
A Deep Learning Network Approach to ab initio Protein 
Secondary Structure Prediction

Matt Spencer,
Informatics Institute, University of Missouri, Columbia, MO 65211. mcsgx2@mail.missouri.edu

Jesse Eickholt, and
Department of Computer Science, Central Michigan University, Mount Pleasant, MI 48859. 
eickh1jl@cmich.edu

Jianlin Cheng
Department of Computer Science, University of Missouri, Columbia, MO 65211. 
chengji@missouri.edu

Abstract

Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure 

predictions, which are increasingly demanded due to the rapid discovery of proteins. Although 

recent developments have slightly exceeded previous methods of SS prediction, accuracy has 

stagnated around 80% and many wonder if prediction cannot be advanced beyond this ceiling. 

Disciplines that have traditionally employed neural networks are experimenting with novel deep 

learning techniques in attempts to stimulate progress. Since neural networks have historically 

played an important role in SS prediction, we wanted to determine whether deep learning could 

contribute to the advancement of this field as well. We developed an SS predictor that makes use 

of the position-specific scoring matrix generated by PSI-BLAST and deep learning network 

architectures, which we call DNSS. Graphical processing units and CUDA software optimize the 

deep network architecture and efficiently train the deep networks. Optimal parameters for the 

training process were determined, and a workflow comprising three separately trained deep 

networks was constructed in order to make refined predictions. This deep learning network 

approach was used to predict SS for a fully independent test data set of 198 proteins, achieving a 

Q3 accuracy of 80.7% and a Sov accuracy of 74.2%.
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1 Introduction

Experimental methods for determining protein structure are so slow and expensive that they 

can be applied to only a tiny portion (<0.1%) of the proteins produced by various genome 

sequencing projects. Therefore, reliable methods for predicting the structure of newly 

discovered proteins using their amino acid sequences are crucial for accelerating research to 

determine the role of these proteins in biological systems. Furthermore, computational 
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structure prediction can be used to increase time and resource efficiency when designing 

artificial proteins[1].

The accuracy of tertiary structure prediction largely depends on the amino acid sequence of 

the protein under consideration. This is not only because a protein's sequence almost 

exclusively determines its structure, but also because such prediction of proteins that have 

close homologs with known structure is exceedingly accurate using comparative 

modeling[1, 2]. Unfortunately, it is much more challenging to predict the tertiary structure 

of proteins that do not have a close homolog with known structure, a process called ab initio 

(or template-free) tertiary structure prediction. However, it is considerably easier to use a 

sequence to predict one-dimensional protein features such as residue-residue contacts, 

solvent accessibility and secondary structure, and the use of these intermediate features has 

been shown to facilitate ab initio tertiary structure prediction[1, 3, 4].

Many early attempts at ab initio secondary structure prediction utilized statistical 

approaches, employing data collected from proteins with known secondary structure, but 

these methods could not often achieve accuracy higher than 65%[1, 5, 6]. Machine learning 

pattern recognition has proved more useful for such prediction, and many methods have 

utilized support vector machines[7-10] and neural networks[11-17]. Combining such 

machine learning technology with protein sequence profiles based on homology produced a 

major breakthrough in secondary structure prediction, raising accuracy to 70-79%[16, 

18-21]. Since then, sequence profiles were used in the SPINE neural network method with 

79.5% accuracy[22]. A novel approach called SymPred uses concepts based on natural 

language processing to define synonymous sequences of residues, resulting in a predictor 

achieving an accuracy of 80.5%[23]. More recently, the SPINE X method, employing neural 

networks, achieves >80% accuracy as well[24].

However, secondary structure prediction has failed to appreciably improve upon the state-

of-the-art 80% accuracy. As noted, recent methods have improved upon this accuracy by a 

small margin, but we must question how important it is to tweak secondary structure 

prediction tools to generate such a small improvement in accuracy. It is looking more and 

more like secondary structure prediction scores may not significantly improve until the 

discovery of features that can benefit the prediction process over and above the contribution 

of the sequence profiles alone[25]. One such potential set of features were calculated by 

Atchley, et al., comprising five numbers derived from a numerical dimensionality reduction 

of the properties of amino acids, calculated using statistical analyses[26]. Atchley's factors 

provide a convenient characterization of the similarities between amino acids. They have 

been used in other areas of protein prediction[27-29], but not secondary structure prediction, 

so we utilize this novel feature to investigate its potential to contribute to this field.

Secondary structure prediction is most commonly evaluated by the Q3 scoring function, 

which gives the percent of amino acids for which secondary structure was correctly 

predicted. Though it may be futile to attempt to raise the Q3 accuracy with the same features 

that have been employed for over a decade, improvement in secondary structure predictions 

could still be attained if we focus more on improvements in other measures of accuracy, 

notably the more sophisticated Segment Overlap (Sov) score. The Sov scoring function 
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takes segments of continuous structure types into account in an attempt to reward the 

appropriate placement of predicted structural elements without harshly penalizing individual 

residue mismatches, especially at the boundaries of segments[30]. CASP (critical 

assessment of methods of protein structure prediction) identifies Sov as being a more 

appropriate measure of prediction accuracy, though we have not found any studies 

investigating the relative effect of Q3 versus Sov scores on tertiary structure prediction 

itself[31, 32].

Although several methods[8, 18, 23] have used Sov scores in their evaluations, it is still not 

common practice for secondary structure predictors to report their results in terms of this 

alternative scoring criterion. It is even more unusual for Sov scores to be taken into 

consideration during the training procedure. During the development of this tool, we utilized 

a hybrid scoring method that takes the Sov scores as well as the Q3 accuracy into account in 

an attempt to improve secondary structure prediction despite the difficulty of surpassing the 

Q3 score ceiling.

Neural networks have been effectively used in a variety of prediction algorithms, including 

speech and face recognition as well as the aforementioned usage in protein secondary 

structure prediction[11-22, 24, 33-36]. The use of such networks allows predictors to 

recognize and account for complex relationships even if they are not understood. Weights 

assigned to nodes of the hidden layer determine whether the node is expressed or not, given 

the input. The training procedure adjusts these weights to make the output layer more likely 

to reflect the desired result, derived from documented examples. Once the weights are set, 

information for an unknown target can be used as input, allowing the network to predict its 

unknown properties.

Employing multiple hidden layers and training the layers using both supervised and 

unsupervised learning creates a deep learning (belief) network[37]. Deep learning networks 

are one of the latest and most powerful machine learning techniques for pattern 

recognition[37, 38]. They consist of two or more layers of self-learning units, where the 

weights of fully connected units between two adjacent layers can be automatically learned 

by an unsupervised Boltzmann machine learning method. This method is called contrastive 

divergence, and is used to maximize the likelihood of input data (features) without using 

label information. Thus, sufficiently numerous layers of units can gradually map 

unorganized low-level features into high-level latent data representations. These are more 

suitable for a final classification problem, which can be easily learned in a supervised 

fashion by adding a standard neural network output layer at the top of multi-layer deep 

learning networks. This semi-supervised architecture substantially increases the learning 

power while largely avoiding the over-fitting and/or vanishing-gradient problem of 

traditional neural networks.

Deep learning methods achieve the best performance in several domains (e.g., image 

processing, face recognition) and have an established place in protein prediction, having 

been effectively applied to residue-residue contact prediction and disorder prediction[27, 39, 

40]. Additionally, a couple of deep learning protein structure predictors have been 

developed recently, including a multifaceted prediction tool that predicts several protein 
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structural elements in tandem[36] and a predictor that utilizes global protein 

information[41]. Although we do not directly compare the accuracy of these tools with ours, 

we provide a methodological comparison in the discussion.

Since these techniques have been successful in other disciplines, we aimed to investigate 

whether deep learning networks could achieve notable improvements in the field of 

secondary structure prediction as well. Part of this attempt at improving structure prediction 

was the incorporation of the Sov score evaluation as part of the development process, and 

the introduction of the Atchley factors, which are novel to the field. These efforts produced 

DNSS, a deep network-based method of predicting protein secondary structure that we have 

refined to achieve 80.7% Q3 and 74.2% Sov accuracy on a fully independent data set of 198 

proteins.

2 Materials and Methods

2.1 Data Sets

Our training data set was a collection of 1425 proteins from the Protein Data Bank (PDB)

[42]. This is a non-redundant set representative of the proteins contained in the PDB and 

originally curated in the construction of a residue-residue contact predictor[27]. This set was 

randomly divided into a training data set and a testing data set, consisting of 1230 and 195 

chains, respectively.

A fully independent evaluation data set was collected from the CASP data sets. 105 proteins 

from the CASP9 dataset and 93 proteins from the CASP10 dataset were selected according 

to the availability of crystal structure[43, 44]. All of the proteins in the training data set have 

less than 25% sequence identity with CASP9 proteins, and only two training proteins have 

greater than 25% identity with CASP10 sequences (1BTK-A 43% identical to T0657 and 

1D0B-A 28% identical to T0650).

2.2 Tools

DSSP, a tool that utilizes the dictionary of protein secondary structure, was used to 

determine the secondary structure classification from the protein structure files[45]. The 

eight states assigned during the DSSP secondary structure classification were reduced to a 3-

state classification using this mapping: H, G and I to H, representing helices; B and E to E, 

representing sheets; and all other states to C, representing coils. This 3-state classification 

for secondary structure is widely used in secondary structure prediction, and was applied to 

the proteins in the training and testing data sets, as well as the evaluation data sets[8, 22, 24].

PSI-BLAST was used to calculate a position-specific scoring matrix (PSSM) for each of the 

training and testing proteins[46]. This was done by running PSI-BLAST for three iterations 

on a reduced version of the nr database filtered at 90% sequence similarity. The resulting 

PSSMs have twenty columns for each residue in the given chain, where each column 

represents the estimated likelihood that a residue could be replaced by the residue of the 

column. This estimation is based on the variability of the residue within a multiple sequence 

alignment. Furthermore, the information (inf) is given for each residue. With the exception 

of inf, matrix likelihoods are given in the range [−16, 13], and two methods of scaling these 
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values to the range [0, 1] were evaluated. A simple piecewise function with a linear 

distribution for the intermediate values (suggested in SVMpsi[8]):

and a logistic function of the PSSM score (used in PSIPRED[18]):

were compared. The two functions differ in that the logistic function amplifies differences in 

PSSM scores close to zero and severely diminishes those towards the extremities, whereas 

the piecewise function ignores scoring differences at the extremities and linearly scales the 

intermediate scores (Fig. 1).

2.3 Deep Learning Network

Deep learning (belief) networks (DNs) are similar to a two-layer artificial neural network 

but differ in the number of hidden layers and the training procedure. Typically, DNs are 

trained in a semi-supervised fashion; layer by layer using contrastive divergence and 

restricted Boltzmann Machines (RBMs)[38]. In its purest form, an RBM is a way to model a 

distribution over a set of binary vectors, comprising a two layer graph with stochastic 

nodes[47, 48]. In the graph, one layer corresponds to the input, or visible, data and the other 

is the hidden, or latent, layer. Each node in the graph has a bias and there are weighted 

connections between each node in the visible layer and every node in the hidden layer. 

Given the values of the weights and the states of the nodes, it is possible to calculate an 

energy score for a particular configuration of the machine using the following function E.

In this function, vi and hj are the states of the ith visible and jth hidden nodes, respectively. 

The values of the bias terms are denoted by bi and cj, and wij is the weight of the connection 

between the ith visible and jth hidden nodes.

A probability p(v) can then be defined for a particular input vector v by marginalizing over 

all possible configurations of the hidden nodes and normalizing (Z). Training an RBM 

comprises adjusting the weights and biases such that configurations similar to the training 

data are assigned high probability while random configurations are assigned low probability. 
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This is done using a procedure known as contrastive divergence (CD) which attempts to 

minimize an approximation to a difference of Kullback-Leibler divergences[47].

RBMs have shown themselves useful for initializing the weights in a DN. This is done by 

first training an RBM using the training data as the visible layer. Then weights of the learned 

RBM are used to predict the probability of activating the hidden nodes for each example in 

the training dataset. In this manner the RBM was applied to the training set to obtain a set of 

activation probabilities. These activation probabilities were then used as the visible layer in 

another RBM. This procedure was repeated several times to initialize the weights for several 

hidden layers.

It is important to note that while an RBM was originally formulated largely with stochastic, 

binary nodes, it is possible to use other types of nodes or model data other than strictly 

binary inputs[49]. In particular, real valued data in the range of [0-1] can be modeled in 

practice using standard logistic nodes and CD training without any modification. This was 

the approach initially employed by Hinton and Salakhutdinov when working with image 

data (the inputs to the visible layer were scaled intensities of each pixel)[38]. Indeed, when 

adding additional layers to their networks, the inputs to higher layers of the network were 

the real-valued activation probabilities coming from the preceding layer. Generally 

speaking, an RBM can handle this type of data through logistic nodes, and in this work we 

rescaled all inputs to be in the range of [0-1], making them compatible with this generalized 

usage of the RBM with real-valued data.

For the last layer, a standard neural network was trained and the entire network was fine-

tuned using the standard back propagation algorithm[37, 38]. To decrease the time needed to 

train a DN, all of the learning algorithms were implemented with matrix operations. The 

calculations were performed using CUDAmat on CUDA enabled graphical processing 

units[50].

2.4 Experimental Design

Our basic formula for training a deep network comprised three principal steps: selecting 

input profile information; gathering windows of profiles; and training the deep network. By 

testing configurations and comparing the resulting prediction accuracies, we determined 

effective parameters for the type and number of features included in the input profile, the 

window size, and the architecture of the deep network.

We first wanted to show that the ability to deepen the neural network is in itself a benefit. In 

order to confirm that the deep network architecture improves upon a “shallow” network with 

only one hidden layer, deep networks were trained while holding all other parameters 

consistent and varying the number of hidden layers from one to four. Once this proof-of-

concept experiment was carried out, we began investigating the components of the three 

principal steps.

We selected the input profiles from three kinds of features: the amino acid residues 

themselves (RES), the PSSM information (PSSM), and the Atchley factors (FAC) [26]. 

Deep networks were trained using windows of adjacent residues including different 
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combinations of these features to determine which assortment would train the deep network 

most effectively.

Once we selected an input combination, profile information from a window of consecutive 

amino acids was collected to represent the central residue. Each type of feature was given an 

extra value which was used to indicate whether the window spanned the terminal residues. 

Similar machine learning approaches to secondary structure prediction have reported 

success using a variety of window sizes including 15 [8] and 21 [22], so window sizes from 

11 to 25 were tested.

Similarly, using constant input profiles and window size, an effective architecture was 

determined by varying the depth and breadth of the network. We trained deep networks with 

3 to 6 hidden layers and varied the amount of nodes composing each hidden layer. These 

parameters were tested first using a coarse sampling, where one trial of each depth contained 

many nodes per layer and another contained few nodes. Variations of the most effective 

parameter choices were tested to further refine the deep network configuration.

In an attempt to improve the secondary structure predictions, an overall system of three deep 

networks was developed (Fig. 2). In this system, two independently trained deep networks 

predict the secondary structure of a protein, and the third deep network uses these 

predictions as input and generates a refined prediction. In order to train the networks in such 

a system, the training data was randomly split in half, and each half of the dataset was used 

to train one of the first two deep networks. We chose to use two first-tier networks to gain 

the benefit of the refined prediction without overcomplicating the model. Each first tier 

network was used on the opposite half of the training data to obtain secondary structure 

predictions, which became the features used to train the second tier deep network. The 

optimal window size and architecture configuration were determined in a similar fashion to 

the preliminary deep networks. Once the second tier deep network was trained, all three 

networks were used to predict the structure of the testing dataset. The structure type 

probabilities assigned by the first tier DNs were averaged for each residue and used by the 

second tier deep network to make the final secondary structure prediction.

2.5 Training and Evaluation Procedure

Many processes of training and testing a deep network went into the construction of this 

tool. For the purpose of this report, we define a trial to include the following steps: the 

complete training of a deep network using features derived from the training data set of 1230 

protein chains; the testing of the deep network by predicting the secondary structure of the 

testing data set of 195 proteins; and the evaluation of these predictions using the Q3 and Sov 

scoring functions to compare the predicted 3-state secondary structure to the true structure. 

Each trial was repeated over five iterations using identical parameters to account for the 

stochastic processes involved.

In order to determine which parameters were most successful, the trials were ranked in order 

of increasing Q3 and Sov score and assigned one rank for each score. The ranks from both 

scores for all identical trials were summed, at which point the set of trials with the highest 

rank sum was deemed to have used the most effective parameter configuration. This rank 
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sum method was chosen instead of comparing average scores because it was found to be 

more resistant to outliers, so ideally the chosen parameters would not only result in accurate 

predictions, but also perform consistently while other parameters were being tested.

A rigorous ten-fold cross-validation test was used to determine the accuracy of the 

predictions using the final DNSS pipeline. After randomly omitting five proteins, the 

remainder of the combined training data set consisted of 1420 proteins that were divided 

into ten equal parts, nine of which were used for training and the remaining one for testing. 

This process was repeated ten times using a different division for testing, and using identical 

parameters for each trial. This resulted in one secondary structure prediction for each of the 

1420 chains, which were evaluated using Q3 and Sov scores.

In addition to the cross-validation test, an independent test data set composed of 105 

proteins from the CASP9 data set and 93 proteins from the CASP10 data set was used to 

evaluate the performance of the DNSS tool[43, 44]. This data set was also used to assess the 

accuracy of a variety of secondary structure prediction tools, including three tools 

employing different kinds of neural network architectures: SSpro v4.0, PSIPRED v3.3, and 

PSSpred v2[15-17]; and the RaptorX-SS3-SS8 method which utilizes conditional neural 

fields[51, 52]. Since the final DNSS pipeline was created without consideration for the 

prediction accuracy over the CASP9 and CASP10 proteins, they can be used as fully 

independent data sets to provide an unbiased evaluation. The predictions of each tool were 

evaluated with the Q3 and Sov scoring functions and compared.

3 Results

3.1 Depth of Network

The improvement generated by adding additional layers on top of the basic 1-layer network 

was modest (~0.5% Q3 and ~0.25% Sov) (Fig. 3). Still, the mean differences between the 1-

layer Q3 and Sov scores and the scores produced by each of the multi-layered deep networks 

was statistically significant (p<.05). Our use of deep networks constructed with additional 

hidden layers was driven not by a desire to increase the model's complexity, but rather to 

allow for the layer-by-layer, unsupervised initialization procedure, which first learns the 

patterns in the data. In any case, this preliminary experiment demonstrates that our use of the 

deeper network does lead to a visible increase of the accuracy of predictions, and the more 

complex architecture is not detrimental to the performance of the secondary structure 

prediction tool.

3.2 PSI-BLAST Scaling

Training deep networks using both the logistic and piecewise PSSM scaling functions 

resulted in an average Q3 score of 77.5% over the test data set. There was a slight difference 

in the Sov scores, with the piecewise function achieving 70.7% versus the logistic Sov score 

of 70.4%. Though the difference was small, the piecewise function scored higher, so this 

scaling function was selected.
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3.3 Input Features

Deep networks were trained and tested using all combinations of features including at least 

one of RES, PSSM and FAC input information (Table 1). As expected, including PSSM 

profile features greatly improved prediction accuracy, shown by the 13.4% difference in 

average Q3 scores and a similar leap for Sov scores between the best-scoring configuration 

omitting the PSSM features and the worst-scoring configuration including it. Including the 

RES features proved to be a detriment to the scores, possibly because this resulted in too 

much noise in the input data since the identity of the residue is contained within the other 

two inputs. The combination of the PSSM profile and the Atchley factors was found to train 

the deep network most effectively out of any combination of these three types of features, so 

this combination was used during future trials.

3.4 DN Architecture for the First Tier

Odd window sizes from 11 to 25 were tested to determine the optimal window size for the 

deep network (Fig. 4). The average scores generally increased toward a window size of 19, 

and then sharply dropped off for windows larger than 20. Deep networks constructed using 

window sizes of 17 and 19 both scored highly, but due to the previously mentioned criteria, 

a window size of 17 was selected.

Initially, two architectures with each of 3, 4, 5, and 6 hidden layers were tested, using hidden 

layers with more nodes for one trial and hidden layers with fewer nodes for the second trial 

of each depth. The scores of these initial tests of variable architecture show that a 4-layered 

trial with many nodes in each hidden layer was the most accurate, followed closely by a 3-

layered trial with few nodes (Table 2). However, using 3 layers with many nodes was found 

to be much less accurate, whereas both trials with 4 layers yielded favorable results, 

demonstrating that a 4-layered architecture is most likely to be the optimal choice.

Variations of the more promising architectures of several layer sizes were tested to refine the 

method, and the trials were ranked in Table 3. 12 configurations were tested overall, 

consisting of three 3-layer, six 4-layer, and three 6-layer architectures tested using a variety 

of hidden layer sizes. More architectures containing 4 layers were tested because these 

networks continually scored highly in comparison to the rest of the tested architectures, so 

additional variations of 4-layer networks were attempted. The best tested architecture was 

one with 4 hidden layers and a majority hidden layer size of 500.

Note that in these tables the configurations are ranked in order from highest to lowest score 

based on the previously defined ranking scheme. In some cases, such as rows 1 and 2 in 

Table 2, the trials appear to be inappropriately ranked. This is due to the effect that outliers 

have on the average scores, but which does not as significantly affect the ranking scheme.

3.5 DN Architecture for the Second Tier

Once the optimal parameters were determined for training a deep network to make a 

preliminary secondary structure prediction, we used these parameters while training two first 

tier deep networks in the process described above. These networks were used to predict the 

structures of the proteins that were not used to train them, and these predictions were used as 
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the input for the second tier deep network. In a similar fashion to determining the optimal 

parameters for the original deep networks, different parameters were tested for this second 

tier deep network.

To determine the optimal window size for the second tier, deep networks were trained using 

odd window sizes from 11 to 21 (Fig. 5). The resulting average Q3 scores were very similar, 

with a mere 0.23% difference between the highest and lowest scoring trial. The average Sov 

scores were slightly more pronounced, with a range of 0.7%, and based on these scores it 

was determined that a window size of 17 was appropriate for the second tier, as it was for 

the first tier.

Potential appropriate network architectures were tested in a similar fashion to the process 

above. After a coarse preliminary sampling of architectures ranging from 3 to 6 hidden 

layers, variations of the top-scoring networks were further tested and ranked (Table 4). The 

most successful architecture was found to be a 4-layer network with a majority hidden layer 

size of 600.

3.6 Evaluation

Our final workflow for using deep networks to predict the secondary structure of proteins 

was a two-tier process. Two deep networks of 4-layer architecture with hidden layer sizes of 

500, 500, 500, and 200 were trained using input profiles constructed by PSI-BLAST profiles 

and Atchley's residue factors, collected in windows of 17. These networks were used to 

make secondary structure predictions, which were also collected in windows of 17 and used 

as the input of a second-tier deep network of 4-layer architecture with hidden layer sizes of 

600, 600, 600, and 250 (Fig. 2). This prediction pipeline achieved maximum scores of 

80.3% Q3 and 73.6% Sov on the testing dataset. It was further assessed using a 10-fold 

validation test, resulting in an average Q3 score of 78.8% and an average Sov score of 

72.2%.

The secondary structures of proteins from two CASP data sets were also predicted. DNSS 

achieved a Q3 accuracy of 81.1% and a Sov score of 74.7% over 105 proteins from the 

CASP9 data set, and 93 proteins from the CASP10 data set were predicted with a Q3 and 

Sov accuracy of 80.2% and 73.6%, respectively[43, 44]. The confusion matrices for the 

DNSS predictions over the combined CASP dataset are given in Table 5 and Table 6. These 

matrices show that DNSS is most reliable at predicting regions of helices, and predicts coils 

and sheets with similar accuracy.

PSIPRED, SSpro, PSSpred, and RaptorX-SS3 were also used to predict the secondary 

structure of the same fully independent CASP data sets, and these results are recorded in 

Table 7, with mean difference significance values listed in Table 8. According to the same 

system that was used to rank trials during the development of the deep network predictor, 

DNSS and PSSpred tied for the best scoring tools, as PSSpred ranked highest in Q3 score 

and third in Sov score, and DNSS ranked highest in Sov score and third in Q3 score.

The distributions of the scores obtained by each method are plotted in Fig. 6. Although they 

are very similar, the slight differences in the score distributions are in some ways more 
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revealing than the simple average scores. In comparison to the Q3 score distribution of 

RaptorX, DNSS has fewer predictions in brackets for scores less than 80% and has more 

predictions in the highest two score brackets, indicating that DNSS outperformed RaptorX 

over the whole Q3 distribution (Fig. 6a). In contrast, notice that PSIPRED has fewer 60% 

predictions, more 70-80% predictions, and fewer 90% predictions than PSSpred. In one 

sense, PSSpred performed better because it has more predictions that are over 90% accurate. 

However, PSIPRED's superiority can also be argued, since it had the fewest predictions with 

scores under 70%, identifying it as a more consistent tool. In a comparison between two 

tools, the clear superiority of one tool is demonstrated if their distributions cross only once, 

as is the case between DNSS and RaptorX. If the distributions cross multiple times, as in 

PSIPRED versus PSSpred, the relationship between tools is considered complex.

According to this criterion, no tool was consistently best over the Sov score distribution 

either (Fig. 6b). The DNSS Sov score distribution is close to being ubiquitously superior, 

with lower prediction counts in the lower brackets and higher prediction counts in the 70-80 

and 80-90 brackets than the other tools. However, DNSS has almost the fewest predictions 

with a Sov score above 90. Though the distribution would be more favorable for the DNSS 

tool if this were not the case, it is still clear that DNSS performed considerably well in terms 

of Sov score, especially considering that 67% of the CASP proteins were predicted with a 

Sov accuracy of 70 or higher, as opposed to the next best 57% achieved by SSpro.

4 Discussion

In this paper, we presented DNSS, an ab initio method of predicting the secondary structure 

of proteins employing deep learning network architectures trained using the position-

specific scoring matrix of the protein sequence and Atchley's factors of residues. A 

systematic approach was used to determine effective parameters for the training process, 

which carefully considered a variety of options for the input profile, window size, and 

architecture in an attempt to make the most effective use of this deep network 

implementation. We also utilized an advantage of this generalized method by combining the 

predictions of two fairly accurate predictors into a new set of input that could be used to 

train a third predictor without modifying the deep learning network implementation. 

Furthermore, our training method emphasized the improvement of Q3 and Sov scores in 

tandem, as opposed to the usual focus on Q3 score maximization alone. Thus, we produced a 

workflow capable of producing secondary structure predictions that achieved an average Q3 

score of 80.7% and an average Sov score of 74.2% on a fully independent test data set of 

198 proteins, including 105 proteins from the CASP9 data set and 93 proteins from the 

CASP10 data set.

We compared these results to performance of four competitive secondary structure 

predictors: PSIPRED, SSpro, PSSpred and RaptorX[15-17, 51]. Overall, the methods 

performed similarly, with DNSS achieving slightly lower Q3 accuracy and slightly higher 

Sov accuracy than the best of the evaluated tools. We conclude that DNSS has 

approximately the same prediction power as these other methods. Machine learning 

techniques have traditionally dominated the field of secondary structure prediction, so 

failing to produce a significant improvement using the most sophisticated implementation of 
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machine learning suggests that there might not be much potential to advance the field of 

secondary structure prediction.

Perhaps the discovery of better features is necessary to breach the current secondary 

structure prediction accuracy ceiling of ~80%. As part of this investigation, we tested the 

impact of including Atchley's factors as features during the training process, and noted that 

adding them to the typical PSSM information did increase the accuracy of predictions over 

using PSSM profiles alone (Table 1). However, the benefit of including them was slight, and 

during the tests for other combinations of features, the addition of FAC appears to have 

decreased the accuracy of predictions. Because of this, it is unclear whether the Atchley 

factors were a benefit at all. In any case, they certainly are not the key to boosting secondary 

structure prediction past the present plateau.

Though DNSS did not appreciably advance the field of secondary structure prediction, it did 

achieve several favorable results. A comparison of the minimum scores of the evaluated 

methods shows that every DNSS prediction achieved a Q3 score greater than 50% and a Sov 

score greater than 40%, which is an improvement over all of the others (Table 7), showing 

that this method is an especially consistent predictor. Furthermore, DNSS Sov scores were 

unrivaled by the tested tools, with a promising mean difference of 2% or more (Table 7), 

which was highly significant in all comparisons (Table 8). Under the assumption that the 

Sov score is, indeed, more relevant to tertiary structure prediction, our evaluation method 

that incorporates both the Q3 and Sov scoring criteria keeps the overall accuracy of 

predictions high while ensuring that the results remain particularly useful for tertiary 

structure methods. Considering the immense effort required of researchers to generate small 

improvements to the Q3 score, putting more future focus into enhancing Sov performance is 

a more realistic goal that may lead to improvements in protein prediction overall.

Our approach has some similarities with a multifaceted tool developed by Qi et al., which 

simultaneously predicts many aspects of local protein structure (e.g., secondary structure, 

solvent accessibility, binding, etc.)[36]. Both approaches use deep neural networks but differ 

in the training methodology, targets and refinement. In the prior work by Qi et al., a feature 

extraction layer was developed to explicitly map amino acid sequences into a feature space. 

The map learned was capable of capturing similarities among amino acid types and was 

used along with other features (e.g., PSSM) as the input into a multi-layer neural network. 

The network was trained using back-propagation and a Viterbi post-processing was 

performed to leverage local dependencies among the output classes.

In contrast, our approach learns features in the input data and initializes weights in the deep 

network via the layer-by-layer training approach and RBMs. After the weights were 

initialized, the entire network was refined using back-propagation. DNSS did not require 

any additional mapping for amino acid sequences but made use of the existing Atchley 

Factors as inputs into the network to characterize similarities between amino acids[26]. For 

post-processing, we trained an additional deep network to account for dependencies between 

the predicted secondary structure states and to refine our predictions.
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In comparing the two methodologies, our approach is more homogenous with respect to 

training and prediction. For training, we used direct application of deep networks learned in 

a semi-supervised, layer-by-layer approach and did not have to train specialized feature 

extractors. These were learned through layered RBMs. For post processing and prediction, 

we used an additional deep network, which was unmodified except for the inputs, to 

consider initial predictions of secondary structure of a residue's neighbors before making a 

final prediction (i.e., the output of Tier 2).

Zhou et al. also employed a deep architecture for secondary structure predictions, though 

their approach is much more sophisticated and different in nature than the deep network 

architectures used in DNSS[41]. This method predicts 8-state secondary structure with 

competitive results, while our method is tailored to the 3-state prediction task. Furthermore, 

Zhou et al. utilized more global information through a multi-layer convolutional supervised 

generative stochastic network while DNSS makes predictions by focusing largely on local 

sequence information (i.e., a window centered on the residue to be classified).

Although the DNSS method did not produce a staggering improvement to the field of 

secondary structure prediction, it did perform competitively with other methods in the 

discipline and displayed some promising characteristics. We believe that further refinements 

of similarly implemented deep networks could produce more accurate secondary structure 

predictors. The specified parameters and architectures were the most accurate ones found 

during these trials, but it is possible that even more optimal parameters can be found by 

testing more precise variations of the most promising configurations.

In particular, continued experimentation with higher variability of node quantities between 

hidden layers would almost surely result in a more effective architecture. There are also 

other parameters common to neural networks that were not addressed as a part of this 

experiment. Choosing different values for these parameters, such as the batch size and the 

number of iterations (epochs), could benefit the prediction process as well. Furthermore, we 

expect that adding more Tier 1 deep networks in the overall prediction workflow would 

slightly improve predictions, as this would allow the use of more proteins while training 

each network. Unfortunately, any of this experimentation would involve a considerable 

investment in resources, and we would expect all such improvements to be slight 

(cumulatively less than 1%).

Finally, due to the homogeneity of the approach, this DNSS workflow can easily be adapted 

for use in other applications, whether related to protein prediction or not, as long as there is a 

sufficiently large and diverse dataset available to train the deep networks.

5 Conclusion

Neural networks have been an integral part of the protein structure prediction process for 

over a decade. Their introduction considerably improved the accuracy of predictors, and the 

gradual refinement and extended applications of neural network training methods continues 

to benefit the field of structure prediction. Deep learning networks are a revolutionary 

development of neural networks, and it has been suggested that they can be utilized to create 
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even more powerful predictors. This deep learning approach employs a semi-supervised 

algorithm that allows for an increase in learning power and contains more potential for 

structural refinements, enhancing the ability to sculpt the network architecture to the nature 

of the problem being addressed. This comprehensive investigation of an implementation of 

deep networks in secondary structure prediction yielded a competitive tool, though the 

method failed to advance the field as much as was suggested by its alluring complexity.
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Fig. 1. 
A comparison of the piecewise and logistic functions used to scale PSSM values.
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Fig. 2. 
Block diagram showing the DNSS secondary structure prediction workflow.
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Fig. 3. 
Results obtained using varied hidden layers and averaged over 10 trials while keeping all 

other parameters constant.
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Fig. 4. 
Results obtained using varied window sizes and averaged over 5 trials for the Tier 1 deep 

learning networks.
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Fig. 5. 
Results obtained using varied window sizes and averaged over 5 trials for the Tier 2 deep 

learning network.
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Fig. 6. 
The distribution of the Q3 (a) and Sov (b) scores obtained by five predictors over 198 CASP 

proteins. The score bracket of 90 indicates the amount of protein predictions that scored 

between 90% and 100%, and so on.
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TABLE 1

Performance of Input Profile Features

Rank Features Q3 (%) Sov (%)

1 PSSM + FAC 79.1 72.38

2 PSSM 79.07 72.2

3 RES + PSSM 77.15 69.82

4 RES + PSSM + FAC 76.42 64.01

5 RES 63.04 52.36

6 FAC 62.22 54.94

7 RES + FAC 62.21 51.24

Scores show the average accuracy of deep networks trained with indicated input profiles, evaluated using the test data set of 195 proteins and listed 
from highest to lowest ranked score. RES = Residues, PSSM = Position Specific Scoring Matrix, FAC = Atchley Factors
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TABLE 2

Performance of Coarse Architecture Variation

Layers Nodes Q3 (%) Sov (%)

4 Many 79.45 72.36

3 Few 79.4 72.75

4 Few 79.12 72.22

6 Many 79.09 71.78

5 Many 78.73 71.63

6 Few 78.71 71.65

5 Few 78.49 71.68

3 Many 78.18 70.63

Scores show the average accuracy of deep networks trained using a coarse sampling of deep learning network architectures, evaluated using the test 
data set of 195 proteins and listed from highest to lowest ranked score.
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TABLE 3

Performance of Refined Architecture Variation

Rank Layers Nodes
a Q3 (%) Sov (%)

1 4 500 79.17 72.85

2 4 500 79.23 72.71

3 4 600 79.02 72.24

4 4 450 78.93 72.00

5 4 400 78.97 71.90

6 6 500 79.17 71.78

7 6 600 79.09 71.78

8 3 400 79.09 71.72

9 4 300 78.91 72.11

10 3 500 78.97 71.75

11 3 450 78.78 71.54

12 6 300 78.71 71.65

Scores show the average accuracy of deep networks trained using indicted architecture parameters and evaluated using the test data set of 195 
proteins and listed from highest to lowest ranked score.

a
Nodes refers to the size of the majority of hidden layers, as node amount is not always consistent between layers.
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TABLE 4

Performance of Second Tier Architecture Variation

Rank Layers Nodes
a Q3 (%) Sov (%)

1 4 600 80.24 73.07

2 5 400 79.96 72.67

3 3 500 80.00 72.37

4 4 300 79.84 72.48

5 6 300 79.82 72.50

6 3 400 79.89 72.20

7 6 400 79.87 72.15

8 6 200 79.70 72.24

9 5 500 79.42 71.03

10 4 400 79.35 70.83

11 4 500 79.39 70.31

12 3 600 79.07 70.06

Scores show the average accuracy of deep networks of the second tier, trained using indicted architecture parameters and evaluated using the test 
data set of 195 proteins, listed from highest to lowest ranked score.

a
Nodes refers to the size of the majority of hidden layers, as node amount is not always consistent between layers.
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TABLE 5

First Confusion Matrix

Cpred Epred Hpred

C 77.80% 12.54% 9.66%

E 18.78% 79.38% 1.58%

H 13.79% 3.03% 83.19%

Values indicate the relative amounts of predicted structure classes that DNSS assigned to each actual structural element. The combined CASP 
dataset containing 198 proteins was used. C = Coil; E = Sheet; H = Helix.
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TABLE 6

Second Confusion Matrix

C E H

Cpred 76.91% 11.05% 12.04%

Epred 20.07% 75.65% 4.28%

Hpred 11.47% 1.31% 87.23%

Values indicate the proportion of predicted structure classes that DNSS assigned to each actual structural element. The combined CASP dataset 
containing 198 proteins was used. C = Coil; E = Sheet; H = Helix.
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TABLE 7

Comparison of Secondary Structure Predictions

CASP9 CASP10 Combined CASP Min Score

Method Q3 (%) Sov (%) Q3 (%) Sov (%) Q3 (%) Sov (%) Q3 (%) Sov (%)

DNSS 81.1 74.7 80.2 73.6 80.7 74.2 50.4 46.1

PSSpred 83.3 72.0 81.0 70.4 82.2 71.3 41.8 33.7

SSpro 79.6 72.6 78.8 71.9 79.2 72.3 49.6 34.0

PSIPRED 80.9 69.3 81.2 68.6 81.0 69.0 33.8 23.2

RaptorX 78.1 70.4 77.9 70.3 78.0 70.3 45.6 33.0

Scores show the average accuracy of secondary structure prediction achieved by three methods over 105 proteins from the CASP9 data set, 93 
proteins from the CASP10 data set, and the combined data set of all 198 of these proteins, along with the lowest score achieved for a single protein 
in this combined data set. Tools are listed from highest to lowest using the same ranking score as used for Tables 1 through 4. Note that DNSS and 
PSSpred tied for the highest rank.
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TABLE 8

Significance of Differences Between Tools

Q3 DNSS PSSpred SSpro PSIPRED RaptorX

Sov

DNSS 0.0010 0.0002 0.4383 <0.0001

PSSpred 0.0002 <0.0001 0.0396 <0.0001

SSpro 0.0042 0.2498 <0.0001 0.0081

PSIPRED <0.0001 0.0172 <0.0001 <0.0001

RaptorX <0.0001 0.2720 0.0030 0.0800

Values show the significance (p-values) of the mean differences between scores for each pair of tools, calculated using Student's t-test over the 
combined CASP data set of 198 proteins. The upper triangular portion shows the results of the statistical test for mean difference of Q3 scores, 

while the lower triangular portion shows the results for the mean difference of Sov scores.
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