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Abstract

Blood tests are needed to aid in the early detection of pancreatic ductal adenocarcinoma (PDAC), 

and monitoring pancreatitis development into malignancy especially in high risk patients. This 

study exhibits efforts and progress toward developing such blood tests, using electrospray-mass 

spectrometry (MS) serum profiling to distinguish patients with early-stage PDAC or pancreatitis 

from each other and from controls. Identification of significant serum mass peak differences 

between these individuals was performed using t tests and “leave one out” cross validation. Serum 

mass peak distributions of control individuals were distinguished from those of patients with 

chronic pancreatitis or early-stage PDAC with P values <10−15, and patients with chronic 

pancreatitis were distinguished from those of patients with early-stage PDAC with a P value 

<10−12. Sera from 12 out of 12 patients with PDAC stages I, IIA and IIB were blindly validated 

from controls. Tandem MS/MS identified a cancer phenotype with elements of PDAC involved in 

early-stage PDAC/control discrimination. These studies indicate electrospray-MS mass profiling 

can detect serum changes in patients with pancreatitis or early-stage pancreatic cancer. Such 

technology has the potential to aid in early detection of pancreatic cancer, biomarker development, 

and in monitoring development of pancreatitis into PDAC.
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Introduction

Early detection of pancreatic ductal adenocarcinoma (PDAC) is an important aspect of 

cancer treatment because early clinical stages (I, II) are easier to cure than later stages (III, 

IV) [1]. There is a need for robust, accurate and non-invasive detection methodology, e.g. 

from blood, for the early stages of pancreatic cancer [1,2]. Serum protein CA-19.9 is used to 

monitor existing pancreatic cancer but is not useful in diagnosis [3]. Multiple micro (mi) 

RNAs from plasma were shown to be indicators for pancreatic cancer, and mi-155 is 

possibly predictive for early-stage pancreatic neoplasia [4]. However there are still some 

discrepancies among micro RNA technologies [5,6]. A variety of serum biomarkers in an 

antibody-protein microarray format had positive results detecting late-stage pancreatic 

cancer and chronic pancreatitis (CP) [7]. Chronic pancreatitis is a significant risk factor for 

the development of pancreatic cancer [8,9]. One of the prominent mechanisms by which 

PDAC is hypothesized to develop, e.g., from pancreatitis to pancreatic cancer, is through 

cellular and genetic changes involving pancreatic intraepithelial neoplasias (PanINs) which 

can be found in chronic pancreatitis [10,11].

The profiling of bodily fluids using all-liquid electrospray ionization (ESI) mass 

spectrometry (MS) has the potential to distinguish differences between blood/sera of 

disease-free individuals and individuals with pathological conditions [12–15]. Serum mass 

profiling is useful in cancer diagnostics including pancreatic cancer, and in therapeutic 

development [14–17]. The underlying hypothesis is that sera contain ample numbers and 

kinds of peptides and other biomolecules (e.g., proteins, nucleic acids, glycoconjugates, 

lipids), and this complexity will vary between disease states [12–15]. The basis for some of 

this complexity involves exoprotease degradation of proteins [18] and cellular signaling 

mechanisms [19], and is hypothesized to reflect homeostatic as well as defense/stress 

mechanisms which change with physiological state [16–19]. Consequently, organs/tissues 

shed and/or secrete varying amounts and different kinds of biomolecules into the peripheral 

blood in response to different physiological conditions. All-liquid ESI-MS is possibly the 

simplest biomarker platform available, requiring only a serum dilution and injection into the 

mass spectrometer. Liquid MS analyzes disease-related phenotypic profiles in sera, as 

opposed to indirect genotypic/nucleic acid classifications. ESI-MS serum mass profiling 

examines potentially all biomolecules in sera, whereas other biomarker platforms (DNA, 

RNA, metabolomics, and various antibody methods) focus on a single component or small 

groups of similar components and can require a significant amount of preparation prior to 

analysis. To improve specificity in disease detection, the more biomolecules analyzed at 

once, the greater disease discriminatory powers of the platform [17,18]. Importantly, MS 

analysis meets the accuracy, robustness, and reproducibility guidelines for stringent clinical 

laboratory testing [20–23]. Standard statistical approaches, like those used in this study, are 

better suited than novel algorithms [20,23].

Previously, we utilized electrospray ionization mass spectrometry (ESI-MS) peaks to 

distinguish sera from early-stage ovarian, lung, and pancreatic cancer patients from healthy 

disease-free individuals [15–17,24–26]. In the present study, electrospray serum mass 

profiling is used to distinguish early-stage PDAC patients (stages I, IIA, IIB) from healthy 

individuals and from patients with chronic pancreatitis. Leave one out cross validation 
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(LOOCV) of the mass peak data and randomization of cohort sera samples is used to check 

for and help ameliorate “over-fitting” of the mass peak data. “Hold out” databases are 

formed and used to validate blinded early-stage PDAC, CP, or control serum sets. Tandem 

MS/MS [27] is used to help identify peptides/proteins potentially involved in PDAC/control 

discrimination. Such straight-forward analyses, from an accessible body fluid like serum, 

holds promise for aiding in the diagnosis and disease monitoring and, in the future, 

understanding pancreatic carcino-genesis mechanisms as well as aiding in the development 

and analysis of therapeutic interventions for this deadly disease.

Materials and methods

Patients and clinical samples

Patient-related information concerning individuals with stage I, IIA, or IIB pancreatic 

cancer, chronic pancreatitis, as well as healthy control individuals, is listed in Table 1. 

Patient/serum samples are divided into three groups: complete databases, validation 

databases, and blind validation samples. Tumor pathological staging was according to the 

TNM staging system (tumor size, node involvement, metastasis presence) [28]. Tumor and 

pancreatitis pathology was determined at the Surgical Pathology Laboratories of the 

University of Oklahoma Health Sciences Center Hospital. Sera were obtained from patient 

peripheral blood at the University of Oklahoma Health Sciences Center, before treatments, 

according to standard procedures [29]. Blood and serum samples were also collected from 

healthy volunteers from the University community in identical fashion. Sera aliquots (100 

μl) were frozen at −80 °C, and not reused after initial freezing and thawing. Histology and 

hematoxylin and eosin (H&E) staining of PDAC, CP, and control tissues were performed as 

described [25].

ESI-MS of sera from PDAC and CP patients and healthy controls

A serum aliquot from patients with PDAC, CP, or control individuals was diluted 1–300 into 

a solution of 50% methanol and 2% formic acid. The samples were loop injected (20 μl) into 

the nano source of an LCQ Advantage ion trap mass spectrometer (ThermoScientific), fitted 

with a 20 micron inner diameter (100 micron outer diameter) fused silica (Polymicro 

Technologies) tip at a flow rate of 0.5 μl/min using an Eldex MicroPro series 1000 pumping 

system [24]. High-resolution triplicate mass spectra were collected from disease and 

disease-free sera in random fashion per day. The spectra were sampled at an m/Z (mass 

divided by charge) resolution of two hundredths over an m/Z range of 400–2000. Positive 

ion mode spectra were collected over 30 min for each injection. Raw spectral data from the 

Advantage LCQ instrument were extracted using the manufacturer’s software “Qual 

Browser” version 1.4SR1. Spectral data were exported in a format providing rounded unit 

m/Z and intensity values. Data were then normalized to the highest m/Z sum intensity value 

in segments of 25 m/Z from 400 to 2000. MS spectral peak assignments were calculated as 

centroid m/Z¬ peak area values (valley to valley) using Mariner Data Explorer 4.0.0.1 

software (Applied BioSystems). Centroid area is defined as the area of the peak calculated 

from its geometrical m/Z center. For tandem MS/MS mass peak identifications [27], 60 m/Z 

ions (peak range, 700–940 m/Z, identified by LOOCV analysis for discriminating non-

cancer controls from patients with stage IIB pancreatic cancer) were screened at 12 m/Z ion 

Hocker et al. Page 3

Cancer Lett. Author manuscript; available in PMC 2016 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



intervals in 10 control and 10 PDAC serum samples in the ThermoScientific ion-trap MS 

instrument used in the cohort discriminations. Samples were diluted 1–390 in 50% 

methanol, 2% formic acid, 48% water, and analyzed at a flow rate of 0.20 microliters/min. 

Peak protein identifications were determined using SEQUEST Proteome Discoverer 1.0 

(Thermo Scientific) using the “no cleavage” setting on a “Homo sapien” database created 

through the Discoverer software from a non-redundant database downloaded from NCBI on 

07/08/2014. Serum samples on average contained 1.95 (range: 0–5) parent ions with 

significant differences of standard MS spectral data between the pre and post MS/MS scans 

of the 60 parental ions observed.

Statistical and quantitative analysis

m/Z peak area data were exported into Excel 2010, and triplicate peak areas at each m/Z 

value were averaged for each serum sample. Using a nested LOOCV protocol [30,31], 

individual m/Z peak areas of a “left out” serum sample were analyzed for significance 

against the “left in” database (e.g., remaining control versus PDAC samples) using t-tests 

(one-tailed, two sample unequal variance) [16,26]. LOOCV was performed by removing one 

patient or control serum m/Z peak area data set at a time from the total m/Z peak database 

for each class of sera samples, and then reforming the total MS peak database in the absence 

of that single sample m/Z data set. For each “left out” m/Z LOOCV peak area tested against 

the database of significant peaks, a value greater than the 50% “cutoff “ (see Fig. 1E) was 

assigned to a patient group descriptor like PDAC, and a value equal to or less than the 

‘cutoff mean’ was assigned to the control or other group descriptor. This procedure was 

repeated for all sera samples in the control, PDAC, and pancreatitis cohorts. In addition, 

50% of serum samples in the LOOCV analysis must select a particular m/Z peak to be 

deemed significant. A % of the total descriptor (e.g., PDAC) mass peak database was then 

plotted versus patient and control sample number (see Fig. 2A). Blinded sera validation was 

performed in similar LOOCV fashion against training validation subsets obtained from their 

respective retrospective databases from which the blinded sera samples were “left out”. 

Validation database construction was performed using the described LOOCV method with 

the complete exclusion of the blinded samples. Random sampling of groups/cohorts was 

obtained using the RAND function in Excel 2010.

Test metrics

The diagnostic value of a test/procedure is defined by its sensitivity, specificity, predictive 

value, and efficiency [32,33]. Test sensitivity was determined from TP/(TP + FN) where TP 

was the number of true positives for disease presence, and FN was the number of false 

negatives for disease presence. Specificity was calculated from TN/(TN + FP) where TN is 

the number of true negatives and FP is the number of false positives. PDAC, CP disease, and 

control TP, FP, TN, and FN values were determined using cutoffs of the average “% patient 

serum peaks categorized” minus 2.2–4 standard deviations [SD] (Figs. 2–4). Receiver 

operator characteristic (ROC) curve analysis was performed as described previously [34].
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Results

Serum mass peak profiling for distinguishing patients with early-stage pancreatic cancer

The histology in Fig. 1A–C illustrates the problem addressed, i.e., trying to distinguish, in a 

minimally-invasive manner, patients with early-stage pancreatic cancer (panel C, stage IIB), 

chronic pancreatitis (panel B), from control individuals (normal pancreas, panel A). A 

normal duct (ND) and Islet cells (IC), fibrotic scarring (F/S) and PanIN, or ductal 

adenocarcinoma (PDAC) and neuronal fibers (NF) are exhibited in panels A, B, and C 

respectively. Development of such a diagnostic tool would aid significantly in the 

monitoring, for example, of high-risk patients for PDAC. A hypothesis in the present study 

is that disease/organ insults exhibited in Fig. 1A–C can elicit systemic responses that can be 

detected with our serum ESI-MS methodology. Panel D is a flowchart depicting mass peak 

profiling of serum from control, PDAC, and CP subjects. Note this is an all-liquid process 

versus solid state MALDI/SELDI which has been subject to criticism (see Discussion). This 

procedure depicted here only requires a single sample dilution and is potentially the simplest 

biomolecule profiling platform currently available. LOOCV and group randomizations are 

employed to mitigate “over-fitting” (described below and in Discussion). Fig. 1E illustrates 

15 of the significant ESI- MS mass peaks (range 730–960 m/Z, mass divided by charge) 

used to discriminate sera from patients with stage II PDAC (solid line) from control 

individuals. These significant (P < 0.05) peak area means differ as a group between 6 

subject sera samples for each category (control, PDAC stage IIB). Prominent serum mass 

peak areas (higher value) from control individuals include m/Z 827, 907, and 937, and peaks 

922 and 971 from PDAC patients. This m/Z region is only one of many analyzed (total 

range 400–2000 m/Z), and the large number of significant peak differences likely is 

contributing to the disease discrimination ability of this novel technology. This panel also 

exhibits our novel approach for categorization significant PDAC, PC, or control sera m/Z 

peaks used for construction of disease/control peak databases, as well as for “% disease 

peak” categorizations and “leave one out cross validation” (LOOCV) peak assignments in 

serum discrimination studies (see panel 1D and Figs. 2–4). LOOCV helps mitigate a 

phenomenon termed “over-fitting” which can result from assigning relatively large amounts 

of experimental data to two groups, e.g. pancreatic cancer or control [30,31]. LOOCV is 

performed by removing one at a time (“left out”) an MS m/Z peak data set for each serum 

sample in the database and then re-forming the rest of the samples in the “left in” database in 

the absence of that single sample MS m/Z “left out” data set. MS sera peak areas in a 

particular m/Z range (triplicate averaged) are identified as differing significantly between 

“left in” PDAC/PC patients and control individuals by comparing each of N pathology or 

control patient sera by t-tests. By convention for a particular m/Z peak, the highest mean is 

assigned that classifier, either disease or control (see control 827 m/Z peak in panel E). Then 

the “left in” database is tested for its ability to discriminate the new “blinded” sample MS 

m/Z data set that was “left out”. All the significant m/z peaks in an individual “left out” 

serum sample are then assigned a disease or control peak identifier by examining whether a 

particular “left out” peak area exceeds or falls below the 50% threshold area mean cutoff 

value necessary for a particular classifier label (e.g., 827 peak, Fig. 1E). That particular “left 

out” serum sample is then assigned a “% total subject serum peaks categorized” out of the 
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total number of subject peaks in the complete “left in” database. This value is then plotted 

on the y-axis, e.g., in Figs. 2–4.

Fig. 2 illustrates our ability to distinguish patients with stage IIB pancreatic cancer from 

healthy control individuals. Panel A exhibits the % PDAC stage IIB patient serum MS peaks 

identified (y-axis) in individual patient sera spectra (diamonds) versus individual control 

sera spectra (circles, plotted against patient/control number (x-axis). For this analysis, a 

LOOCV range of 292–320 significant cancer m/Z peaks was employed (18–20% of total). 

The presence of “left out” PDAC patient m/Z peaks in a control serum sample is derived 

from those individual control peaks which happened to have an area value below the 50% 

threshold cutoff (Fig. 1E), which would give them the “cancer” designation. The P value for 

these two distribution differences is 1.6 × 10−15. Importantly, the P value for this binary 

comparison upon randomization of the two groups (control and stage IIB) increases 

substantially to 0.23 (also see Table 2). This is consistent with unique and real physiological 

differences in the sera of PDAC stage IIB patients versus controls using our test. The cutoff 

value for test metric analysis (true positives, false negatives, etc., Table 2) for this analysis is 

0.50. Panel B exhibits the true pathology training distribution set used for PDAC stage IIB 

versus control blinded analysis (Table 3, panel 1) as well as the non-discriminatory nature of 

the 0.0005 randomization P value for this training set (C). Panel D ill-ustrates the mass peak 

analysis for distinguishing sera of PDAC stage IIB individuals versus sera of patients with 

stage I and IIA PDAC, plotted against % stage IIB patient serum peaks categorized (y axis). 

For this analysis, a LOOCV range of 136–157 significant m/Z peaks was employed (8–10% 

of total). The P value for the distribution difference in panel A was 1.9 × 10−10. The P value 

for this binary comparison upon randomization of the two groups (stage IIB and stage I/IIA) 

increases to 0.01 (also see Table 2). Of note, this panel D comparison is for no lymph node 

involvement (stage I + IIA) versus lymph node involvement (IIB) of the malignancy.

Distinguishing sera of CP patients from early-stage PDAC patients and healthy controls

Chronic pancreatitis is a risk factor for the development of pancreatic cancer [8,9]. 

Minimally invasive and inexpensive tools are needed to assist in pathological monitoring of 

this disorder and the potential transition of this disease into PDAC, especially among high-

risk groups. Data in Fig. 3 indicate we are making progress in the development of such a 

tool involving ESI-MS analysis of patient serum. Panel A exhibits our ability to distinguish 

patients with chronic pancreatitis (N = 14) from healthy control individuals (N = 22).

The “% pancreatitis patient serum peaks” (y-axis) in individual patient sera spectra 

(triangles) are plotted versus individual control sera spectra (circles), plotted against patient/

control number (x-axis). For this analysis, a LOOCV range of 224–252 significant cancer 

m/Z peaks was employed (14–16% of total). The P value for these two distribution 

differences is 1.6 × 10−20. The P value for this binary comparison upon randomization of the 

two groups (control and CP) increases substantially to 0.02 (Table 2). Panel B exhibits the 

mass peak sera data outcome for distinguishing patients with chronic pancreatitis from 

patients with stage IIB PDAC (N = 19). The “% pancreatitis patient serum peaks” (y-axis) in 

individual patient sera spectra (squares) are plotted versus patient PDAC stage IIB sera 

spectra (diamonds), plotted against patient number (x-axis). For this analysis, a LOOCV 
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range of 176–198 significant cancer m/Z peaks was employed (11–12% of total). The P 

value for these two distribution differences is 1.5 × 10−18. The P value for this binary 

comparison upon randomization of the two groups (CP and stage IIB) increases substantially 

to 0.0085. This still low random p value did not yield patient/control discriminations (not 

shown as well as the 0.02 value in panel A), as exhibited by the 0.0005 random p value in 

Fig. 2C. Panel C, Fig. 3, exhibits the training database distribution used for the blinded 

pancreatitis analysis (Table 3, panel I). Panel D illustrates discrimination of patient serum 

from PDAC stage IIB, pancreatitis, and controls, with the pancreatitis distribution falling 

between the PDAC and controls.

Distribution differences between sera from stage I lung cancer patients and patients with 
stage I + IIA PDAC versus sera from control individuals

It is of interest to determine how sera from different cancer patients as well as other disease 

states separate using our serum mass profiling technology. How disease-specific is this 

methodology? Fig. 4 exhibits serum discrimination of cohorts of PDAC stage I + IIA 

patients versus control individuals; also included within these comparisons are sera analyses 

from pancreatitis patients and stage I lung cancer patients. Panel A exhibits two normalized 

and significant (P < 0.05) peak m/Z areas from 5 different sera samples from the 4 

categories listed (control, PDAC stage I + IIA, CP, and lung cancer stage I). Note how the 

“normalized peak area” metric clusters the CP and stage I lung cancer sera mass peak areas 

together. Panel B illustrates the mass peak sera data for distinguishing patients with stage I + 

IIA PDAC (circles) from control individuals (dashes). For this analysis, a LOOCV range of 

183–233 significant cancer m/Z peaks was employed (11–15% of total). The P value for 

these two distribution differences is 7.4 × 10−14. The P value for this binary comparison 

upon randomization of the two groups (control and stage I/IIA) increases to 0.003 (panel C). 

Also included in the panel B sera distribution data are samples from stage I lung cancer 

patients (Xs, N = 40) and pancreatitis patients (squares) plotted against the total peak 

database on the y-axis. Note how the “% PDAC patient serum peaks” metric clusters the CP 

and stage I lung cancer sera samples together. The P value for this CP versus stage I lung 

cancer sera peak distribution difference, exhibited in panel B, is 0.18 (panel C). It is noted 

that two independent sets of controls (small, large dashes, panel B) cluster together (p = 

0.39).

Test metrics, blind validation, and serum peptide identifications

Table 2 exhibits the sera test metrics for the LOOCV patient ESI-MS peak distribution data 

exhibited in Figs. 2 and 3, using nomenclature from predictive value theory [32,33]. The 

pathological groups tested in binary fashion for these Figs. are listed in the far-left column. 

The “% MS peaks” means and their standard deviation (SD) are all well separated and have 

narrow SD boundaries for all the groups tested. The cut-off values to obtain the test metric 

data (false positives and false negatives) are exhibited next to the means and SDs. ROC area 

values for all analyzed binary group distribution differences are 1.0 where a 0.5 value would 

be random discrimination. The test sensitivity (measure of true positive rate) and test 

specificity (true negative rate) with the cohort numbers exhibited here are both 100%. Listed 

also in Table 2 are the P values for the true binary group distribution differences or the 

randomized mixed binary group distribution differences. Inherent physiological values in the 
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original distribution differences are indicated by the very large increases in P values when 

the groups are randomized. In addition, a Cohen's d effect size is provided (http://

www.danielsoper.com/statcalc3/calc.aspx?id=48) as another quantitative measure of the 

strength and reliability of the distribution differences; these large values indicate high 

reliability [35]. Table 3, panel I, gives the results of our blind sample analysis, with the list 

of sera samples tested and their group N values in the left column (A). The center column 

(B) exhibits the binary validation grouping used to test these corresponding blind samples 

(A). The column on the far right (D) exhibits the blind testing results/ percentages for testing 

column A against the column B binary test validation database. For this sample cohort pool, 

5 out of 5 blind groups were 100% identified. Effect sizes for these distribution differences 

(described in Table 2) are reported as Cohens’ d values (C). All are large which is consistent 

with the 100% observed validation.

Panel II in Table 3 exhibits tandem MS/MS identified peptides (listed by their corresponding 

protein abbreviations) and their numbers of different identified sequences (parentheses and 

brackets) from discriminating sera sample m/Z mass peaks from 10 control individuals and 

10 patients with stage IIb PDAC. A m/Z peak range of 700–940 m/Z was employed and 

only discriminating mass peaks (60 total, expanded to – or + 1 m/Z) from the control versus 

patient stage IIb sera discrimination (Fig. 2A) were screened in the MS/MS process. Unique 

peptide sequences observed per protein identified ranged from 3 to 273 (lower right to upper 

left, panel II), for a total of 57 peptide/proteins listed. This number represents 2% of the 

2862 total peptides/proteins that were observed in the 1–273 unique sequence range (not 

shown). Medline searches (Ovid Technologies, Inc.) revealed 29% of the listed peptide/

proteins have a previously identified PDAC relationship, e.g., mucin 16 (MUC16) [36] and 

dispatched (DISP1) which is a regulator in the hedgehog signaling pathway and is up-

regulated in PDAC [37]. 51% of the peptides/proteins in Table 3, panel II have a cancer 

relationship (79% total cancer related). These results suggest we are discriminating controls 

from stage IIb patients using an overall cancer phenotype with known elements of PDAC.

Discussion

The early detection and prevention of pancreatic cancer are of utmost importance and major 

clinical and research interests [1,2,16,38]. The earlier this disease can be diagnosed, the 

earlier life-saving treatments can begin, thus increasing the survival rate of this cancer much 

above the present 4–5% [1,2]. Serum mass profiling is a promising technology for 

identifying potential biomarkers and their patterns relevant to the diagnosis, monitoring, 

understanding, and treating a variety of disease states and their progressions at the individual 

patient level [12,14–16,24–26]. An individual's serum mass profile is hypothesized to 

reflect, in part, homeostatic as well as defense/stress mechanisms which change with 

physiological state, e.g., with disease. Direct inputs from disease tissues are also possible. 

An underlying hypothesis of serum mass profiling is that the human organism is an 

exceedingly complex entity capable of complex responses to seemingly small bodily insults. 

We previously used this all-liquid technology to distinguish patients who had lung cancer, 

ovarian cancer, and pancreatic cancer from healthy control individuals [15,16,24–26,39]. 

We have also used this methodology to distinguish the earliest stages of PDAC development 

in a rodent model system [17]. In the present study, we demonstrate that all-liquid ESI-MS 
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serum mass profiling can distinguish patients with early stage pancreatic cancer (stages I, 

IIA, IIB) from patients with pancreatitis, and from healthy control individuals.

Serum profiling of biomolecules associated with disease states like pancreatic cancer, by 

ESI-MS, has several advantages over other early detection platforms. For example, ESI-MS 

allows single step, direct injection analysis of a disease phenotype in blood without potential 

artifacts from in vitro manipulations involving extensive sample handling, and nucleic acid 

and enzyme amplifications. The most commonly used MS methodology for serum profiling 

is solid-state SELDI/MALDI (surface enhanced laser desorption ionization/matrix assisted 

laser desorption ionization)-MS [20,40,41]. The ESIMS approach used in the present study 

has potential advantages over SELDI/MALDI-MS, because of all-liquid handling, much 

reduced sample manipulation, absence of grid washings, no chemical additives, and no 

involvement of random crystallization processes, all which can lead to observational 

artifacts that might occur with SELDI [42]. To our knowledge our ESI-MS methodology 

presents a new paradigm to distinguish sera from individuals with and without early-stage 

pancreatic cancer, as well as pancreatitis. This paradigm involves comparing mass peaks at 

individual m/Z values which differed significantly between two distinct sera groups, e.g., 

from control or pancreatic disease (see Fig. 1D, E). During this process one serum sample, 

from either a control or a patient, was “left out” of the analysis (LOOCV). Subsequently, 

peaks which have greater areas among the disease group were by convention designated 

“disease” peaks. Peaks having greater areas among control samples were designated 

“control” peaks. All mass peaks from the “left out” serum samples were then tested against 

this “disease” and “control” mass peak LOOCV database in blinded fashion. We used an 

arbitrary 50% area cut-off value for each significant mass peak in the “disease” and 

“control” database that we used to assign a particular classification. We identified each “left 

out” peak as either a control peak (non-pancreatic disease) if that peak area value was equal 

to or below the 50% value, or a pancreatic disease peak if that particular m/Z peak area 

value was above the 50% value. In this way, we built up a “% PDAC patient serum MS 

peaks categorized” fraction for each sera sample (control or disease) out of the total number 

of group peaks in that pancreatic disease peak database. Therefore, a certain % of control 

individual serum peaks was assigned a pancreatic disease peak classification. We then 

plotted this % PDAC value versus sample number as exhibited in Figs. 2–4, and arrived at 

distributions for control and pancreatic disease which were distinguishable by t tests and 

ROC curves (Table 2).

With respect to our ability to discriminate sera samples from early-stage PDAC patients, CP 

patients, and control individuals, besides the leave one out cross validation (LOOCV) 

process we perform to validate these results, we also utilize t tests to describe the 

distribution difference probabilities for the null hypothesis that no discrimination is observed 

between the true binary group comparisons or the binary group comparisons where the two 

differing cohorts have been randomized together. For example, for the control (N of 22) 

versus PDAC stage IIB (N of 19) sera peak comparison (Fig. 2A), the t test P value for true 

binary comparison is 1.6 × 10−15 and the corresponding random group comparison P value 

is 0.23 (Table 2). These P values support strong discrimination in the true binary 

comparison and the null hypothesis (no discrimination) is true in the random comparison. 
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This is indicative of unique and real physiological differences appearing in the sera of 

PDAC stage IIB patients versus controls using our test. Panel D in Fig. 2 is a comparison of 

the % stage IIB patient sera mass peaks categorized in PDAC stage IIB patients versus sera 

in stage I and IIA PDAC patients (N of 9). The P value for the true binary comparison is 1.9 

× 10−10 and the P value for the randomized comparison is 0.01 (Table 2). Although the 

randomization is sending the null hypothesis metric in the correct direction (becoming much 

larger than the very low P value for the true binary comparison), this “random” P value (and 

others listed in Table 2) would still be considered significant for distinguishing two groups. 

However, the notion that such a “significant” p value could give actual true-pathology 

sample discriminations is discounted upon plotting “discriminations” (or lack thereof) of a 

much more “significant” random p value (0.0005, for the stage IIb/control training database 

comparison, Fig. 2C). The important PDAC stage I + IIA patient serum discrimination from 

control individual serum is a very low P value of 7.4 × 10−14 for the true binary comparison 

and another “significant” value of 0.003 for the random comparison (Table 2). We are 

looking at small physiological serum changes here (we refer to such changes as “quantum” 

or minimal changes) that are likely very difficult for any technology to distinguish in a 

minimally invasive bodily fluid like serum. These significant “random” p values, although 

non-discriminatory, suggest that a phenomenon termed “over-fitting” (random chance 

“significant” pairings due to large number of mass peaks analyzed) may be contributing 

some “significance” to this random distinction.

Chronic pancreatitis is considered a risk factor for developing PDAC, especially among 

individuals with a genetic predisposition toward CP where occurrence of PDAC can be as 

high as 40% [43]. Thus, minimally invasive and inexpensive tools would be of use in 

assisting the pathological monitoring of this disorder and its potential transition into PDAC. 

In order to develop such a test the analysis needs to discriminate patients with CP from 

patients with early-stage PDAC (I, IIA, IIB) and from control individuals. We report in this 

study that our ESI-MS serum mass profiling technology, with the cohorts utilized (Fig. 3A, 

Table 2), could distinguish a CP patient group (N = 14) from a control group (N = 22) with a 

P value of 1.6 × 10−20 for the true binary comparison and a value of 0.02 for the randomized 

binary comparison. Although this later value is still in the significant range, it is 

significantly increased from the specific true binary (CP versus control) distribution 

comparison. With respect to distinguishing sera of CP patients versus early-stage PDAC 

patients, we exhibit P values for the true binary comparisons of CP versus stage IIB or CP 

versus stage I + IIA of 1.5 × 10−18 (Fig. 3B) and 1.7 × 10−13 respectively; the random 

comparison for these two groupings is 0.0085 and 0.00013 respectively (Table 2). Although 

these later p values are still in the significant range, they are greatly increased over the 

specific binary pairings. And like Fig. 2C, no group discrimination is observed (not shown). 

To our knowledge no other laboratory group has published these types of fine (quantum) 

pancreatic disease distinctions using a readily available bodily fluid like serum. With respect 

to these cohort discriminations observed in Figs. 2 and 3 using serum ESI-MS analysis, we 

employed four forms of sample validation: LOOCV, ROC (receiver-operator characteristic) 

curve analysis, cohort randomization, and true blinded validation of a subset of group 

samples against the corresponding binary database lacking the blinded samples. The 
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LOOCV and randomization results have been discussed. The ROC curve discriminations 

(between values of 0.5 [random] and 1.0 [non-random] were all 1.0 (Table 2).

Pancreatic cancer like lung cancer has a tobacco smoking risk factor, as much as 30% [8]. 

And smoking doubles the risk that individuals with hereditary chronic pancreatitis will 

develop PDAC [44]. We have previously utilized our ESI-MS serum mass profiling 

methodology to distinguish patients with early-stage lung cancer from control individuals, 

with tobacco smoking not confounding cancer discrimination in our ESI-MS analysis 

[26,39]. It was of interest to see in the present study if we could distinguish the sera of early-

stage pancreatic cancer patients from early-stage lung cancer patients. From Fig. 4B using % 

PDAC patient serum peaks categorized as the metric, sera from stage I lung cancer patients 

were distinguished from sera from stage I + IIA PDAC patients with a distribution 

difference P value of 1.5 × 10−8 (Table 2). The corresponding random binary comparison P 

value was 0.4. Of note in Fig. 4 panel B is the grouping together of the pancreatitis cohort 

and the stage I lung cancer cohort, exhibiting a distribution difference P value between the 

two of 0.18. Could these observations possibly suggest a similar physiology/host response 

between pancreatitis and stage I lung cancer ?

Results of validation with true blinded cohort sample subsets are exhibited in Table 3, panel 

I. Although the blinded cohorts are somewhat small compared to a full prospective study, 

the % correct values for the blind PDAC stage IIB (N = 8), IIA + IIB (N = 10), stage I, IIA, 

IIB (N = 12) pancreatitis (N = 5), and non-cancer controls (N = 8) are all 100%. The test 

sensitivity (measure of false negative rate [type II error]) and specificity (false positive rate 

[type I error]) values for this study were all in the 95–100% range (Table 2). All these values 

portend well for this ESI-MS technology and for its use in prospective analysis of PDAC 

and pancreatitis patient groups. Such significant cohort groupings observed in Tables 2 and 

3 and Figs. 2–4 pose the question, what physiological changes are possibly underlying these 

mass peak discriminations? These changes in serum mass profiles are in accord with the 

basic principles of serum profiling, namely, that disease and disease progression can be 

distinguished in steady state because these physiological differences cause measurable 

biomolecule changes in the peripheral blood due to host systemic responses, homeostasis 

and defense, as well as stress mechanisms. In addition, direct inputs from diseased tissues 

like tumors are also possible. At the m/Z data values being mined here, e.g., from 730 to 890 

(Figs. 1D and 4A), these ranges likely encompass the lower mass peptide “serome” which 

result from differential host tissue/organ exoprotease activities and other cell/tissue signaling 

activities [18,19]. Since we are seeing fairly evident biomolecule changes as reflected in our 

serum profiles from apparent small physiological inputs, for example, distinguishing stage I 

+ IIA PDAC (no lymph node involvement) and stage IIB PDAC (node involvement), one 

would need to hypothesize a mechanism to account for such apparent amplification of small 

signal(s) from minute starting inputs. Possibilities could involve “alarmin”-like molecules 

believed to be shed/secreted by cells which have been damaged/altered in some fashion 

which in turn bind to signal transduction pathway receptors to activate in a synergistic and 

cooperative manner more extensive innate defense/stress responses [19]. With respect to the 

biochemical changes associated with the ESI-MS serum discriminations involved in 

distinguishing control individuals from patients with stage IIb PDAC, an overall cancer 
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phenotype was observed with biochemical elements of a PDAC response (Table 3, panel II). 

Specifically, peptides/proteins suggested to have roles in the physiological changes observed 

with these discriminations include an interesting trilogy of proteins previously shown to 

have roles in muscle structure and function (nebulin [NEB], obscurin [OBSCN], and titin 

[TTN}, Table 3, panel II), but with renewed interest in cancer biology [45]. Does this 

suggest non-muscle roles for these proteins for example in signal transduction and cell 

proliferation control? Is muscle degradation/regeneration associated with pancreatic cancer 

progression as a stress response? Amounts of NEB and TTN (i.e., their peptides) are 

relatively higher in sera from stage IIb PDAC patients versus controls and one (OBSCN) is 

relatively lower (Table 3, panel II). It is of interest that OBSCN peptides are lower in PDAC 

sera and that proteins may have a tumor suppressor function [45]. Panel II exhibits elevated 

levels of mucin 16/peptides in PDAC stage IIb patient sera, in line with previous PDAC 

observations [46,47]. Mucin 16 is a known serum biomarker for ovarian cancer (CA125), 

and was proposed previously to have a role in PDAC progression and metastasis through 

possible interaction with mesothelin [36]. This glycosylated protein has roles in tissue 

interactions and possible tumor protection from the immune system and chemotherapeutic 

drugs [47]. In summary, blood tests are needed to aid in the early detection of pancreatic 

ductal adenocarcinoma (PDAC). This study exhibits efforts and progress toward developing 

such blood tests, using a novel platform involving electrospray ionization-mass spectrometry 

(ESI-MS) serum mass profiling. This technology is able to distinguish patients with early-

stage PDAC from control individuals and from individuals with chronic pancreatitis. 

Tandem MS of serum from early-stage PDAC patients, when compared with serum from 

control individuals, identified peptides/proteins characteristic of a cancer phenotype 

involved in these ESI-MS PDAC discriminations.
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Fig. 1. 
Histology of human pancreas tissue and electrospray MS m/Z serum peaks with analysis. 

Tissues are as follows: Control (Panel A), chronic pancreatitis (B), and (C) stage IIB 

pancreatic cancer. Hematoxylin and eosin (H&E) staining was performed as described in 

Materials and Methods. Demarcations and annotations are described in the Results. ESI-MS 

was performed as described in Materials and Methods. Panel D, flowchart of ESI-MS serum 

mass profiling. Panel E, electrospray MS methodology used to identify, quantify, and 

classify significant sera m/Z peaks into pancreatic cancer (PDAC) or non-cancer control 

descriptors; mass peak areas are averages from 6 individual serum samples per category.
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Fig. 2. 
Distinguishing sera between early-stage PDAC patients and control individuals using ESI-

MS mass profiling. Panel A, distribution difference between stage IIB PDAC patients versus 

sera of control individuals based on significant “% PDAC stage IIB patient serum peaks” 

using the mass peak analyses described in the Materials and Methods and Fig. 1D. Panel B, 

distribution analysis of the PDAC IIB versus control training database used in Table 3, panel 

I. Panel C, distribution analysis of the random p value obtained from panel B. Panel D, 

distinguishing PDAC stage I + IIA patient sera from stage IIB patient sera.
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Fig. 3. 
ESI-MS analysis discriminating sera from patients with pancreatitis from control individuals 

and from patients with early-stage PDAC. Panel A, serum sample distribution difference 

based on “% pancreatitis patient serum peaks” between CP patients and controls using the 

mass peak analyses described in Fig. 2 legend. Panel B, distinguishing CP patient serum 

from PDAC stage IIB patient serum. Panel C, distribution analysis of sera from CP patients 

versus control individuals for the training database used in validation experiments exhibited 

in Table 3, panel I. Panel D, distinguishing sera from patients with PDAC or CP, and control 

individuals.
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Fig. 4. 
Discriminating sera from early-stage PDAC patients, CP patients, stage I lung cancer 

patients, and from control individuals. Panel A, mass peaks are averages from 5 individual 

serum samples per category. Panel B, distinguishing sera of PDAC stage I + IIA patients, 

CP patients, stage I lung cancer patients, and control individuals based on significant “% 

PDAC patient serum peaks”. Panel C, test metrics (described in Materials and Methods) for 

data in panel B.
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Table 1

Patient groups and characteristics.

Databases Patient groups Mixed age 
Mean (range)

Female age 
Mean (range)

Male age 
Mean (range)

Patient (N) (male/female)

Complete LOOCV 
databases (all patient 
samples)

Pancreatitis 55.0 (39-80) 52.8 (46-74) 56.3 (39-80) 14(9/5)

Pancreatic cancer stages I & 
IIA

60.0 (42-73) 66.6 (56-73) 56.6 (42-68) 9(6/3)

Pancreatic cancer stage IIB 68.2 (49-84) 65.4 (49-76) 71.3 (60-84) 19(9/10)

Pancreatic cancer stage IIA & 
IIB

68.0 (49-84) 66.5 (49-76) 69.8 (58-84) 23(11/12)

Pancreatic cancer I, IIA & 
IIB

65.5 (42-84) 65.6 (49-76) 65.4 (42-84) 28 (15/13)

Non-cancer (control)
a 55.9 (40-69) 54.9 (40-63) 56.8 (47-69) 22 (12/10)

Validation LOOCV 
databases (blind 
validation patient samples 
excluded)

Pancreatitis 51.2(39-69) 47.6 (46-49) 53.0 (39-69) 9(6/3)

Pancreatic cancer stage IIA & 
IIB

70(56-84) 70.2 (56-76) 69.9 (58-84) 13(8/5)

Pancreatic cancer stage IIB 70 8 (56-84) 69.5 (56-76) 71.5 (60-84) 11 (7/4)

Pancreatic cancer I, IIA & 
IIB

65.9 (42-84) 68.2 (56-76) 64.6 (42-84) 20 (13/7)

Non-cancer (control) 56.1 (40-69) 54.0 (40-63) 57.8 (47-69) 14(8/6)

Blind validation samples 
withheld from validation 
database groups

Pancreatitis 62.0 (47-80) 60.5 (47-74) 63.0 (50-80) 5 (3/2)

Pancreatic cancer stage IIA & 
IIB

60.5 (39-76) 60.7 (49-76) 60.0 (39-74) 10(3/7)

Pancreatic cancer stage IIB 64.6 (47-80) 62.7 (49-76) 70.5 (67-74) 8 (2/6)

Pancreatic cancer stage I, IIA 
& IIB

59.9 (39-76) 59.9 (49-76) 60.0 (39-74) 12(4/8)

Non-cancer (control) 55.6 (51-58) 56.3 (51-58) 55.0 (53-56) 8 (4/4)

Non-cancer (control) group 

2
b

57.7 (41-75) 55.9 (41-65) 59.2 (47-69) 18(10/8)

Lung cancer Lung cancer stage I 64.2 (45-84) 62.3 (45-84) 65.0 (50-82) 40 (28/12)

a
Non-cancer (control)

b
non-cancer (control) group 2 are unique groups and do not have any members in common.
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Table 2

LOOCV test metrics.

Pathology (N=) Pathology (N=) Effect size Sensitivity Specificity

I Full LOOCV series

Pathology 
of groups 
tested 
Group 1 
vs. Group 
2

% Peaks Mean 
(SD) Group 1

% Peaks Mean 
(SD) Group 2

Cohen's d True 
positive 
group 1

True 
negative 
group 2

Cutoff True pathology P-value Random pathology P-value

Pancreatic 
cancer 
stage IIB 
vs. non-
cancer 
(control) 
(ROC area 

= 1.0)
a
,
c

Stage IIB (19) 
0.60 (0.04)

Non-cancer 
(22) 0.32 (0.08)

4.42 19/19 (100%) 22/22 (100%) 0.50 1.6 × 10−15 0.23

Pancreatic 
cancer 
stages IIA 
& IIB vs. 
non-cancer 
(control) 
(ROC area 

= 1.0)
c

Stages IIA & 
IIB (23) 0.58 
(0.04)

Non-cancer 
(22) 0.31 (0.08)

4.26 23/23 (100%) 22/22 (100%) 0.51 2.1 × 10−15 0.47

Pancreatic 
cancer 
stages I, 
IIA & IIB 
vs. non-
cancer 
(control) 
(ROC area 

= 0.99)
c

Stages I, IIA & 
IIB (28) 0.54 
(0.04)

Non-cancer 
(22) 0.30 (0.07)

4.21 21/22 (95%) 27/28 (96%) 0.44 4.3 × 10−15 0.08

Pancreatitis 
vs. non-
cancer 
(control) 
(ROC area 

= 1.0)
b
,
c

Pancreatitis 
(14) 0.68 (0.04)

Non-cancer 
(22) 0.38 (0.05)

6.62 14/14 (100%) 22/22 (100%) 0.53 1.6 × 10−20 0.02

Pancreatic 
cancer 
stages I& 
IIA vs. 
pancreatic 
cancer 
stage IIB 
(ROC area 

= 1.0)
a

Stages I& 
IIA(9) 0.81 
(0.05)

Stage IIB (19) 
0.52 (0.04)

6.41 9/9 (100%) 19/19 (100%) 0.37 1.9 × 10−10 0.01

Pancreatitis 
vs 
pancreatic 
cancer 
stage IIB 
(ROC area 

= 1.0)
b

Pancreatitis 
(14) 0.75 (0.04)

Stage IIB (19) 
0.47 (0.05)

6.18 14/14 (100%) 19/19 (100%) 0.63 1.5 × 10−18 8.5 × 10−3

Pancreatitis 
vs 
pancreatic 
cancer 
stages I & 

Pancreatitis 
(14) 0.60 (0.04)

Pancreatic I & 
IIA (9) 0.25 
(0.04)

7.73 14/14 (100%) 9/9 (100%) 0.65 1.3 × 10−12 4.8 × 10−4
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Pathology (N=) Pathology (N=) Effect size Sensitivity Specificity

I Full LOOCV series

Pathology 
of groups 
tested 
Group 1 
vs. Group 
2

% Peaks Mean 
(SD) Group 1

% Peaks Mean 
(SD) Group 2

Cohen's d True 
positive 
group 1

True 
negative 
group 2

Cutoff True pathology P-value Random pathology P-value

IIA (ROC 
area = 1.0)

II Training LOOCV series for sample validation

Pathology 
of groups 
tested 
Group 1 
vs. Group 
2

% Peaks 
Mean (SD) 
Group 1

% 
Peaks 
Mean 
(SD) 
Group 
2

Cohen's d True 
positive 
group 1

True 
negative 
group 2

Cutoff True pathology P-value Random pathology P-value

Pancreatic 
cancer 
stage IIB 
vs. non-
cancer 
(control) 
(ROC area 

= 1.0)
a
,
c

Stage IIB 
(11) 0.64 
(0.06)

Non-
cancer 
(14) 
0.30 
(0.07)

5.21 11/11 (100%) 14/14 (100%) 0.53 1.8 × 10−11 5 × 10−4

Pancreatic 
cancer 
stages IIA 
& IIB vs. 
non-cancer 
(control) 
(ROC area 

= 1.0)
c

Stages IIA 
& IIB (13) 
0.65 (0.05)

Non-
cancer 
(14) 
0.31 
(0.06)

6.15 13/13 (100%) 14/14 (100%) 0.52 9.8 × 10−15 6 × 10−4

Pancreatic 
cancer 
stages I, 
IIA & IIB 
vs non-
cancer 
(control) 
(ROC area 

= 1.0)
c

Stages I, 
IIA & IIB 
(16) 0.61 
(0.05)

Non-
cancer 
(14) 
0.27 
(0.07)

5.58 16/16 (100%) 14/14 (100%) 0.45 5.2 × 10−15 2 × 10−5

Pancreatitis 
vs non-
cancer 
(control) 
(ROC area 

= 1.0)
b
,
c

Pancreatitis 
(9) 0.79 
(0.07)

Non-
cancer 
(14) 
0.33 
(0.08)

5.99 9/9 (100%) 14/14 (100%) 0.58 6.7 × 10−12 0.22

Pancreatitis 
vs. 
pancreatic 
cancer 
stage IIB 
(ROC area 

= 1.0)
b

Pancreatitis 
(9) 0.83 
(0.06)

Stage 
IIB 
(11) 
0.43 
(0.06)

6.66 9/9 (100%) 11/11 (100%) 0.65 1.8 × 10−11 0.03

a
Fig. 2;

b
Fig. 3;

c
Table 3.
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Table 3

Sample validation results and serum protein identifications.

I

A: Samples validated
a
 (N) B: Validation

a
 database (N) C: Effect 

size
b 

Cohen's d

D: % Correct 
True pathology

Pancreatic cancer stage IIB (N = 8) & non-cancer 
(control) (N = 8)

Pancreatic cancer stage IIB (N = 11) vs. non-
cancer (control: N = 14)

4.4 100% (16/16)

Pancreatic cancer stages IIA & IIB (N = 10) & 
non-cancer (control) (N = 8)

Pancreatic cancer stages IIA & IIB (N = 13) vs. 
non-cancer (control: N = 14)

4.6 100% (18/18)

Pancreatic cancer stages I, IIA & IIB (N = 12) & 
non-cancer (control) (N = 8)

Pancreatic cancer stages I, IIA & IIB (N = 16) vs. 
non-cancer (control: N = 14)

4.5 100% (20/20)

Pancreatitis(N = 5) & non-cancer (control) (N = 8) Pancreatitis (N = 9) vs. non-cancer (control: N = 
14)

4.4 100% (13/13)

Pancreatitis (N = 5) & pancreatic cancer stage IIB 
(N = 8)

Pancreatitis (N = 9) vs. pancreatic cancer stage 
IIB (N = 11)

4.0 100% (13/13)

II

Protein identified # Identified 
sequences Control 

[Cancer
c
]

Protein identified # Identified 
sequences Control 

[Cancer
c
]

Protein identified # Identified 
sequences Control 

[Cancer
c
]

Ig heavy chain
d 323 [268]

RYR2
e 39 [0]

SMARCAL1
e 7 [6]

Cytochrome c oxidase
d 102 [103]

INSR
d 19[17] TICRR 8 [5]

NEB
d 40 [m] PCLO 26 [10]

ANKRD12
e 11 [1]

Ig light chain
d 105 [48] TENM3 9 [19]

SUPV3L1
e 9 [3]

OBSCN
d 78 [35]

CSMD3
e 17 [10] TMC2 12 [4]

TTN
d 38 [70]

CNTNAP4
e 17 [9] WDR90 12 [0]

MUC16
d 33 [51]

MACF1
e 25 [1] SSPO 6 [5]

KMT2A
e 12 [69]

WDFY3
e 15 [8]

BCL9L
d 2 [9]

SYNE1
e 26 [55]

NSD1
e 14 [9]

NADH
e 6 [4]

BAI2
e 52 [22]

TRPM1
e 21 [2]

PITPNM3
e 9 [1]

CACNA1A
e 22 [38]

VWA5B2
e 18 [3]

Cytochrome
d 4 [5]

EIF4G1
e 18 [41] RLTPR 0 [21] SLC35A2 9 [0]

MYCBP2 0 [51] COL19A1 19 [0] DNAH3 3 [4]

PLEC
d 49 [2]

SHANK1
e 12 [7]

PLXNB1
e 2 [5]

SYNE2
e 0 [50]

TCR
d 6 [12]

SSTR5
d 3 [4]

ABCA1
d 30 [15] BSN 17 [0] MUC19 3 [3]

DMD
e 23 [22]

DISP1
d 3 [13]

AMH
e 6 [0]

CEP164
e 21 [20]

ACACB
e 7 [8]

HLA-B
d 3 [1]

NPNT
e 20 [21]

MUC2
d 14 [0]

MHC
d 4 [0]
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a
Blind samples are not members of the validation database against which they were tested;

b
observed between blinded sample groups.

c
Pancreatic cancer stage IIB

d
pancreatic cancer related

e
other cancer related, unique sequence segments range (3-273), 60 peaks (700-940)m/Z.
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