in Section 5.

Theorem 1—Let  with C0 being a sufficiently large number. Under (C1), 

and (C2) (or (C2*)), we have

with probability greater than 1 − O(p−1) (or 1 − O(p−1 + n−δ/8) under (C2*)), where C > 0 

depends only on c0, η, C0 and K (or c0, c1, γ, δ, C0 and K under (C2*)).

Remark 1—If Mpspn−1/2log1/2 p = o(1), then Ω̂ is positive definite with probability tending 

to one. We can also revise Ω̂ to Ω̂
τ with

where τ = (|Λmin(Ω̂)| + n−1/2)1{Λmin(Ω̂) ≤ 0}. By Theorem 1, assuming τ ≤ CMpspn−1/2 

log1/2 p, we have with probability greater than 1 − O(p−1) (or 1 − O(p−1 + n−δ/8)) that

Such a simple perturbation will make the revised estimator Ω̂
τ to have a larger minimal 

eigenvalue, for stability concerns. The later results on support recovery and other norms will 

also hold under such a small perturbation.

Remark 2—[6] imposed the following irrepresentable condition on glasso: for some 0 < α 

< 1,

(5)

where Ψ is the support of Ω, Γ = Σ ⊗ Σ, and ⊗ denotes the Kronecker matrix product. To 

make things concrete, we now compare our conditions using the examples given in [6]:
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1. In the diamond graph, let p = 4, σii = 1, σ23 = 0, σ14 = 2ρ2 and σij =ρ for all i ≠ j, (i, 

j) ≠ (2, 3) and (2, 4). For this matrix, (5) is reduced to 4|ρ|(|ρ| + 1) < 1 and so it 

requires ρ ∈ (−0.208, 0.208). Our relaxed condition (4) only needs ρ ∈ (−0.5, 0.5).

2. In the star graph, let p = 4, σii = 1, σ1,j = ρ for j = 2, 3, 4, σij = ρ2 for 1 < i < j ≤ 4. 

For this model, (5) requires |ρ|(| ρ| + 2) < 1 (i.e. ρ ∈ (−0.4142, 0.4142)), while our 

condition (4) holds for all ρ ∈ (−1, 1).

We have the following result on the convergence rates under the element-wise ℓ∞ norm and 

the Frobenius norm.

Theorem 2—Under the conditions of Theorem 1, we have with probability greater than 1 − 

O(p−1) under (C2) (or 1 − O(p−1 + n−δ/8) under (C2*))

(6)

and

(7)

Remark 3—The convergence rate under the Frobenius norm does not depend on Mp. In 

comparison, [17] obtained the minimax lower bound, when X ~ N (μ, Σ),

(8)

They also showed that this rate is achieved by sequentially running two CLIME estimators, 

where the second CLIME estimator uses the first CLIME estimate as input. Though CLIME 

allows a weaker sparsity condition where our ℓ0 ball bound sp in  is replaced by an ℓq ball 

bound (0 ≤ q < 1), our rate in (7) is faster than CLIME, because  in (8) could grow with 

p. The faster rate is due to the fact that we consider the condition (4). Under a slightly 

stronger condition (5) (see Remark 2), [6] proved that the glasso estimator Ω̂
glasso has the 

following convergence rate

(9)

where κΓ = ||(&Gamma;ΨΨ)−1||L1. Our convergence rate is also faster than theirs in (9) κΓ 

→ ∞.
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3.3. Support recovery

As discussed in the introduction, support recovery is related to Gaussian graphical models. 

The support of Ω is recovered by SCIO, with high probability by the following theorem. 

Recall Ψ = {(i, j) : ωij ≠ 0} be the support of Ω, and similarly

The next theorem gives the result on support recovery.

Theorem 3—(i). Under the conditions of Theorem 1, we have Ψ ⊆ Ψ with probability 

greater than 1 − O(p−1) under (C2) (or 1 − O(p−1 + n−δ/8) under (C2*)). (ii). In addition, 

suppose that for a sufficiently large number C > 0,

(10)

Then under the conditions of Theorem 1, we have Ψ̂= Ψ with probability greater than 1 − 

O(p−1) under (C2) (or 1 − O(p−1 + n−δ/8) under (C2*)).

The condition (10) on the signal strength is standard for support recovery, see [6], [13] for 

example. We also note that the CLIME method [13] requires an additional thresholding step 

for support recovery, while SCIO does not need this step.

4. Theory for data-driven penalty

This section analyzes a cross validation scheme for choosing the tuning parameter λni, and 

we establish the theoretical justification of this data-driven procedure.

We consider the following cross validation method for simplicity, similar to the one 

analyzed in [14]. Divide the sample {Xk; 1 ≤ k ≤ n} into two subsamples at random. Let n1 

and n2 = n − n1 be the two sample sizes of the random splits satisfying n1 ≍ n2 ≍ n, and let 

 be the sample covariance matrices from the two samples n1 and n2 respectively in 

the lth split, for l = 1,…, H, where H is a fixed integer. For each i, let  be the estimator 

minimizing the average out-of-sample SCIO loss, over λ,

(11)

where  is calculated from the n1 samples with a tuning parameter λ to be determined. 

For implementation purposes, instead of searching for continuous λ, we will divide the 

interval [0, 4] by a grid λ0 < λ1 < ··· < λN, where . The number 4 comes from the 
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CLIME constraint, see the supplementary material. The tuning parameter on the grid is 

chosen by, for each i,

(12)

It is important to note that the size N should be sufficiently large but not too large, see the 

first two conditions on N in Theorem 4, and the convergence rate will then hold even if we 

only perform cross validation on a grid. The choice of λ̂
i could be different for estimating 

each column of the precision matrix using the column loss function (11). This allows the 

procedure to adapt to the magnitude and sparsity of each column, compared with the 

standard glasso estimator with a single choice of λ for the whole matrix. Though it is 

possible to specify different λ for each column (even each entry) in glasso, searching over 

all possible combinations of λ’s over high dimensional grids, using a non-column-wise loss 

(e.g. the likelihood), is computationally untrackable. Our column loss thus provides a simple 

and computationally trackable alternative for choosing adaptive λ.

As described before, the complexity of the likelihood function may make it difficult to 

analyze the glasso estimator using cross validation. Though CLIME uses a constrained 

approach for estimation, its constrained objective function cannot be directly used for cross 

validation. [13] proposed to use the likelihood function as the cross validation loss, which 

makes it difficult to establish the theory of cross validated CLIME. For a different setting of 

estimating the covariance matrix, [14] obtained the convergence rate under the Frobenius 

norm, using covariance thresholding. The threshold is also based on sample splitting like 

ours. However, to the best of our knowledge, it has been an open problem on establishing 

the theoretical justification of cross validation when estimating the precision matrix. 

Theorem 4 below fills the gap, showing that the estimator based on λ̂
i from (12) attains the 

optimal rate under the Frobenius norm. For simplicity, we set H = 1 as in [14].

Our theory adopts the following condition on the sub-Gaussian distribution, which was use 

in [18] for example.

(C3). There exist positive numbers η′ > 0 and K′ > 0 such that

This condition is slightly stronger than (C2), because our next theorem adapts to unknown Ω 

using cross validation, instead of the theoretical choice λni. It is easy to see that (C3) holds 

for the multivariate normal distribution as a special case.

Denote the unsymmetrized  and recall the symmetrized 

matrix Ω̂1 as
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The following theorem shows that the estimator  attains the minimax optimal rate 

under the Frobenius norm.

Theorem 4—Under the conditions log N = O(log p), , and (C3), we have 

as n, p → ∞,

The convergence rate using cross validation is the same as (7) in Theorem 2 with the 

theoretical choice of λ. Using similar arguments in Theorem 4 of [14], this result can be 

extended to multiple folds H > 1. To the best of our knowledge, Theorem 4 is the first result 

on the theoretical justification of cross validation when estimating the sparse precision 

matrix.

5. Numerical examples

5.1. Algorithm

Recall that the SCIO estimator is obtained by applying symmetrization (2) to the solution 

from (1), where each column βî is given by the following

(13)

for any λ> 0. We propose to employ an iterative coordinate descent algorithm to solve (13) 

for each i. In contrast, the R package glasso employs an outside loop over the columns of the 

precision matrix, while having another inside loop over the coordinates of each column. Our 

algorithm does not need an outside loop because our loss function is column-wise.

The iterative coordinate descent algorithm for each i goes as follows. In each iteration, we 

fix all but one coordinate in β, and optimize over that fixed coordinate. Without loss of 

generality, we consider optimizing over the pth coordinate βp while all other coordinates of β 

(denoted by β−p) are fixed. The solution is in an explicit form by the following simple 

proposition. The solution when fixing other coordinates is similar, simply by permuting the 

matrix. We then loop through the coordinates until the updates are smaller than a user-

specified threshold, say 10−4.

Proposition 1—Let the subvector partition β = (β−p, βp) and partition Σ̂ accordingly as 

follows
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Fixing β−p, the minimizer of (13) is

where the soft thresholding rule  (x, λ) = sign(x) max(|x| − λ, 0).

We implement this algorithm in an R package, scio, available on CRAN. All the following 

computation is performed using R on an AMD Opteron processor (2.6 GHz) with 32 Gb 

memory. The glasso and CLIME estimators are computed using its R packages glasso 

(version 1.7) and clime (version 0.4.1) respectively. The path-following strategy with warm-

starts [11] is enabled in all methods.

5.2. Simulations

In this section, we compare the performance with glasso and CLIME on several measures 

using simulated data. In order to compare the adaptivity of the procedures, the covariance 

matrices that generate the data all contain two block diagonals of different magnitude, where 

the second block is 4 times the first one. Similar examples were used in [15] in comparing 

adaptive covariance estimation. The first block is generated from the following models 

respectively.

1. decay: ωij = 0.6|i−j|.

2. sparse: Let the prototype Ω0 = O + δI, where each off-diagonal entry in O is 

generated independently, and equals to 0.5 with probability 0.1 and 0 with 

probability 0.9. δ is chosen such that the conditional number (the ratio of maximal 

and minimal singular values of a matrix) equals to p. Finally, the block matrix is 

standardized to have unit diagonals.

3. block: A block diagonal matrix with block size 5 where each block has off-

diagonal entries equal to 0.5 and diagonal 1. The resulting matrix is then randomly 

permuted.

100 independent and identically distributed observations constituting a training data set are 

generated from each multivariate Gaussian covariance model with mean zero, and 100 

additional observations are generated from the same model as a validating data set. Using 

the training data alone, a series of penalized estimators with 50 different tuning parameters λ 

is computed. For a fair comparison, we first pick the tuning parameters in glasso, CLIME, 

and SCIO to produce the smallest Bregman loss on the validation sample. The Bregman loss 

is defined by
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We also compare with our cross validation scheme in Section 4, where the cross validation 

loss is the column-wise adaptive loss (11). The resulting estimator is denoted by SCIOcv. 

We consider different values of p = 50, 100, 200, 400, 800, 1600, and replicate 100 times.

Table 1 compares the estimation performance of SCIO, SCIOcv, CLIME, and glasso under 

the spectral norm and the Frobenius norm. It shows that SCIO and SCIOcv almost uniformly 

outperform all other methods under both norms. SCIO has better performance when p ≤ 400, 

while SCIOcv has better performance when p ≥ 800. The glasso estimator has the worst 

performance overall, but it has slightly improved performance than other methods in the 

block model for p = 200 and 400. The CLIME estimator has slightly worse performance 

than our estimators overall, except for a few cases.

As discussed before, support recovery carries important consequences for graphical model 

estimation. The frequencies of correct zero/nonzero identification are summarized in Table 1 

of the supplementary material. In there, the SCIO and SCIOcv estimates are sparser than the 

CLIME and glasso estimates in general. To further illustrate this, we plot the heatmaps of 

support recovery in Figure 1 using p = 100 as a representing example. These heatmaps 

confirm that the SCIO estimates usually contain less zeros than glasso and CLIME. By 

visual inspection, these SCIO estimates also tend to be closer to the truth, especially under 

the sparse model. In particular, they adapt to different magnitude. In contrast, glasso yields 

some interference patterns and artificial stripes, especially under the sparse model.

5.3. A genetic dataset on HIV-1 associated neurocognitive disorders

Antiretroviral therapy (ART) has greatly reduced mortality and morbidity of HIV patients; 

however, HIV-1 associated neurocognitive disorders (HAND) are becoming common, 

which cause greatly degradation of life quality. We here apply our graphical models to a 

gene expression dataset [19] to study how their genetic interactions/pathways are altered 

between treated and untreated HAND patients, and compare with other methods using 

classification. The supplementary material includes the full description of the dataset, the 

modeling approach, and additional results.

Figure 3a compares classification accuracy between treated and untreated HAND. The 

results comparing HAND and controls are not shown because all methods have a constant 

area-under-the-curve value 1. Because the number of nonzero off-diagonal elements may 

depend on the different scales of the penalization parameters in each method, we plot the 

classification accuracy against the average percentages of nonzero off-diagonals of these 

two classes (treated and untreated), i.e. the average percentages of connected edges in two 

recovered graphical models for the treated and untreated respectively. The SCIOcv 

estimators (not shown) only differs from SCIO on how to pick λ in a data-driven way, and 

thus it has the identical performance as SCIO under the same λ. This figure shows that in 

most cases SCIO outperforms glasso and CLIME when both methods use the same number 

of connected edges. The SCIO estimators are stable in classification performance even if the 
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number of connected edges increases. We are not able to plot the performance of glasso with 

more than 14% connected edges (corresponding to small penalization parameters), because 

the glasso package does not converge within 120 hours. CLIME shows decreased 

performance when the number of connected edges increases. As a comparison with other 

classification algorithms, we use the same data to compare with a few other classification 

methods, including random forest [20], AIC penalized logistic regression, and ℓ1 penalized 

logistic regression with 5-fold cross validation. Their classification accuracies are 78.6%, 

90.9% and 45.6% respectively. Our classification rule compares favorably with these 

competing methods on this dataset.

Figure 3b compares the running times against the percentages of connected edges. Because 

it is known that path-following algorithms may compute a sequence of solutions much faster 

than for a single one, we use 50 log-spaced penalization parameters from the largest (0% 

edges) to the designated percentages of edges, including 5%, 10%, 14%, 20%, 30%, 40%, 

50% and 60%. As reported before, we are unable to plot the running times for glasso beyond 

14% due to nonconvergence. SCIO takes about 2 seconds more than glasso when computing 

for 5% edges, but is much faster than glasso for 10% and more. For example, it compares 

favorably in the 14% case where SCIO takes only a quarter of the time of glasso. In general, 

the running time of SCIO grows linearly with the number of connected edges, while glasso 

shows exponential growth in computation time. CLIME is the slowest among all methods.

Figure 1 of the supplementary material compares the performance of support recovery, and 

it shows similar advantages of SCIO as in the simulations.

5.4. An fMRI dataset on attention deficit hyperactivity disorders

Attention Deficit Hyperactivity Disorder (ADHD) causes substantial impairment among 

about 10% of school-age children in United States. A neuroimaging study showed that the 

correlations between brain regions are different between typically developed children and 

children with such disorders [21]. The description of the data and additional results are 

provided in the supplementary material. In there, we compare the performance of support 

recovery using the data from each subject, and the results suggest that SCIO has competitive 

performance with CLIME and glasso in recovering brain connectivities for both healthy and 

ADHD children.

Figure 3 compares the running times of SCIO, CLIME, and glasso. Similar to the procedure 

described before, for each subject, we use path following algorithms in all methods up to the 

designated edge percentages, including 10%, 20%, 30%, 40%, 50% and 60%. This plot 

shows that the running times of SCIO grows almost linearly, and it is about 2 times faster 

than glasso with 60% connected edges. CLIME again is the slowest among all methods.

6. Discussion

It is possible to achieve adaptive estimation via other approaches. During the preparation of 

this paper, it comes to our attention that recently [22] applied a new adaptive penalized 

regression procedure, Scale Lasso, to the inverse covariance matrix estimation. [17] 

proposed an improved CLIME estimator, which runs the CLIME estimation sequentially 
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twice. We instead analyzed cross validation as an alternative approach for this goal because 

cross validation remains to be popular among practitioners. It would be interesting to study 

the theory of cross validation for these other estimators, and to study if these adaptive 

approaches can also be applied to our loss.

Choosing the tuning parameters is an important problem in the practice of penalization 

procedures, though most of the prior theoretical results are based on some theoretical 

assumptions of the tuning parameters. This paper is among the first to demonstrate that a 

cross validated estimator for the problem of precision matrix estimation achieves the n−1/2 

log1/2 p rate under the Frobenius norm. This rate may not be improved in general, because it 

should be minimax optimal [17], though a rigorous justification is needed. We also note that 

the distribution condition (C3) in Theorem 4 is slightly stronger than (C2) and (C2*). It is an 

interesting problem to study if the result in Theorem 4 can be extended to more general 

distributions. Moreover, it would be interesting to study whether minimax rates can also be 

achieved under other matrix norms, such as the operator norm, using cross validation.

The rate for support recovery in Theorem 3 also coincides with the minimax optimal rate in 

[17]. However,  together with (4) is actually a smaller class than theirs. It would be 

interesting to explore if their minimax rate can be improved in this important sub-class. It 

would also be interesting to study if our results can be extended to their general matrix class.

We employ the ℓ1 norm to enforce sparsity due to computational concerns. It has been 

pointed out before that the ℓ1 penalty inheritably introduces biases, and thus it would be 

interesting to replace the ℓ1 norm by other penalty forms, such as Adaptive Lasso [23] or 

SCAD [9]. Such extensions should be easy to implement because our loss is column-wise, 

similar to penalized regression. We are currently implementing these variants for future 

releases of our R package.

There are several other interesting directions. It would be interesting to study the precision 

matrix estimation under the setting that the data are generated from statistical models, while 

the covariance estimation problem under this setting was studied by [24]. It is also of 

interest to consider extending SCIO to the nonparanormal family distributions [25].

Finally, this paper only considers the setting that all the data are observed. It is an interesting 

problem to study the inverse covariance matrix estimation when some observations are 

missing. It turns out that the SCIO procedure can also be applied to the missing data setting, 

with additional modifications. Due to the space limitation, we will report these results 

elsewhere.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We propose a new procedure for sparse precision matrix estimation.

• We are among the first to establish the theory of cross validation for this 

problem.

• The conditions are slightly weaker than an important penalized likelihood 

method.

• Improved numerical performance is observed in several examples.
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Figure 1. 
Heatmaps of support recovery over 100 simulation runs (black is 100/100, white is 0/100).
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Figure 2. 
Comparison of classification accuracy and running times using SCIO, CLIME and glasso for 

the HIV dataset. Red solid lines are SCIO, green dash lines are CLIME, and blue dotted 

lines are glasso.
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Figure 3. 
Comparison of average (± 1 SE) running times for the ADHD dataset. The red solid line 

with circle marks is SCIO, the green dashed line with crosses is CLIME, and the blue dotted 

line with triangles is glasso.
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