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Abstract

When the amount of labeled data are limited, semi-supervised learning can improve the learner's 

performance by also using the often easily available unlabeled data. In particular, a popular 

approach requires the learned function to be smooth on the underlying data manifold. By 

approximating this manifold as a weighted graph, such graph-based techniques can often achieve 

state-of-the-art performance. However, their high time and space complexities make them less 

attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised 

learning using a set of sparse prototypes derived from the data. These prototypes serve as a small 

set of data representatives, which can be used to approximate the graph-based regularizer and to 

control model complexity. Consequently, both training and testing become much more efficient. 

Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled 

method to select the prototypes can be obtained. Experiments on a number of real-world data sets 

demonstrate encouraging performance and scaling properties of the proposed approach. It also 

compares favorably with models learned via ℓ1-regularization at the same level of model sparsity. 

These results demonstrate the efficacy of the proposed approach in producing highly parsimonious 

and accurate models for semisupervised learning.
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I. Introduction

In Many data analysis and mining applications, the amount of unlabeled data available can 

be huge. However, the amount of labeled data remains scarce, due to the expensive and 

tedious human labeling process involved. Semisupervised learning [10], which can use 

unlabeled data together with the labeled data during training, is thus an effective approach to 

improve the learner's generalization performance.

In semisupervised learning, the label dependencies among the samples are captured by 

exploiting the intrinsic geometric structure of the data. This can be implemented using the 

cluster assumption, which encourages the separating hypersurface to pass through low-

density regions [11], [19]. Another popular smoothness assumption is the manifold 

assumption, which assumes that the underlying function is smooth on a low-dimensional 

manifold formed by the data. Often, this manifold is approximated by a weighted graph 

defined on all the labeled and unlabeled data, and with the graph's affinity matrix encoding 

the similarities between the samples. This leads to the development of various graph-based 

semisupervised learning algorithms [4], [22], [26], [33], [45], [46], [48]. Besides these, 

techniques based on generative models [2], [27], self-training [39], co-training [7], and 

conditional random fields [20], [21] have also been used for semisupervised learning. An 

excellent survey can be found in [47].

In this paper, we will focus on the graph-based approach [4], [6], [48], which has a clear 

mathematical framework, good empirical performance and has also been widely applied in a 

variety of real-world problems. In particular, we will consider the manifold regularization 

framework [4]. It incorporates an additional regularizer to ensure that the learned function is 

smooth on the manifold; while at the same time the predictions on the labeled data are 

required to be consistent with the known class labels. In contrast to some other graph-based 

learning methods, this regularization framework is semisupervised (not transductive) and 

allows generalization to out-of-sample (unseen) patterns. Besides semisupervised learning, 

the use of manifolds has also been successfully applied in other learning problems such as 

manifold learning, dimension reduction, and clustering [3], [25], [29], [31], [34].

However, as graph-based semisupervised learning needs to manipulate the affinity (kernel) 

matrix of the graph (which is defined on all the available data), its space complexity has to 

grow (at least) quadratically with the data set size n [4], [45], [48]. On the other hand, its 

time complexity typically scales as n3. These pose a big challenge in large-scale 

applications.

In recent years, many efforts have been devoted to scaling up graph-based semisupervised 

learning. For example, Zhu and Lafferty [49] proposed an elegant framework that combines 

the generative mixture model with graph-based regularization. Recently, this is further 
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extended for semisupervised feature selection [38]. However, when the data are high-

dimensional, the curse of dimensionality sets in and could prevent the mixture model from 

fitting the data well [49]. In [13], a nonparametric function induction framework is 

proposed, which performs prediction based on a subset of preselected samples. However, it 

cannot enforce smoothness of the target function over those unlabeled data not in the 

preselected sample subset. In [8], the Nyström method [37] is used to numerically 

approximate the large matrix inverse associated with the graph-based semisupervised 

learning method of [45]. This leads to an efficient, transductive algorithm. The Nyström 

low-rank approximation is also used to scale up support vector training recently in [43], and 

transfer learning in the Hilbert space [44]. Other very recent attempts, such as the primal 

Laplacian supported vector machine (LapSVM) [24] and the anchor graph [23] will be 

presented in Section II-B.

Our key observation is that the computational intensiveness of graph-based semisupervised 

learning arises from the regularization term. On the one hand, this requires manipulation 

(multiplication, or inverse) of the n × n kernel matrix, which is impractical for large 

problems. On the other hand, the representer theorem [4] shows that the learned model spans 

over both labeled and unlabeled samples, making it inefficient in both training and testing.

The main contribution of this paper is in improving the scalability of semisupervised 

learning algorithms with the use of prototypes. These refer to a small set of points in the 

input space that can be used as a replacement of the original data in obtaining an efficient 

yet accurate predictive solution. Specifically, there are two types of prototypes used in the 

paper. First, low-rank approximation prototypes, which are used to obtain a low-rank 

approximation of the kernel matrix. This in turn allows graph-based regularization to be 

performed efficiently without having to manipulate the n × n kernel matrix. Second, label-

reconstruction prototypes, which form a set of basis functions to span the predictive model. 

Since the number of prototypes is much smaller than the sample size, a highly compact 

model can be obtained, leading to fast training and testing. Moreover, without this functional 

representation, the learned model can only be transductive, and is unable to handle out-of-

sample patterns. It will also be shown that when the graph affinity is defined by the 

Gaussian kernel, both kinds of prototypes can be selected in a principled and simple manner. 

Experiments on a number of real-world data sets demonstrate encouraging performance and 

scaling properties of the proposed approach.

The rest of this paper is organized as follows. In Section II, we first give a brief review on 

graph-based semisupervised learning algorithms and low-rank approximation algorithms. In 

Section III, we discuss the two important roles of prototypes in scaling up graph-based 

semisupervised learning, namely approximating the graph-based regularizer and simplifying 

the model parametrization. We also show that when the Gaussian kernel is used to define the 

graph affinity, these two criteria lead to a simple and unified prototype selection scheme via 

k-means clustering. In Section IV, we demonstrate how to use the prototypes to reduce the 

size of the optimization problem associated with semisupervised learning.
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In Section V, we perform experiments on a number of real-world data sets to demonstrate 

the performance of the proposed method. Finally, Section VI gives some concluding 

remarks. A preliminary version of this paper is published in [42].

In the sequel, the transpose of vector/matrix is denoted by the superscript⊤, the identity 

matrix by I, and the n-dimensional vector of all ones by 1n. Moreover, for matrix A = [aij], 

we use  for its Frobenius norm; and ‖A‖2 for its spectral norm (which is 

equal to the maximum singular value of A). Besides, diag(a) converts a n-dimensional 

vector a to a n × n diagonal matrix.

II. Related Work

Section II-A first reviews some standard graph-based semi-supervised learning algorithms. 

Section II-B then introduces a number of representative recent developments that can handle 

larger data sets. Finally, the approach of low-rank approximation, which will be a core 

component of the proposed method, is introduced in Section II-C.

A. Graph-Based Semisupervised Learning

In semisupervised learning, we are given a set of l labeled samples  and u 

unlabeled samples , where xi ∈ ℝd, and yi ∈ {−1, 1} is the class label. For 

simplicity of exposition, we only consider binary classification problems here. The yi's from 

all the labeled samples can be concatenated to form the vector yl ∈ {−1, 1}l. For a given 

learning algorithm, let f be the learned function f, f ∈ ℝn be the vector of f's evaluations on 

the n = l + u samples. This f can be divided into two sub vectors: fl ∈ ℝl for the labeled 

samples, and fu ∈ ℝu for the unlabeled ones.

A number of graph-based semisupervised learning algorithms can be formulated as the 

following optimization problem:

(1)

where C1 and C2 are the regularization parameters. The first term in (1) enforces smoothness 

of the predicted labels with respect to the data's manifold structure, which is captured via the 

matrix S ∈ ℝn×n. Usually, S is chosen as the graph Laplacian matrix

(2)

where K ∈ ℝn×n is the kernel (adjacency) matrix of the graph [with associated kernel 

function K(·, ·)], and D = diag(K1n) is the corresponding degree matrix. Alternatively, the 

normalized graph Laplacian matrix

(3)
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can also be used. The second term in (1) requires the predictions on the labeled samples be 

consistent with the known class labels, and the discrepancy is penalized by the empirical 

loss function L(·, ·). Finally, the third term enforces regularization on the learned function f. 

Popular choices for Ω(f) include the norm of f in some reproducing kernel Hilbert space 

(RKHS) [4]. Alternatively, Zhou et al. [45] simply uses Ω(f) = ‖fu‖, which regularizes 

predictions on the unlabeled samples only.

Well-known examples that follow the formulation in (1) include:

1. the method of learning with local and global consistency (LGC) [45], where S is 

the normalized graph Laplacian, and the two regularization parameters C1 and C2 

are set to be equal;

2. learning using Gaussian fields and harmonic functions [48], where S is the 

unnormalized graph Laplacian, C1 approaches infinity, and C2 = 0;

3. the Laplacian regularized least-squares (LapRLS) and the LapSVM algorithms [4], 

which will be described in more detail in the following section.

The standard representer theorem in kernel learning can be extended to graph-based 

semisupervised learning. Specifically, Belkin et al. [4] showed that the learned function in 

(1) admits a representation as an expansion over all the labeled and unlabeled samples

(4)

where αi ∈ ℝ.

1) Laplacian Regularized Least-Squares—In this paper, we will focus on two loss 

functions commonly used in (1), the square and the hinge loss. The square loss function 

leads to the LapRLS algorithm [4], which solves the optimization problem

(5)

where ‖f‖k is the norm of f in the RKHS induced by the kernel function K, and γA, γI are 

regularization parameters related to the C1, C2 in (1) as C1 = (l + u)2/γIl and C2 = γA(l + 

u)2/γI. By plugging in the form of f in (4), we obtain
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where α = [α1, …, αl+u]⊤ ∈ ℝl+u, y = [y1, …, yl, 0, …, 0]⊤ ∈ ℝl+u, and 

. It can be shown that the solution of α is given 

by

(6)

2) Laplacian SVM—Instead of using the square loss in (5), the LapSVM [4] uses the 

hinge loss, which then leads to

where (1 − yf(x))+ = max(0, 1 − yf(x)). Again, by plugging in (4), we obtain the primal 

problem

where ξ = [ξ1, …, ξl]⊤ ∈ ℝl. This leads to the solution

(7)

where J = [Il0] ∈ ℝl×(l+u) with Il as the l × l identity matrix, Y = diag([y1, …, yl]⊤), and β* 

∈ ℝl is obtained by solving the following optimization problem:

and
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As can be observed from (6) and (7), both LapRLS and LapSVM require the storing of a 

number of (l + u) × (l + u) matrices (such as K, J and S), and expensive matrix inversion of 

an (l + u) × (l + u) matrix. Consequently, this costs O(n3) time and O(n2) space (recall that n 

= l + u). Besides, testing is also expensive as the representation of f in (4) can involve n 

terms. In many real-world applications, u can be huge as there are often an abundance of 

unlabeled samples. Hence, both the algorithms can become impractical on large data sets.

B. Scaling Up Graph-based Semisupervised Learning

In this section, we briefly review some of the recent advances in scaling up graph-based 

semisupervised learning algorithms.

1) Nyström Method for Learning With LGC—A popular method for graph-based 

semisupervised learning is based on LGC [45]. Its predictions on the set of n (labeled and 

unlabeled) samples are given by

(8)

where y = [y1, …, yl, 0, …, 0]⊤ ∈ ℝn, Q ∈ ℝn×n is the normalized similarity matrix on the 

samples, and η is a regularization parameter. As (8) involves the inverse of the n × n matrix 

I − ηQ, it is expensive when n is large. To alleviate this problem, Camps-Valls et al. [8] 

used the Nyström method (which will be reviewed in Section II-C) to speed up the 

computation of (I − ηQ)−1. Specifically, they use the Nyström method to efficiently obtain 

an approximate eigenvalue decomposition VΛV⊤ [where V ∈ ℝn×m and Λ ∈ ℝm×m] of Q in 

O(m2n) time. Using the Woodbury formula, (8) can then be written as y − V(ΛV⊤V − 

η−1I)−1ΛV⊤y, which can be computed in O(m2n) time. By choosing m ≪ n, this approach is 

thus very suitable for large-scale applications. However, as will be demonstrated in Section 

V-B, empirically this approximation can hamper the prediction accuracy.

2) Primal LapSVM—As discussed in Section II-A1, traditionally the LapSVM is solved in 

the dual formulation. Very recently, new strategies are proposed to solve the LapSVM in the 

primal [24], which can be efficiently performed with preconditioned conjugate gradient [30]. 

Convergence can be further speed up using an early stopping criterion based on the 

predictions on the unlabeled data or validation examples. The resultant time complexity is 

reduced to O(cn2), where c is an empirical constant much smaller than n. Though better than 

the original O(n3) complexity, this quadratic complexity is still more expensive than other 

competitive methods.

3) Fast Nonparametric Function Induction—Delalleau et al. [13] proposed a 

nonparametric approach for estimating the continuous labels of unlabeled examples. For an 

out-of-sample example x, its prediction
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(9)

has the same form as Parzen window regressors. Here, f(xj) is the estimated label for training 

sample xj (which may be unlabeled) obtained in the training phase. A straightforward 

implementation, however, involves O(n3) time and O(n2) space on training. To reduce these 

complexities, Delalleau et al. [13] force the summations in (9) to only involve a preselected 

sample subset S, |S| ≪ n, and do not enforce smoothness among the large number of 

unlabeled samples not in S. As will be empirically demonstrated in Section V-B, these 

restrictions can hamper the prediction accuracy.

4) Anchor Graph—Liu et al. [23] borrowed the idea of [13] and [42] and proposed to use 

the so-called anchor points (which are the same as prototypes in [42]) to build sparse graphs 

for semisupervised learning. The adjacency matrix is computed by a k-nearest-neighbor 

graph, or by solving a quadratic program (QP) similar to that in locally linear embedding 

[29] with additional sparsity constraints. In both cases, the computational cost is very 

expensive for large-scale applications.

C. Low-Rank Approximation

Given a symmetric, positive semidefinite matrix (such as the kernel matrix) K ∈ ℝn×n, a 

low-rank approximation algorithm [14], [17] produces an approximation of the form GG⊤, 

where G ∈ ℝn×m and m ≪ n. If the columns of G are linearly independent, GG⊤ is of rank 

m. It is well known that the optimal rank-m approximation K(m) of K (with respect to the 

spectral or the Frobenius norm) can be easily constructed from its k leading eigenvectors and 

eigenvalues. Specifically, let the eigenvalue decomposition of K be UΣU⊤, where the 

columns of U contain its eigenvectors, and Σ = diag[(σ1, σ2, …, σn)] contains the 

corresponding eigenvalues in descending order. Then, K(m) = U(m)Σ(m)U(m)⊤, where U(m) 

contains the m leading eigenvectors and U(m) contains the m leading eigenvalues. The 

corresponding low-rank approximation errors with respect to the spectral norm and 

Frobenius norm are ‖K − K(m)‖2 = σm+1 and , respectively. 

However, while K(m) can be obtained easily from the leading eigenvectors and eigenvalues 

of K, directly finding this eigenvalue decomposition takes O(n3) time. For large K, this can 

be expensive and hence more efficient alternatives have to be sought.

In this paper, we will use an efficient low-rank approximation approach called the Nyström 

method [15], [16], [37]. It first chooses a subset of m rows/columns from K. Let Knm ∈ 

ℝn×m be the submatrix of K containing these selected columns, and Kmm ∈ ℝm×m the 

submatrix containing the intersection of the selected columns and rows. Using the 

eigenvalue decomposition , the matrix containing the m leading 

eigenvectors of K is approximated by the Nyström extension as 

[37]. A useful consequence is that the whole matrix can then be approximated as

Zhang et al. Page 8

IEEE Trans Neural Netw Learn Syst. Author manuscript; available in PMC 2015 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(10)

Note that, Knm can be computed in O(mn) time, and  in O(m3) time. Thus, using (10), 

K can be written as GG⊤, where , in O(m2n + m3) time, which is linear in 

the sample size n.

Traditionally, the m columns are sampled randomly from K [37] or by a probabilistic 

sampling scheme [15]. More generally, they can be chosen as landmark points 

obtained from summarizing the data. The approximation in (10) is then applied as

(11)

where W ∈ ℝm×m [with Wij = K(ui, uj)] is the kernel matrix evaluated on the landmark 

points, and

(12)

is the cross-similarity matrix between the whole data X = [x1, …, xn] and the landmark 

points. For a number of commonly used kernels (such as the Gaussian, linear, and 

polynomial kernels), it has been shown that the approximation error ‖K−K̂‖F is bounded by 

the encoding errors of these landmark points [40], [41]. Based on this error analysis, we can 

choose the k-means cluster centers of the data as the landmark points. In the implementation, 

we further fix the number of k-means iteration to a small number (such as five). The 

complexity of k-means is then linear in the sample size and dimension (assuming that each 

kernel evaluation takes time linear in the dimension), and is thus suitable for large-scale 

problems.

III. Approximations via Prototypes

This section discusses the basic idea of using two types of prototypes to enable the 

optimization of graph-based semisupervised learning more efficient. By prototypes, we 

mean a small set of points in the input space that can be used as a replacement of the original 

data in obtaining an efficient yet accurate predictive solution. In this paper, there are two 

types of prototypes serving different purposes: 1) low-rank approximation prototypes that 

are used for low-rank approximation of the graph Laplacian matrix (Section III-A) and 2) 

label-reconstruction prototypes that are used in label-reconstruction for accurate model 

representation (Section III-B).

A. Low-Rank Approximation Prototypes

Recall that the graph Laplacian matrix S in (2) or (3) is constructed from the kernel matrix K 
of the graph. In practice, K usually has a rank much smaller than its size [37]. This offers the 

opportunity of reducing the computational burden of graph-based regularization by 

performing low-rank approximation (Section II-C).
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Using the low-rank approximation EW−1E⊤ of K in (11), the unnormalized graph Laplacian 

S in (2) can be approximated as

(13)

where D̃ = diag(EW−1E⊤ln). The corresponding (approximated) graph-based regularizer is 

then f⊤Sf ≃ f⊤(D̃ − EW−1E⊤)f. Similarly, when S is the normalized graph Laplacian, it is 

approximated as

(14)

and the corresponding regularizer becomes f⊤Sf ≃ f⊤(I − ED̃−1/2W−1E⊤D−̃1/2)f.

B. Label-Reconstruction Prototypes

1) Motivating Example—As discussed in Section II-A, the inclusion of a graph-based 

regularizer results in the model (4) that expands over all the labeled and unlabeled samples. 

This leads to slow training and testing when n is large. In practice, a classifier seldom needs 

all the samples as basis functions. Fig. 1 shows a motivating example on a binary 

classification problem. We first train a standard SVM using the whole data set. The obtained 

decision boundary (in green) and support vectors (circles) are shown. To construct an 

alternative classifier, we choose a set of label-reconstruction prototypes (crosses) from each 

class. To predict the label of a test sample x, we compute its similarities with all the label-

reconstruction prototypes, and then linearly combine their labels using the similarities as 

weights. The resultant decision boundary is shown in blue. As can be observed, the two 

decision boundaries are very similar. This illustrates that instead of using the whole data set, 

a small set of properly chosen label-reconstruction prototypes can successfully reconstruct 

the decision boundary.

2) Formulation—The above idea can be formalized as follows. We assume that the label 

of any sample x can be reconstructed as a weighted combination of the labels of r label-

reconstruction prototypes 

(15)

where fvi is the label of prototype vi. This resembles the nearest-neighbor classifier in that 

the predicted label of x is mostly dependent on prototypes vj having large similarities (i.e., 

K(x, vj) values) with x. Intuitively, as long as there are enough label-reconstruction 

prototypes filling the input space, the label of any sample can be reconstructed reliably from 

these nearby prototypes.

To make the model more flexible, we allow each fvi in (15) to be real-valued even for 

classification problems. Note that, (15) can be written more compactly as
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(16)

where fυ = [fv1, fv2, …, fvr]⊤ ∈ ℝr and

(17)

is the kernel submatrix defined between the whole data set X and prototypes vi's. On large 

data sets, one can additionally enforce sparsity on H by only computing the similarities 

between the label-reconstruction prototypes and their k-nearest samples. This has been 

found useful in the construction of large graphs in semisupervised learning [23].

3) Choosing the Label-Reconstruction Prototypes—We now consider how to 

choose the label-reconstruction prototypes. Note that, (15) can be deemed as an 

approximation of the complete model in (4). Hence, we want to minimize

(18)

where D(·, ·) measures the difference between the complete model  in (4) 

and the approximate model  in (15).

In practice, as αi's, fvi's, and vi's are unknown during training, it is infeasible to directly 

minimize (18) with respect to all these variables. Recall that  forms a basis for 

the complete model and  forms a basis for the approximate model. In order for 

these two models to have similar representation power, we expect that the two basis can be 

reliably coded by each other. More specifically, we choose the label-reconstruction 

prototypes vi's so as to minimize the error of coding each component in  with 

the best element in 

(19)

Obviously, the choice of vi's depends on the specific kernel K(·, ·) and discrepancy measure 

D(·, ·). In the following, we consider the use of the Gaussian kernel K(x, y) = exp (−‖x − 

y‖2/2h2). Since it has the same form as the normal distribution, we use the cross entropy for 

probability distribution functions (pdfs) as D(·, ·) in (19). Recall that the cross entropy 

between the two pdfs p and q is

(20)
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where H(p) = − ∫ p(x)log(p(x))dx is the entropy of p, and DKL(p‖q) = ∫ p(x)log(p(x)/q(x))dx 
is the Kullback–Leibler (KL) divergence between p and q [18]. Since {x1, …, xl+u} is fixed, 

minimizing D(K(·, xi), K(·, vj)) = H(K(·, xi), K(·, vj)) in (19) is the same as minimizing their 

KL-divergence, which can be written as [18]1

(21)

The objective in (19) then simplifies as

where Sj is the subset of kernels in  whose closest label-reconstruction 

prototype is K(·, vj). Interestingly, this is exactly the objective of the k-means clustering 

(apart from the scaling factor 1/4h2). As in Section III-A, the prototypes vi's in (15) can 

again be chosen as the k-means cluster centers. In other words, the low-rank approximation 

prototypes in Section III-A and the label-reconstruction prototypes introduced here are 

indeed the same. Consequently, E in (12) is also the same to H in (17).

For other types of kernels, the cross entropy in (20) may no longer be suitable and other 

distance measures will be investigated in the future.

IV. Prototype Vector Machine

In Section III, we introduced two types of prototypes: 1) low-rank-approximation prototypes 

, which avoid the computation of an n × n graph Laplacian matrix and 2) label-

reconstruction prototypes , which avoid the use of all the labels in the whole data set. 

In this section, using the associated simplified equations (13) [or (14)] and (16), we will 

consider how to realize the proposed prototype vector machine (PVM) with the square and 

hinge loss functions. As will be seen, since m, r ≪ n (the sample size), the optimization of 

problem (1) can be made much more efficient.

Algorithm 1 PVM Using the Square Loss

1: Perform k-means clustering on the given labeled and unlabeled samples, and use the cluster centers as prototypes.

2: Use (17) to compute H (and thus obtain its submatrices Hl and Hu).

3:
Substitute the approximate graph Laplacian [(13) or (14)] into (23) and obtain .

4: Prediction

 1) on the given unlabeled samples: .

1This is a special case of the problem considered in [18], where the simplified model has varying bandwidths and the components in 
the original model are weighted.
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 2) on an unseen .

A. Training

1) Square Loss—Using the square loss, the objective in (1) can be written as

(22)

where Hl ∈ ℝl×r and Hu ∈ ℝu×r are submatrices of H containing the rows corresponding to 

the labeled and unlabeled samples, respectively, and S is as defined in (13). Replacing S 
with the normalized graph Laplacian (14) is straightforward. Moreover, as in [45], we have 

used ‖Hufv‖
2 to regularize f. Alternatively, one can use the RKHS norm of f (as in [4]). On 

using (15), this leads to a slightly different regularizer , where Kυ is the kernel 

matrix defined on the r label-reconstruction prototypes, and the results in the sequel can be 

easily extended.

By setting the derivative of the objective in (22) with respect to fυ to zero, we obtain the 

optimal solution of fυ as

(23)

The complete algorithm is shown in Algorithm 1. Note that, if k-means clustering is used as 

the selection scheme for both the low-rank-approximation prototypes and label-

reconstruction prototypes, then we simply have El = Hl in (23).

On using k-means as the unified prototype selection scheme, we have m = r. Step 1 of 

Algorithm 1 then takes O(ndm) time and O(nm) space. Step 2 takes O(ndr) = O(ndm) time 

(assuming that each kernel evaluation takes O(d) time) and O(nr) = O(nm) space. In step 3, 

with the use of the m low-rank approximation prototypes, we have H⊤SH = H⊤DH − 

(H⊤E)W−1(E⊤H) from (13). Since D̃ is diagonal, H ∈ ℝn×r and E ∈ ℝn×m, H⊤SH can be 

computed in O(r2n + r2m + m2r + mnr) = O(nr(m + r)) = O(nm2) time and O(n max(r, m)) = 

O(nm) space. Moreover, the inverse operation in (23) involves a r × r matrix, and takes 

O(r3) time. Thus, the total time for computing  is O(nr(m +r) + r3) = O(nr(m + r)) = 

O(nm2). Since m ≪ n, the total space and time complexities are both linear in the sample 

size, which is much faster than the O(n3) time for LapRLS (Section II-A).

2) Hinge Loss—For classification problems (with labels in {±1}), we can use the hinge 

loss as popularized by the SVM. The other two terms in (22) remain the same, and can be 

combined together as , where2

2If the RKHS norm of f is used as the regularizer instead of ‖Hufυ‖2 as discussed in Section IV-A1, then A becomes H⊤SH + C2Kυ, 
and the results in Section IV-A2 can also be easily extended.
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(24)

Let ek be the transpose of the kth row in Hl

(25)

The optimization problem in (1) can then be written as

where the first term performs regularization, and the second term is the hinge loss incurred 

by approximating the labels of Xl with the reconstructed ones (Hlfυ). The Lagrangian can be 

written as

By setting its derivative with respect to fυ and ξi's to zero, we obtain C1 = βi + γi, and

(26)

on using (25). Here, β = [β1, …, βl]⊤, and ⊙ denotes the element wise product. Plugging 

these back into the Lagrangian, we obtain the dual problem

(27)

where

(28)

After solving this QP, labels of the prototypes vi's can be recovered using the Karush–

Kuhn–Tucker condition in (26), as
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(29)

The complete algorithm is shown in Algorithm 2.

As in Section IV-A1, H⊤SH can be computed in O(nm2) time. Hence, matrix A in step 3 

can also be computed in O(nr(m + r) + r2u) = O(nr(m + r)) = O(nm2) time, and its inverse in 

O(r3) time. Moreover, note that the QP in (27) is of the same form as a standard SVM, and 

so can be solved readily with state-of-the-art SVM solvers. There are only l optimization 

variables in this QP, and modern SVM implementations typically have a time complexity 

that scales linearly with l [36]. So, the total time complexity is O(nr(m+r)+r3) = O(nr(m+r)) 

= O(nm2). Since m ≪ n, this is again much more efficient than the O(n3) time required of 

the standard LapSVM (Section II-A) and the O(n2) time required of the primal LapSVM 

(Section II-B2). Moreover, it can be easily seen that its space complexity is O(mn), the same 

as that when the square loss is used. As a short summary, Table I compares the time and 

space complexities of a number of semisupervised learning algorithms that will be further 

studied empirically in Section V-B.

Algorithm 2 PVM Using the Hinge Loss

1: Perform k-means clustering on the given labeled and unlabeled samples, and use the cluster centers as prototypes.

2: Use (17) to compute H (and thus obtain its submatrices Hl and Hu).

3: Use the approximate graph Laplacian [(13) or (14)] to compute A in (24), and subsequently Q in (28).

4: Solve the QP in (27) to obtain β.

5:
Obtain  from (29).

6: Prediction

 1) on the given unlabeled samples: 

 2) on an unseen .

B. Prediction

After obtaining , the predicted labels on the given unlabeled samples can be computed as 

, and that on an unseen test sample x as . Since it only 

depends on the r label-reconstruction prototypes, testing takes O(r) time. This is much faster 

than LapRLS and LapSVM, which take O(n) time.

C. Number of Prototypes

The number of prototypes is an important factor that affects the performance of the proposed 

method. More prototypes lead to more accurate approximation on both the kernel matrix as 

well as the class labels. Therefore, this tends to give a better performance. However, the 

time consumption also grows. Hence, this involves a tradeoff between the accuracy and the 

efficiency. Empirically, we choose m as 5% of the sample size (or fewer), which gives 

satisfactory results. In our empirical evaluations (Section V-A.3), we also observe that when 

m is beyond a certain threshold the performance would reach a plateau.
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We are also interested in performance of PVM with respect to choice of the number of 

prototype vectors as well as the number of labeled and unlabeled samples. First, the larger 

the number of prototypes, the more complicated concept (e.g., classification boundary) can 

be potentially delineated. Therefore, more prototypes will lead to a better performance, as 

has been shown in our empirical evaluations.

In considering the number of labeled samples, note that given a fixed level of intrinsic 

difficulty of the learning problem (in terms of the complexity of the classification 

boundaries), more labeled samples will lead to a better prediction performance. In this case, 

together with more prototypes, we will also expect a better performance.

If the unlabeled data can improve the performance of learning, more prototypes will be able 

to summarize the distribution of unlabeled data better, therefore the performance will 

improve with more prototypes and unlabeled data. However, sometimes, the unlabeled data 

may not help in semisupervised learning. For example, if the low-density separation 

assumption is violated [11], [19], [28] then it would be hard to predict whether more 

prototypes will improve performance, since more prototypes will make the effect of 

unlabeled samples more significant.

In practice, the decision boundary can be determined in a complicated manner by labeled 

and unlabeled samples together in semisupervised learning. For example, in [32], it is stated 

that if the complexity of the distribution under consideration is too high to be learned using 

labeled data points, but is small enough to be learned using unlabeled data points, then 

semisupervised learning can improve the performance of the supervised learning task. In this 

case, we may expect a better performance with more prototypes as well as labeled and 

unlabeled samples. However, in some cases, the needed relation between labeled and 

unlabeled samples might not be satisfied. For example, Ben-David et al. [5] concluded that 

using unlabeled data cannot provide sample size guarantees that are better than those using 

labeled data only, unless one assumes a very strong relationship between the labeled and 

unlabeled data distribution. Therefore, in case the desired condition is not satisfied, it would 

be hard to guarantee that more prototypes will lead to improved performance with more 

labeled and unlabeled samples.

V. Experiments

In Section V-A, we investigate how the performance of the proposed PVM varies with 

sample size, the number of labeled samples and prototypes. In Section V-B, the PVM is 

compared with other state-of-the-art semisupervised learning algorithms on a number of 

real-world data sets. Experiments will be performed on both binary and multiclass 

classification problems. Note that for PVM using the square loss, the formulation in (22) can 

be extended for multiclass classification in a straightforward manner. For PVM using the 

hinge loss, we first decompose a C-class classification problem into C one-versus-rest binary 

classification problems. Prediction is then made by assigning the sample to the class with the 

highest decision function value.

PVM is a sparse model, as only a small number of prototypes are involved in (15). Another 

popular approach for the construction of sparse models is using the ℓ1-regularizer, which 
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encourages model coefficients to approach zero. Recently, this ℓ1 -penalized approach has 

drawn considerable interest in learning sparse predictive models. For example, lasso [35], 

the most well-known ℓ1-penalized sparse model, adds the ℓ1-regularizer to the square loss 

function. Hence, a natural question is how the parsimonious model produced by the PVM 

compares with that obtained by ℓ1-regularization. This will be addressed in Section V-D.

A. Performance of the PVM

In this section, we study the performance of the PVM by performing experiments on a 

subset of the MNIST digits data set.3 We use the five digits (represented as 784-D feature 

vectors) 3, 5, 6, 8, and 9, leading to a total of 29 270 samples. The Gaussian kernel

(30)

is used. As discussed in Section III, this leads to a unified prototype selection scheme, 

namely that the k-means cluster centers can be used as both the low-rank approximation 

prototypes and the label-reconstruction prototypes.

1) Variation With Sample Size—In this experiment, we first study how the performance 

of PVM (using the square loss) varies when the total number (n) of labeled and unlabeled 

samples is gradually increased from 1000 to 29270. For each class, 50 samples are labeled. 

The number of prototypes m is fixed at 200. To reduce statistical variability, results are 

based on averages over 30 random repetitions.

Fig. 2(a) shows the variation of training time (which includes the time for k-means 

clustering in step 1 of Algorithms 1 and 2) with n. As can be seen, the time scales linearly 

with n, which agrees with our analysis in Section IV-A. Fig. 2(b) shows the classification 

error on the unlabeled samples. Note that although the number of prototypes is fixed, the 

accuracy remains fairly stable with increasing sample size. This agrees with our intuition 

that the number of prototypes required for building an accurate model depends largely on 

the data distribution and class boundary, but not directly on the sample size.

2) Variation With the Number of Labeled Samples—Next, we vary the number of 

labeled samples used for training, as l = {100, 200, 300, …, 1000}. The number of unlabeled 

samples is then u = n − l with n = 29270. Fig. 3(a) shows the resultant variation of the 

classification error (on the unlabeled samples). As can be seen, similar to the other 

semisupervised learning models, the accuracy increases when more labeled information is 

available. The improvement in accuracy is particularly prominent when the number of 

labeled samples is small. This agrees with the observation in [9] that the labeled samples 

reduce the error exponentially fast.

3) Variation With the Number of Prototypes—Finally, Fig. 3(b) examines the 

variation of the classification error with the number of prototypes m, while fixing the 

number of labeled samples per class at 50, and the sample size at n = 29720. As can be seen, 

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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using more prototypes leads to better performance, though the improvement diminishes 

when m is beyond a certain value. In this experiment, using m = 200, which is less than 1% 

of the whole data set size, already suffices to give a good performance.

B. Comparison With the State-of-the-Art

In this section, we compare both versions of PVM: PVM(sqr), using the square loss (Section 

IV-A1), and PVM(hinge), using the hinge loss (Section IV-A2), with the supervised learner 

SVM (using only the labeled samples) and a number of state-of-the-art semisupervised 

learning algorithms, including:

1. LGC: learning with LGC [45];

2. LapRLS: Laplacian regularized least squares [4] (Section II-A1);

3. NYS-LGC: acceleration of LGC using Nyström low-rank approximation [8] 

(Section II-B1);

4. LapSVMp: primal LapSVM 4 trained with preconditioned conjugate gradient [24] 

(Section II-B2);

5. Nonparametric function induction (NFI): fast nonparametric function induction 

[13] (Section II-B3);

6. Anchor5: the method based on anchor graph [23] (Section II-B4).

All codes are in MATLAB and run on an Intel T2400 1.83-GHz laptop with 1-GB memory.

1) Setup—We use a variety of binary and multiclass benchmark data sets from [10]6 and 

the LIBSVM data archive.7 The number of labeled samples per class is 50 (except for the two-

moon data, which has only one labeled sample per class). A summary of the data sets is 

shown in Table II.

For PVM, the number of prototypes is chosen as m = 0.1n when n ≤ 3000; and m = 200 

otherwise. The same number of samples is used in forming the subset for NFI and NYS-

LGC. Other parameters of the various algorithms are chosen by fivefold cross-validation.8 

For example, the β parameter of the Gaussian kernel is chosen from {2−5β0, 2−4β0, …, 24β0, 

25β0}, where β0 is the reciprocal of average distance between the samples. The 

regularization parameters in LapRLS are chosen from {10−6, 10−5, …, 1, 10}; while those 

for the other algorithms are from {10−3, 10−2, …, 104, 105}. For PVM, we simply set the 

regularization parameter C2 = 0 and only tune C1. To reduce statistical variability, results are 

based on averages over 30 random selections of the labeled samples.

4The MATLAB code is from http://sourceforge.net/projects/lapsvmp/
5The MATLAB code is from http://www.ee.columbia.edu/ln/dvmm/downloads/WeiGraphConstructCode/dlform.htm
6http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
7http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
8In each of the 5 repetitions, the semisupervised model is trained using 4/5 of the labeled data and the unlabeled data, and is validated 
on the remaining 1/5 of the labeled data. The parameter that yields the lowest average validation error is selected. Using this 
parameter, the model is retrained with all the labeled and unlabeled data.
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2) Results—Table III shows the classification errors on the unlabeled samples, and Table 

IV shows the total training and testing time. The following observations can be made.

1. In general, the semisupervised learning algorithms are more accurate than the 

baseline SVM. In particular, based on the paired student-t test, the proposed 

PVM(hinge) outperforms SVM on the DIGIT1, USPS, BCI, SEGMENT, DNA, 

USPS-FULL, and SATIMAGE data sets at the 95% confidence level. It has a 

comparable performance as the SVM on the G241C, G241D, SPLICE, SVMGD1A 

data sets, and is only outperformed by the SVM on the two data sets of COIL2 and 

TEXT.

2. LGC, LapRLS, and LapSVMp do not employ any approximation to scale up 

training. Hence, they are usually the most accurate, but also computationally most 

expensive. Indeed, recall that LGC and LapRLS require O(n2) space. Hence, they 

cannot be run on the three largest data sets (svmgd1a, usps-full, and satimage). 

Moreover, though LapSVMp is faster than LapRLS and LGC, it is still 

computationally expensive on the large data sets as its time complexity is quadratic 

in n.

3. LGC-NYS and NFI are computationally very efficient but not as accurate, 

especially on the more difficult data sets of TEXT and DNA. As discussed in 

Section II-B.3, we speculate that it is because NFI cannot enforce smoothness of 

the function on the unlabeled samples not belonging to the basis set [13].

4. The anchor method is more efficient than LGC, LapRLS, and LapSVMp. However, 

since it needs to compute the combination coefficients for each sample using QP, 

its complexity can be huge for large data sets. As can be observed from Table VI, 

its time consumption is at least several times larger than that of PVM. The larger 

the data set, the larger the difference.

5. The accuracies of both PVMs are comparable with LGC, LapRLS, and LapSVMp; 

while their speeds can be several hundred times faster. On larger data sets, this 

speedup ratio is expected to be more significant. Overall, PVM achieves a good 

balance between speed and accuracy.

We are also interested in training the full semisupervised learning algorithms (LapRLS and 

LapSVMp) using only a small subset of representative points (such as cluster centers) as 

unlabeled data. Results and discussions are in Table VII. As can be observed, using 

representative points in such a way can improve the computational efficiency of the 

algorithm but lead to less accurate results.

C. Learning With Only the Cluster Centroids

In the PVM, the prototypes are selected from the centroids of k-means clustering. Recall that 

both the LapRLS and LapSVM (trained in either the primal or dual) have large 

computational complexities. Hence, one may consider using a computationally less 

expensive version that replaces the whole unlabeled set with the set of k-means cluster 

centroids. On the other hand, all the labeled samples are still used, as they are usually much 
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fewer in number. In this section, we compare the performance of these cluster-based (CB) 

versions (denoted CB-LapRLS and CB-LapSVMp) with PVM.

Tables V and VI show the comparison in terms of the classification error and time 

consumption, respectively. For easy reference, results for the PVM are also copied from 

Tables III and IV. As can be seen, though CB-LapRLS and CB-LapSVMp are much faster 

than the original LapRLS and LapSVMp, their accuracies are often much inferior because of 

the loss of unlabeled data information. In contrast, the PVM adopts the representative points 

(cluster centers) in a systematic way for approximations of the whole kernel matrix and the 

decision function, thus yielding a much better performance in general.

D. Comparison With ℓ1-Penalized Sparse Models

In this section, we compare the sparse models produced by PVM and ℓ1-regularization. For 

ℓ1-regularization, we use the kernel regressor, which involves the optimization problem

(31)

where Kα (for some α ∈ ℝn) is the vector of predictions on all n labeled and unlabeled 

samples, and Kl ∈ ℝl×n is the kernel submatrix. The (Kα)⊤S(Kα) regularization term 

encourages smoothness over the data manifold, and the ℓ1-regularizer ‖α‖1 encourages 

sparseness of the coefficient vector α.

In the following, we compare the performance of PVM and the ℓ1-penalized formulation in 

(31) at different sparsity levels. Note that how the sparsity is achieved by the PVM is quite 

different from that of (31). The former is obtained by extracting a highly compact and 

representative set of prototypes, from which the structure of the kernel matrix can be 

faithfully preserved. Hence, for the PVM, sparsity can be explicitly controlled by specifying 

the number of prototypes. On the other hand, (31) enforces sparsity by penalizing via the ℓ1-

norm. There is no known algorithm that can produce a model with exactly the desired 

number of nonzero coefficients. Instead, we can only try different regularization parameter 

settings to obtain a model with approximately the desired size.9 This parallel the comparison 

between VQ-based code-book selection and sparse-coding-based codebook selection in 

dictionary learning [12]. Moreover, to allow (31) to be used on large data sets, low-rank 

approximation is first applied on the kernel matrix K. In the sequel, the method will be 

denoted L1-LRK.

The classification errors on the unlabeled data versus sparsity for the two algorithms are 

reported in Fig. 4. As can be seen, at the same sparsity level, PVM often has better accuracy 

than L1-LRK. This demonstrates the efficacy of PVM in building highly efficient, 

parsimonious, and accurate models in the semisupervised learning setting. In particular, 

PVM tends to perform better than L1-LRK when the data are high dimensional or have a lot 

of classes.

9In the experiments, λ1 and λ2 are selected from {10−4, 10−3, …, 101, 102}.
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Table VII compares the time consumption of PVM with L1-LRK. Here, we have chosen the 

regularization parameters such that the number of nonzero coefficients in the obtained 

model is around 10% of the sample size. As can be seen, PVM is much more efficient. This 

is because for the L1-LRK, to transform the problem (31) to a standard LASSO-type 

problem, O(n2) space and O(n3) time are needed.

VI. Conclusion

In this paper, we proposed the PVM to scale up graph-based semisupervised learning. Using 

the prototypes to approximate the graph-based regularizer as well as the predictive model, 

we can drastically reduce the problem size while at the same time guarantee smoothness of 

the prediction over the data manifold. Experiments on a number of real-world data sets 

demonstrate that the PVM has appealing scaling behavior (linear in sample size) and 

competitive performance.

In the future, we will study various extensions of the PVM. For example, we will consider 

other kernels (besides the Gaussian kernel) and other label reconstruction schemes that can 

take the local geometrical structure of the samples into account. Moreover, the current 

prototype selection scheme (k-means clustering) treats the labeled and unlabeled data as 

equally important. One possibility is to incorporate the label information, and extend the 

selection scheme to a weighted version so that different importance-based weightings are 

assigned based on prior knowledge. A similar idea has been successfully used in the context 

of low-rank approximation [1]. Moreover, we will further study the relationships between 

the labeled samples, unlabeled samples, and the prototypes.
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Fig. 1. 
Decision boundaries of the SVM (green) and a prototype-based model (blue) on a toy data 

set. Circles are the support vectors and crosses are the prototypes.
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Fig. 2. 
Performance of the PVM with different sample sizes. (a) Training time versus sample size 

(note that the error bars here are very small). (b) Error versus sample size.
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Fig. 3. 
Performance of the PVM at different settings. (a) Different numbers of labeled samples per 

class. (b) Different numbers of prototypes.
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Fig. 4. 
Performance of PVM and the ℓ1-penalized formulation at different levels of model sparsity. 

The x-axis is the ratio of nonzero coefficients in the predictive model to the sample size. (a) 

BCI. (b) COIL. (c) COIL2. (d) Digit1. (e) USPS-2v7. (f) USPS-5v6. (g) USPS-3v8. and (h) 

USPS-FULL.
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Table V
Classification Errors (%) on the Unlabeled Data Obtained by CB-LAPRLS, CB-LAPSVMP, 
and PVM

DATA CB-LAPRLS CB-LAPSVMP PVM (SQR) PVM (HINGE)

G241C 27.14±2.15 28.32±2.91 24.50±2.49 23.21±1.95

G241D 28.11±1.78 27.57±1.43 25.15±2.58 24.85±2.70

DIGIT1 6.78±1.91 6.84±1.72 4.18±1.17 3.72±1.07

USPS 19.67±3.46 19.45±2.25 5.29±0.73 6.35±1.33

COIL2 14.98±2.15 17.16±2.81 11.69±2.47 14.85±2.36

COIL 21.17±1.71 12.39±1.45 13.41±1.29 12.26±1.01

BCI 29.16±3.56 46.23±3.16 33.59±3.01 31.65±2.86

TEXT 27.18±2.77 25.31±1.91 30.4±4.46 26.29±2.58

SPLICE 22.35±3.48 28.82±3.97 23.47±1.59 25.32±2.48

SEGMENT 9.19±1.56 11.21±1.81 10.15±1.21 9.06±1.15

DNA 16.57±1.41 15.87±0.44 15.87±1.44 14.19±1.28

SVMGD1A 7.71±0.56 6.92±0.55 5.24±1.09 6.08±1.55

USPS-FULL 14.15±3.41 11.15±2.17 7.35±0.62 5.88±0.91

SATIMAGE 17.85±2.15 15.34±1.66 14.64±0.50 13.27±0.53
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Table VI
Total Training and Testing Time (s) of CB-LAPRLS, CB-LAPSVMP, and PVM

DATA CB-LAPRLS CB-LAPSVMP PVM (SQR) PVM (HINGE)

G241C 10.15 0.47 3.30 3.19

G241D 12.11 0.65 3.31 3.16

DIGIT1 12.54 0.72 3.31 3.15

USPS 13.76 0.35 3.28 3.14

COIL2 11.48 0.57 3.26 3.47

COIL 115.22 0.54 3.35 3.51

BCI 1.15 0.22 0.71 1.09

TEXT 62.15 28.35 30.24 34.24

SPLICE 6.51 3.42 4.87 4.24

SEGMENT 12.17 5.31 6.13 8.81

DNA 15.16 7.41 8.92 7.57

SVMGD1A 23.94 5.58 8.06 5.38

USPS-FULL 57.14 19.85 22.48 28.21

SATIMAGE 39.58 11.29 11.56 14.32
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