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Abstract

Trabecular meshwork (TM) and ciliary muscle (CM) contraction and relaxation function together 

to provide control of outflow. The active role the TM plays in the regulation of intraocular 

pressure (IOP) is mediated by cytoskeletal and contractility mechanisms as well as signal/

transduction factors that mediate its response to stressors. This complex system is altered with age 

and the glaucomas, and it can be difficult to differentiate between the various etiological effects/

agents. Factors such as a compromised antioxidant defense system and altered extracellular matrix 

metabolism are known to contribute to impaired outflow and may be common to primary open-

angle glaucoma (POAG), exfoliation syndrome (XFS) and exfoliation glaucoma (XFG). Genes 

differentially expressed in diseased ocular tissue or in cultured HTM cell models, and thus 

implicated in the disease process, include SOD2, ALDH1A1, MGST1, LOX and LOXL1, 

elements of the transforming growth factor-beta (TGFβ) / bone morphogenetic protein (BMP) / 

SMAD signaling pathways, connective tissue growth factor (CTGF), matrix metalloproteinase-2 

(MMP-2), a tissue inhibitor of metalloproteinases also known as TIMP-2 and endothelin-1 (ET-1). 

In exfoliation syndrome and XFG fibrillar, proteinaceous extracellular material is produced in 

excess and accumulates in both outflow pathways but does not always lead to elevated IOP. 

Locally produced material may accumulate in the intertrabecular spaces, juxtacanalicular (JCT) 

meshwork and the inner wall of Schlemm’s canal as a result of a combination of both excessive 

synthesis and insufficient degradation. An increase in JCT plaque and decreased cellularity in the 

TM are thought to contribute to decreased outflow facility in glaucoma patients, but XFG patient 

specimens show reduced extracellular plaque material in the JCT, and the structural integrity of 

trabecular endothelial cells is mostly retained and cellularity remains unchanged. The distinctions 
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between causes/effects of structural changes leading to reduced outflow/elevated IOP are 

important for developing effective, individualized treatment strategies.

The trabecular outflow pathway is the main drainage system of aqueous humor in the eye. 

The core structures in the pathway are the trabecular meshwork (TM), the endothelial lining 

of Schlemm’s canal (SC), SC collector channels and aqueous veins. The TM has three 

distinct structural areas: the inner uveal meshwork, the corneoscleral meshwork and the 

juxtacanalicular (JCT) or cribriform region. The JCT is immediately adjacent to the inner 

wall of SC. (Fig 1) TM structure and experimental flow studies indicate that flow resistance 

is highest in the region of the JCT and the inner wall of SC, although the exact location/

proportions of resistance are unclear.(1-5) The JCT contains an elastic-like network that 

connects to the inner wall endothelium of SC. The outer tendons of the ciliary muscle (CM), 

the corneoscleral TM, also insert into the network.(6,7) Contraction of the CM spreads the 

lamellated portion of the meshwork, expanding the area of filtration so that resistance is 

reduced.(7,8,9) The JCT region also contains electron microscopically optically empty spaces 

next to the inner wall endothelium, where giant vacuoles or pores are formed that open into 

SC. (10) It is thought that these spaces are aqueous humor pathways.

Nerve endings have been identified in the scleral spur region that may be part of a 

mechanoreceptive system for responding to stress or strain in the connective tissue elements 

of the scleral spur, perhaps induced by ciliary muscle contraction or changes in intraocular 

pressure (IOP). (11) Morphologically distinct types, or proprioreceptors, are found in the 

CM. Receptors at the posterior muscle tips might measure stretch of the tendons, whereas 

the large mechanoreceptor-like endings located between the muscle tips and in the scleral 

spur region may respond to shear stress. With multiple types of intrinsic nerve cells, the 

contraction/relaxation of the CM might be able to respond locally to changes in the 

immediate environment. (12) Similarly cholinergic and nitrergic nerve terminals in contact 

with the elastic-like network of the TM and scleral spur could induce contraction and 

relaxation of TM and SS cells and also indicate some self regulatory ability.(13)

This configuration of structural elements illustrates how TM and CM contraction and 

relaxation function together to provide control of outflow and regulation of intraocular 

pressure (IOP). (14) Recent investigations into the role of endothelial nitric oxide (NO) 

synthase suggest that TM mechanosensitivity may be a part of the CM/TM homeostatic 

mechanism mediated in part by NO. (15) The active role that the TM plays in the regulation 

of IOP is also mediated by cytoskeleton and contractility mechanisms - the efferent arm of 

the reflexive and regulatory mechanism; their arrangement governs the final outflow facility. 

The endothelial NO synthase /NO system may be a signal/transduction arm that mediates 

response to the stressors, responses that are modulated afferently by the various sensors in 

the CM tendons, the CM apex and the TM itself. (16)

The synthesis and degradation of the TM extracellular matrix (ECM) also plays a role in 

outflow resistance and the glaucomatous disease process. (17 – 21) The ECM is comprised of 

a complex arrangement of fibronectin, collagen, laminin, proteoglycans, 

glycosaminoglycans, and matricellular proteins, which are mediated/modulated by elements 

of the transforming growth factor-b / bone morphogenetic protein / SMAD signaling 
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pathways, connective tissue growth factor, matrix metalloproteinase-2, a tissue inhibitor of 

metalloproteinases also known as TIMP-2 and endothelin-1 (ET-1). (21 – 30) In addition, 

glucocorticoids and prostaglandin derivatives appear to modulate ECM turnover in the 

JCT.(31 – 35)

This complex system is altered with age and the glaucomas, and it can be difficult to 

differentiate between the various etiological effects/agents. With age, the number of TM 

cells decreases, pigmentation in TM cells increases, as does the incidence of cells detaching 

from trabeculae and adhesions between adjacent trabeculae.(36 - 38) An increase in 

accumulation of extracellular material in both the TM and CM is seen with increasing age, 

including in sheath-derived (SD) plaques and fibrillar material in the JCT, increasing 

outflow resistance in the TM outflow pathways (6, 39). These changes may be the result of 

imbalances in responses to age-related stresses such as oxidative damage to long-lived 

molecules, protein cross-linking and loss of elasticity that could in turn trigger an increase in 

production of factors such as transforming growth factor-b, interleukin-1 and CD44S, 

leading to increases in fibronectin and a decrease in the breakdown in 

ECM. (18, 20, 25, 35, 40, 41) Changes in the extracellular environment may result in decreases 

in outflow facility and uveoscleral outflow, which can contribute to an increase in 

IOP. (40, 42, 43)

Specimens of glaucomatous TM show fusion and thickening of trabecular lamellae, 

increased amounts SD plaque material in the JCT and an abundance of longspacing (lattice) 

collagen. (39, 40, 43, 44, 45) Quantitation of the area filled by the SD plaques reveals a 

significant increase of SD plaque material in glaucomatous eyes compared with normal eyes 

of a similar age range. The increase in SD plaque material is also inversely correlated with 

axon counts in the optic nerve, a measure of glaucomatous damage.(39, 44) Eyes with less 

damage (more axons) have smaller amounts of TM SD plaques than eyes with more damage 

(fewer axons). The decreased thickness of the JCT, thickened beams and shortening of the 

connecting fibrils found in the JCT elastic fiber network of glaucomatous eyes could reduce 

the ability of the tissue between the JCT and the inner wall of SC to expand. This reduces 

the amount of space for fluid flow and may diminish the influence of CM and TM 

contraction on outflow resistance. The resulting underperfusion of the TM could lead to an 

even greater increase in ECM buildup and tissue rigidity further increasing outflow 

resistance.(40, 46) Thus a self-perpetuating cycle could develop, which might be a factor in 

the pathogenesis of glaucoma.

The TM of glaucomatous eyes shows changes in glycosaminoglycan (GAG) composition 

with a decrease in hyaluronic acid (HA) and an increase in chondroitin sulfate (CS) both of 

which contribute to flow resistance and influence flow rate in vitro.(9, 45, 47 - 49) Factors such 

as a compromised antioxidant defense system and altered ECM metabolism are known to 

contribute to impaired outflow and may be common to primary open-angle glaucoma 

(POAG), exfoliation syndrome (XFS) and exfoliation glaucoma (XFG). (51-53)

XFS is considered an age-related, systemic disorder that includes ocular indications.(54-55) In 

both XFS and XFG fibrillar, proteinaceous extracellular material (PEX) is produced in 

excess and accumulates in both outflow pathways.(51, 54, 56) PEX is found in isolated 
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aggregates beneath the inner-wall endothelium of SC, as well as the uveal and JCT regions 

of the meshwork, which may limit aqueous access to the inner wall and SC.(56 - 58) (Fig 2) 

The dimensions of SC in POAG eyes are significantly smaller than those in normal eyes. (59) 

An inverse correlation between the amount of PEX material in the JCT and the length of the 

filtration region of SC indicates that eyes with larger amounts of PEX material also tend to 

have a smaller SC.(57) As noted above, increased SD plaques are correlated with fewer 

axons in the optic nerve in POAG.(44) In donor eyes with XFS the amount of PEX-material 

in the subendothelial region of SC was also inversely correlated with the number of axons in 

the optic nerve and was positively correlated with an increase in IOP, suggesting that the 

material contributes to an increase in outflow resistance.(56, 57) Both uveoscleral and 

trabecular outflow are reduced in XFG but only uveoscleral outflow is reduced in XFS, 

indicating that XFS might involve changes in the CM and its surrounding ECM.(60)

The presence of patches of PEX material in the uveal meshwork region suggests that PEX 

material washes into the meshwork from the aqueous. (57) PEX deposits may also be locally 

produced and accumulate in the intertrabecular spaces, JCT and the inner wall of SC.(56) 

The buildup of PEX is likely due to a combination of both excessive synthesis and 

insufficient degradation.(61) An increase in JCT plaques and decreased cellularity in the TM 

are thought to contribute to decreased outflow facility in glaucoma patients, but in TM 

specimens from XFG patients there is a reduction of extracellular plaque material in the 

JCT, the structural integrity of trabecular endothelial cells is mostly retained and TM 

cellularity remains unchanged. (8, 51, 56, 57, 58, 61, 62)

Understanding similarities and differences between aging, glaucoma and XFS/XFG will be 

critical for developing effective diagnostic and treatment strategies.
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Figure 1. 
Diagram of the outflow pathway and juxtacanalicular (JCT) or cribriform region. The lower 

portion of the figure shows a stylized view of the TM and the upper inset shows an 

expanded view of the JCT region. TM = trabecular meshwork, ECM = extracellular matrix, 

SC = Schlemm’s canal, ITS = intertrabecular space

Reprinted with permission from Acott TS, Kelley MJ Extracellular matrix in the trabecular 

meshwork. Exp Eye Res (2008) 86: 543-561.
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Figure 2. 
Electron micrographs showing involvement of the outflow pathways in pseudoexfoliation 

(PEX) syndrome. A. Apparent production of PEX fibrils (arrow) by the inner wall 

endothelium (EN) of Schlemm canal (SC). B. Normal fibrillin-1 immunopositive 

(immunogold labelling) elastic microfibrils (EF) connecting Schlemm canal endothelium 

(EN) and juxtacanalicular plaques. C. Focal collapse and splitting of Schlemm canal (SC) by 

massive accumulation of PEX material. D. Collapse of aqueous vein showing accumulation 

of PEX material in its periphery (EN, vascular endothelium). E. Accumulation of PEX 

aggregates between smooth muscle (SM) cells of the anterior portion of the ciliary muscle. 

F. Apparent production of PEX fibrils by a smooth muscle cell of the ciliary muscle. 

Reprinted with permission from Schlötzer-Schrehardt U. Molecular pathology of 

pseudoexfoliation syndrome/glaucoma--new insights from LOXL1 gene associations. Exp 

Eye Res. 2009 Apr;88(4):776-85.
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