Skip to main content
. Author manuscript; available in PMC: 2015 Apr 1.
Published in final edited form as: IEEE Trans Neural Netw Learn Syst. 2015 Mar;26(3):444–457. doi: 10.1109/TNNLS.2014.2315526

Table III.

Classification Errors (%) on the Unlabeled Data Obtained by the Different Algorithms. The Best Results and Those That Are Not Statistically Worse (According to the Two-Sample One-Tailed t-Test, With a p-Value of 0.05) Are in Bold. Note That, LGC and LapRLS Cannot Be Run on the Large Data Sets of Svmgd1a, Usps-Full, and Satimage

(SUPERVISED) (SEMI-SUPERVISED)
DATA SVM LGC LapRLS LapSVMp NYS-LGC NFI ANCHOR PVM(sqr) PVM(hinge)
G241C 22.34±1.41 21.92±1.90 22.02±1.73 25.82±1.75 24.19±3.06 28.07±2.71 35.15±1.45 24.50±2.49 23.21±1.95
Q241D 25.14±2.03 28.10±3.27 22.36±1.78 25.89±1.12 30.98±4.22 30.82±5.36 36.61±2.07 25.15±2.58 24.85±2.70
DIGIT1 4.70±1.09 5.74±1.09 5.74±1.50 1.84±0.37 6.68±1.63 9.83±1.43 3.56±0.45 4.18±1.17 3.72±1.07
USPS 9.30±2.81 4.57±1.27 6.11±0.63 5.23±2.34 9.72±1.82 5.49±0.78 15.90±3.41 5.29±0.73 6.35±1.33
COIL2 11.17±0.91 14.37±3.63 10.83±1.94 12.74±2.16 16.90±3.00 13.98±2.48 8.11±1.64 11.69±2.47 14.85±2.36
COIL 12.21±1.81 12.38±1.99 21.17±1.71 7.79±0.74 18.75±1.48 30.93±6.22 12.41±0.67 13.41±1.29 12.26±1.01
BCI 35.17±3.29 44.43±2.28 29.16±3.56 46.23±3.16 45.45±2.62 45.67±2.61 48.37±2.61 33.59±3.01 31.65±2.86
TEXT 24.35±2.14 23.09±1.43 23.99±1.58 22.75±1.30 34.40±3.63 32.54±2.66 27.28±1.01 30.4±4.46 26.29±2.58
SPLICE 24.33±1.13 22.85±1.47 19.78±2.41 33.76±2.53 30.56±3.16 34.56±1.97 29.11±0.97 23.47±1.59 25.32±2.48
SEGMENT 9.91±1.06 8.97±1.20 9.58±1.73 12.15±2.13 13.58±1.95 15.71±2.15 13.75±1.58 10.15±1.21 9.06±1.15
DNA 15.88±1.17 27.31±2.58 17.72±1.29 15.27±0.41 29.53±2.12 43.38±3.94 28.60±1.81 15.87±1.44 14.19±1.28
SVMGD1A 5.85±1.65 4.23±0.40 6.32±1.88 14.21±2.92 4.S4±0.62 5.24±1.09 6.08±1.55
USPS-FULL 6.39±0.50 4.16±0.13 17.68±1.57 14.43±0.89 7.43±0.29 7.35±0.62 5.88±0.91
SATIMAGE 14.59±0.71 13.81±0.22 16.36±0.64 19.27±3.74 14.80±0.56 14.64±0.50 13.27±0.53