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Abstract

We construct and analyze a rate-based neural network model in which self-interacting units 

represent clusters of neurons with strong local connectivity and random inter-unit connections 

reflect long-range interactions. When sufficiently strong, the self-interactions make the individual 

units bistable. Simulation results, mean-field calculations and stability analysis reveal the different 

dynamic regimes of this network and identify the locations in parameter space of its phase 

transitions. We identify an interesting dynamical regime exhibiting transient but long-lived chaotic 

activity that combines features of chaotic and multiple fixed-point attractors.

A substantial fraction of the synaptic input to a cortical neuron comes from nearby neurons 

within local circuits, while the remaining synapses carry signals from more distal locations. 

Local connectivity can have a strong effect on network activity [1]. In firing-rate models, a 

cluster of neurons with similar response properties is grouped together, and their collective 

activity is described by the output of a single unit [2]. Interactions between the neurons 

within a cluster are represented in these models by self-coupling, that is, feedback 

connections from a unit to itself, whereas interactions between clusters are represented by 

connections between units. Networks consisting of N units with connections chosen 

randomly and independently have provided a particularly fruitful area of study because they 

have interesting features and can be analyzed, in the large N limit, using mean-field methods 

[3]. Self-couplings in the networks that have been studied in this p way to date are either 

non-existent or weak (of order ). If these units represent strongly interacting local 

clusters of neurons, we should include self-coupling of order 1 in the network model. For 

this reason, we consider the properties of firing-rate networks with strong self-interactions. 

The remaining interactions, those between units, are taken to be random in our study, 

reflecting the fact that we are investigating the properties of generic networks, not networks 

designed to perform specific tasks.
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The self-coupling we introduce to represent intracluster connectivity, together with the 

neuronal nonlinearity, can cause the individual units of the network to be bistable. The 

random inter-unit connectivity promotes chaotic activity, as has been previously established 

[3]. With both forms of connectivity, the networks we study combine two features normally 

seen independently, chaotic and multiple-fixed-point attractors. Our goal is to reveal the 

different types of activity that arise in networks with self-interacting units and to explore 

how chaotic and multiple-fixed-point dynamics interact. We begin by using network 

simulations to uncover the different dynamic regimes that the network exhibits, and then we 

use both static and dynamic mean-field methods to determine, in the limit of large network 

size, the properties of the activity within these regimes and to compute the phase boundaries 

between them in the space of network parameters.

The Model and Simulation Results

The networks we study consist of N units described by activation variables xi, for i=1, 2, … 

N, obeying the equations

(1)

The second term on the right side of this equation describes the within-cluster coupling, 

which has a strength determined by the parameter s. The last term on the right side reflects 

the random cluster-to-cluster interactions. The elements of the N × N connection matrix J are 

drawn independently from a Gaussian distribution with mean 0 and variance 1/N, and the 

parameter g defines the strength of the inter-unit coupling, also known as the network gain. 

Note that the form of equation 1 implies that time is dimensionless or, equivalently, that it is 

measured in units of the network time constant.

The self coupling s and the network gain g determine the network dynamics. Before 

considering the full range of values for s and g, it is instructive to consider two special cases. 

The first is when the self coupling vanishes, s=0. In this case, previous work [3] has shown 

that, in the limit N → ∞, the network exhibits activity when g > 1 chaotic 1 and activity that 

decays to 0 when g < 1. The second special case is when the network gain vanishes, g = 0. 

In this situation, the units decouple, and each drives its own activity to a fixed point 

determined by x = s tanh(x). For s < 1, the only solution is x = 0, which is stable, and 

therefore all unit activity decays to zero from any initial state. For s > 1, there are two 

nonzero stable solutions (the zero solution is unstable) that are negatives of each other. 

Thus, in this case the units show bistability and, because they are independent, there are 2N 

possible stable fixed-point configurations of the network. Nonzero values of both s and g 

can give rise to an interesting interplay between chaos and bistability.

As a preliminary indication of this richness, we investigate the network dynamics over a 

range of s and g values by computer simulation (figure 1). In the region below the long-

dashed line in figure 1, any initial activity in the network decays to zero. Above the solid 

curve, the network exhibits transient irregular activity that eventually settles into one of a 

number of possible nonzero fixed points. This settling can take an extremely long time (as 
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we show below, exponentially long in N). In the region between these two curves, the 

network activity is persistently irregular. In the following, we will show that both the 

persistent irregular activity within this region and the transient irregular activity in the region 

with stable fixed points are chaotic, and we have labelled them as such in figure 1. The 

region shown with transient chaos and multiple fixed points is a distinctive feature due to the 

self interaction.

The Mean-Field Approach

To determine the type of activity that the network exhibits in different regions of the space 

of s and g values, we need to characterize solutions of equation 1 and evaluate their stability. 

For both of these computations, we take advantage of the random nature of the networks we 

consider. To analyze stability, we compute the eigenvalues of stability matrices for various 

solutions using results from the study of eigenvalue spectra of random matrices. To extract 

solutions of the network equations, we make use of mean-field methods that have been 

developed to analyze the properties of network models in the limit N → ∞, averaged over 

the randomness of their connectivity [3]. In this section, we provide a brief introduction to 

the mean-field approach.

The basic idea of the mean-field method is to replace the network interaction term in 

equation 1 (the last term on the right side) by a Gaussian random variable [3] and to 

compute network properties averaged over realizations of the connectivity matrix J. Because 

we are averaging over realizations of J, all the units in the network are equivalent, so the N 

network equations 1 get replaced by the single stochastic differential equation

(2)

We denote the solutions of this equation by x(t; η) to indicate that they depend on the 

particular realization of the random variable η used in equation 2. If the mean and 

covariance of the Gaussian distribution that generates η(t) are chosen properly and N is 

sufficiently large, the family of solutions x(t; η) across the distribution of η will match the 

distribution of xi(t) across i = 1, 2, … N that solve equation 1, averaged over J. The 

consistency conditions that assure this require that the first and second moments of η match 

the first and second moments of the interaction term that it replaces. The first moment of η is 

0. In the original network model, the average autocorrelation function of the interaction 

term, averaged over realizations of the random matrix J, is

(3)

where the square brackets denote an average of realizations of J, the angle brackets denote 

an average over t, and we have used the identity
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(4)

The second moment of η is g2C(τ). As we will show below, C(τ) is calculated in the mean-

field approach by averaging over x(t; η) rather than over the different xi in the network as in 

equation 3.

In the following sections, we use these results to obtain self-consistent mean-field results for 

both static and dynamic solutions, that depend on the family of solutions x(t; η) of equation 

2. When s=0, equation 2 is linear and can be solved analytically [3]. With nonzero s, 

equation 2 must be solved numerically. We describe procedures for doing this in the 

following sections, first for the simpler static case, when x and η do not depend on time, and 

then for the more complex dynamic case when they do.

Analysis of the Fixed Points of the Model

The phase plot in figure 1 has 3 regions separated by 2 phase boundaries. As we will see, 

fixed-point solutions exist in all three of these regions. Their stability defines the 2 phase 

boundaries. In this section, we identify the fixed points, estimate their number, and analyze 

their stability.

The Zero Fixed-Point The trivial solution xi = 0 for all i always satisfies equation 1. To 

determine whether this solution will robustly appear we must compute its stability. The 

stability matrix for equation 1 expanded around the zero solution is

(5)

Because J is a random matrix with variance 1/N, its eigenvalues, for large N, lie in a circle of 

unit radius in the complex plane [4–6]. For M, a factor of g scales this radius, and the 

diagonal terms shift the eigenvalues along the real axis by an amount −1 + s. To ensure that 

all eigenvalues of M have real parts less than zero, so that the zero fixed point is stable, we 

must therefore require − 1 + s + g < 0. Thus, the long-dashed line in figure 1 is described by 

s=1 – g.

Nonzero Fixed Points

In addition to the zero fixed point just discussed, the model exhibits non-zero fixed points. 

We now use the mean-field approach to find solutions corresponding to these non-zero 

fixed-points and to determine their stability as a function of g and s. Because we are 

searching for fixed points, the mean field, η, is a time-independent Gaussian random 

variable with zero mean and variance σ2 to be determined. The solutions of the static version 

of equation 2,

(6)
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are time-independent functions x(η). For s≠0, equation 6 must be solved numerically, and 

figure 2 reveals that there are three possible solutions when s > 1 and ∣η∣ < ηm. These 

multiple solutions correspond to multiple fixed points in the original network model.

We are interested in determining the parameter range that supports stable non-zero fixed 

points and in computing their number. The stability matrix from equation 2 for a fixed point 

with values xi, i=1 … N, is

(7)

and stability requires that none of its eigenvalues have real parts greater than 0. We can 

evaluate stability using the mean-field solutions x(η), rather than the networks values xi that 

appear in equation 7. In the limit N → ∞, the matrix 7 has an eigenvalue at the point z in the 

complex plane if [7]

(8)

where we use the notation

(9)

If we ask whether there is an eigenvalue at the point z=0, this expression simplifies to

(10)

We use this latter condition below because the inequality 8 does not support isolated 

eigenvalues [7], so stability can be assessed by determining whether or not there is an 

eigenvalue at z=0. Stability requires Q ≤ 1, with the edge of stability defined by Q=1.

When s > 1, the expressions in equations 8 and 10 are ill-defined as written because x(η) is a 

multivalued function for ∣η∣ < ηm. We can eliminate one of the 3 possible solutions of 

equation 6 in this range by noting that the denominator of the expression in 8 is equal to z 

plus the slope of the curve drawn in figure 2. Any value of x(η) located on a region of this 

curve with negative slope will cause the denominator to vanish at a positive real value of z, 

indicated the presence of a positive real eigenvalue and instability. Thus, if we are interested 

in stable solutions, we can eliminate values of x(η) located in the region of negative slope in 

figure 2, that is, we must require ∣(xη)∣ > xm. This reduces the number of allowed solutions 

for ∣η∣ < ηm from 3 to 2, one positive, which we call x+(η) and one negative, which we call 

x−(η). Because we are interested in evaluating Q of equation 10, we define, in the region 

where there are two solutions,

Stern et al. Page 5

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(11)

In the region where there is no ambiguity, we just use f(η) to denote this quantity. Note that, 

for positive η, f−(η) > f+(η) or, equivalently, f is smaller for the solution with larger ∣x(η)∣. 

This means that the solution with larger ∣x(η)∣, for a given value of η in the range ∣η∣ < ηm, 

contributes less to Q and hence favors stability. On the other hand, restricting the solutions 

to the one with larger ∣x(η)∣ could eliminate valid stable solutions.

The number of stable fixed points, when they exist, is exponential in N, which means that it 

is exponentially dominated by the configuration of x(η) with the different solutions 

corresponding to stable fixed points. We define a weighting factor m(η) to be the fraction of 

solutions that are chosen as x+(η) from the two possible values for x(η) in this configuration. 

Then, 1 – m(η) is the fraction solutions chosen as x−(η). With this weighting specified,

(12)

Note that we have used the η → −η symmetry of the system to express Q in terms of 

integrals only over the positive range of η.

The self-consistency condition that determines σ is also written in terms of the weighting 

factor m(η) as

(13)

Finally, the entropy, defined as 1/N times the average of the logarithm of the number of 

stable fixed points, is given by counting the number of combinations of x+ and x− solutions,

(14)

To complete the mean-field calculation, we need to determine the weighting function m(η). 

We do this by imposing stability on the solutions being integrated in equation 15. The 

entropy is exponentially dominated by solutions at the edge of stability, so we constrain Q to 

the value 1, rather than imposing the inequality Q ≤ 1. We then chose m(η) to be the 

function that provides the maximum contribution to the entropy subject to the constraint Q = 

1. Introducing the Lagrange multiplier λ to impose this constraint, we maximize S + λQ 

(using equations 15 and 12) with respect to m(η), obtaining

(15)

Stern et al. Page 6

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Substituting this expression into equation 15, we see that computing the entropy require the 

determination of two variables, σ2 and λ. These are computed numerically by 

simultaneously solving equation 13 and the condition Q=1, using equations 12 and 15.

The transition curve between the nonzero-fixed-point and chaotic regions in figure 1 is the 

set of s and g values for which Q = 1 and the entropy of stable solutions vanishes (i.e. the 

number of stable solutions approaches 0). Figure 3A reveals three sets of values for which 

this occurs. Recall, that choosing the solution with larger ∣x(η)∣ decreases Q, enhancing 

stability. At the transition, λ → −∞, and m(η) is therefore a step function (figure 3C). This 

restricts all the solutions for η > 0 to be positive and all the solutions for η < 0 to be 

negative. The set of s and g values for which S → 0 is the solid curve in (figure 3B), which 

is given approximately by sc(g) ≈ 1 + 0.157 ln (0.443g + 1). This is the transition line 

between the chaotic and transient-fixed-point regions in figure 1. Results for the entropy 

away from the transition line are indicated by colors in figure 3B.

Analysis of the Dynamics of the Model

We now examine the dynamics of the network model . We begin by studying solutions of 

the dynamic mean-field equations and using them to compute the average autocorrelation 

function of the network units. We then examine other properties of the network dynamics.

Autocorrelation

To study network dynamics, we return to the time-dependent mean-field equation, equation 

2. The mean-field η(t) is a random variable with zero mean and correlation function

(16)

where the angle brackets denote averages over the distribution that generates η(t), and C(τ) 

is to be determined self-consistently [3]. It is easiest to express η(t) in terms of its Fourier 

transform  and the Fourier transform of C(τ), , as

(17)

Here, ξ is a complex random variable with real and imaginary parts chosen independently, 

and independently for each discrete value of ω, from a Gaussian distribution with zero mean 

and variance 1/2. This assures that equation 16 is satisfied. The self-consistency condition 

that determines C(τ), which equates the correlation of the mean field to the average auto-

correlation of the network interaction term in equation 1, is then expressed in terms of a 

functional integral over ξ(ω) as

(18)

with η given by the Fourier transform of equation 17 and x(t, η) by equation 2. Equation 18 

is a self-consistency condition because its right side depends on C(τ) through equation 17.
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We use an iterative approach to solve the dynamic mean-field equations. We start by making 

an initial guess for the function C(τ), perform a discrete Fourier transform , 

and use this in equation 17. We then compute η(t) by inverse discrete Fourier transformation 

and solve equation 2 to obtain x(t). Computing x(t) for many different draws of ξ(ω), we 

compile a large set of solutions that allows us to compute C(τ) as a Monte-Carlo 

approximation of the integrals in equation 18. Starting with this new C(τ), instead of our 

initial guess, we repeat the entire procedure, obtain yet another C(τ), and iterate until the 

average across iterations of C(τ) converges. To check against previous calculation, we have 

verified that we obtain the same results as in Sompolinsky et al. (1988) for s=0.

There are no self-consistent solutions of the dynamic mean-field equations in the region 

where the zero fixed point is stable, but such solutions exists everywhere above the 

transition line where the zero fixed point becomes unstable (figure 1). The shape of the 

autocorrelation function (figure 4A) varies continuously across the phase diagram, with no 

discontinuity at the transition between the regions that do and do not support stable nonzero 

fixed points (figure 1). The peak height, C(0), increases steadily as a function of either g or s 

(figure 4B) until it saturates at 1. This reflects the increased cross- or self-coupling driving 

the units to saturation. The width of the autocorrelation shows a more interesting non-

monotonic dependence (figure 4C). As expected, the width diverges at the phase transition 

between the chaotic and zero-fixed-point regions (left side of the plot in figure 4C). It also 

diverges for large s and small g (left side of the plot in figure 4C).

In the region with stable nonzero fixed points (top of figure 1), we have thus obtained two 

mean-field solution, one static and one dynamic, suggesting the coexistence of stable non-

zero fixed points and irregular time-dependent activity in the limit N → ∞. To understand 

how this limiting behavior arises, we study numerically the relationship between these two 

types of solutions for finite N.

Lifetime of the Transient Activity

As shown in figure 1, activity arising from typical initial conditions in the region with stable 

nonzero fixed points exhibits irregular fluctuations that ultimately decay to one of the stable 

fixed points. Results for the lifetime of this transient dynamic activity for different values of 

g and networks of different sizes are presented in figure 5. The lifetime depends on the 

initial state of the network, which was chosen randomly, and, for small networks, on the 

realization of J. We ran 10,000 trials with different draws of J and different initial conditions 

to obtain a distribution of lifetimes for the transient activity in the region with nonzero fixed 

points. This distribution is log-normal (inset, figure 5). We then computed the average of the 

logarithm of the lifetime for different s and g values (using 100 trials in each case). As can 

be seen in figure 5, the average log-lifetime is linear in the size of the network, and it 

increases more rapidly with N as g is increased. The average log-lifetime divided by N and 

the entropy follow roughly inverse patterns (not shown). This makes sense because the 

smaller the number of stable fixed points the longer it should take for the network to find 

one of them. In conclusion, we find that the coexistence of static and dynamic states in the 

mean-field analysis corresponds to the N → ∞ limit of a transient fluctuating state that 

transitions to a non-zero fixed point after a time that grows exponentially with N.
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Maximum Lyapunov Exponents

In this subsection, we show numerical results for the largest Lyaponov exponents over a 

range of g and s values in regions with both persistent and transient irregular activity (figure 

1). The long lifetime of the transient activity in the region with nonzero fixed points for 

finite N allows us to analyze its properties numerically. In particular, we made sure to use 

large enough networks so the calculation of the Lyaponov exponent converged before the 

network reached a fixed point. The largest Lyaponov exponent is positive in both of these 

regions, indicating the exponential sensitivity to initial condition typical of chaos. The 

largest Lyapunov exponent increases smoothly as a function of both s and g with no 

indication of any discontinuity at the transition between the persistent and transient regions 

(figure 6). This suggests that there is no sharp distinction between these two forms of 

chaotic activity, other than their long-term stability. Rather, as supported by our mean-field 

results on the correlation function, characteristics of the chaos change continuously across 

the phase diagram.

Bimodality

To further characterize the nature of the chaotic activity, we simulated networks exhibiting 

both transient and persistent chaos and extracted distribution of x values over time and 

network units. As seen in figure 7, these show bimodality that starts within the persistent 

chaotic region and become more apparent in the region where stable fixed points exist. 

Although bistability of individual isolated units requires s > 1, bimodality appears for values 

of s well below 1.

Bimodality, as seen in the histograms of figure 7, arises because individual units, especially 

in the region where stable nonzero fixed points exist, fluctuate chaotically around the two 

values where −x + s tanh(x)=0 figure 2. The resulting quasi-bistable behavior can be seen by 

plotting tanh(x) as a function of time (figure 8A). Especially for s > 1 and small g, the 

activity is characterized by relatively infrequent flips between fluctuations about these two x 

values (x = ±x0), corresponding to tanh(x) near 1 or −1, with a log-normal distribution of 

inter-flip times (figure 8B). The average time between flips shrinks as a function of g and 

grows as a function of s (figure 8C). For s = 0, the inter-flip times, or equivalently times 

between zero-crossings, follow an exponential distribution. Between small and large value 

of s, the inter-flip distribution changes continuously from exponential to log-normal.

The flipping of units between quasi-stable states due to network fluctuations may appear 

similar to the well-studied problem in which a bistable system is perturbed by noise. A 

unique feature of this system, however, is that the correlation time of the “noise”, which is 

actually the result of chaotic fluctuations, is on the same order as the time between flips. 

Thus, the self-consistency condition relates the increase in the width of the correlation 

function at large s (figure 4C) to the increase in the average time between flips seen in figure 

7C.
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Discussion

The network model we have studied interpolates between chaotic networks (for s near zero) 

and networks with large numbers of stable fixed points (for large s), with an intermediate 

region in which the activity shares features of both. The intermediate activity ranges from 

patterns dominated by approximate fixed points that are destabilized by chaotic fluctuations 

to chaotic activity with bimodal activity distributions. In the former case, the chaotic activity 

acts as a form of colored noise, the “color” induced by its correlations, and drives sign 

changes in the baseline around which the chaotic fluctuations occur. This form of activity, 

dominated by flip-like transitions, ultimately terminates when the network finds a true 

dynamic fixed point, but this occurs over time periods given by a log-normal distribution 

with a mean that depends exponentially on the size of the network.

Recordings in cortical brain areas reveal firing-rate fluctuations over time scales longer than 

those expected to be produced by single-neuron properties [8–10]. Thus, it seems likely that 

these fluctuations arise from network effects [3]. We have shown that strong self-

interactions can extend the time-scales over which fluctuations in model network occur, 

something that is needed to match biological data [1]. A substantial fraction of the 

connections made by an excitatory cortical neuron are local, and evidence for local 

clustering of connections has been reported [11, 12]. However, there is also substantial local 

inhibition. At present, it is not known whether local cortical excitation is strong enough to 

induce bistability in local clusters, in our language making s > 1, but we view it as a 

possibility.

We can envision two types of applications of clustered networks. First, the long-time-scale 

dynamics of the flip-like activity might be harnessed through learning algorithms for tasks 

requiring processing or coherence over long times. Second, the system could be used as a 

quasi-stochastic “noise” source with a tunable spectrum, which could drive internal network 

states producing a realization of a Hidden-Markov model. For example, the flips shown in 

figure 7A have the characteristics of log-normal distributed random events, although they 

are, of course, actually deterministic. We leave such applications to future work.
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FIG. 1. 
Examples of network activity as a function of s and g. Each inset shows x(t) for 6 out of 400 

network units as a function of time, with its location indicating the values g and s used: for 

insets 1-12 (in order): (g, s) = (0.5,2.5), (1.3,2.5), (2.5,2.5), (0.6,1.5), (1.5,1.5), (2.5,1.5), 

(0.4,0.4), (1.5,0.5), (2.5,0.5), (0.4,-0.4), (1.2, −0.3), (2.5,-0.5). The long-dashed line is the 

boundary between activity that decays to 0 (inserts 7, 10 & 11) and persistent chaotic 

activity (inserts 8, 9 & 12). The solid curve is the boundary between persistent chaos and 

what we will show to be transient chaotic activity that ultimately converges to one of many 

nonzero fixed points (inserts 1-6). For inserts 3-6, there is a break in the time axis, reflecting 

the long time required for convergence to a fixed point. The short-dashed line simply 

indicates s=1.
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FIG. 2. 
Graphical solution of the static mean-field equation 6. Solutions x(η) are points on the curve 

x – s tanh(x) corresponding to a particular value of η. The dashed line shows one such η 

value and indicates that there are three possible solutions in the region −ηm ≤ η ≤ ηm (dots). 

Then open circle indicates that solutions along the portion of the curve with negative slope 

correspond to unstable fixed points (see text). The arrows show ±xm, the two local extrema 

of the function x – s tanh(x), and ∓ηm are its values at these points as indicated by the dotted 

lines. Along the transition line between the regions with stable fixed point solutions and 

persistent chaos (figure 1), the unique stable solutions is restricted to the highlighted portion 

of the curve where x(η) has the same sign as η.
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FIG. 3. 
The entropy as a function of s and g, which is 1/N times the average (over J) of the 

logarithm of the number of stable fixed points in the network model. In both plots, the 

entropy goes to 0 at the values of s and g corresponding to the phase transition between the 

nonzero fixed-point and persistent chaotic regions in figure 1. A) The entropy as a function 

of s for, from top to bottom curves, g = 3, 3.5 and 4. B) The entropy over a range of s and g 

values represented by colors. The green line shows where the entropy reaches 0. The white 

circles indicate the results obtained from the zero intercepts of the curves in A. C) The 

weighting function m(η) near the transition (solid curve; s=1.133 and g=3) and away from 

the transition (dashed curve; s=1.135 and g=3).
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FIG. 4. 
Autocorrelation functions for different s values and g = 1.5. A) C(τ) for, from the top to the 

bottom curve, s ranging from 1.6 to −0.4 in steps of 0.2. B) Peak heights of the curves in A. 

C) Widths at 1/2 peak for the curves in A.
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FIG. 5. 
Exponential dependence on the network size N of the lifetime of the transient activity in the 

region with stable nonzero fixed points. Inset: Distribution of times to reach a fixed point for 

N=100, s=2.3 and g=1.3, shown with bars. The curve is a fit to a log-normal distribution. 

Main figure: The average of the logarithm of the time to reach a fixed point plotted as a 

function of N, for different g values. In all these examples, s = 2.3. For g = 0 the units are 

decoupled and the lifetime is independent of N. For g > 0, the lifetime is exponential in N.
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FIG. 6. 
Maximum Lyapunov exponents as a function of s for three different g values. The vertical 

lines indicate where the transition from persistent chaos (to the left of these lines) to stable 

fixed points (to the right) occurs. The maximal Lyanpunov exponents vary continuously and 

smoothly through this transition.

Stern et al. Page 17

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 7. 
Normalized histograms of unit x values for different s, with g=3.5 and N=1000. Run time 

was 20, 000, and x values were sampled at intervals of 50 to avoid temporal correlations. 

The width of the distributions increases with s, and bimodality first becomes apparent 

between s = 0.2 and s = 0.3 (not shown). The transition to the region of transient chaos 

occurs at s=1.15 for this value of g.
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FIG. 8. 
A) Typical activity of one unit in the region where stable fixed points exist (s = 1.6, g = 0.7). 

τin state is defined as the time between flips of the unit between states that fluctuate near 

tanh(x) = ±1. B) Distribution of τin state values extracted as in A from all the units. C) The 

average τin state for different values of g and s, note the logarithmic scale of the vertical axis. 

From top to bottom, the curves correspond to s ranging from 2 to 1 in steps of 0.2.
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