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Abstract

HIV is a pandemic disease, and many cellular and systemic factors are known to alter its infectivity and
replication. Earlier studies had suggested that anemia is common in HIV-infected patients; however, higher iron
was also observed in AIDS patients prior to the introduction of antiretroviral therapy (ART). Therefore, the
relationship between iron and viral infection is not well delineated. To address this issue, we altered the levels
of cellular iron in primary CD4 + T cells and showed that higher iron is associated with increased HIV infection
and replication. In addition, HIV infection alone leads to increased cellular iron, and several ART drugs
increase cellular iron independent of HIV infection. Finally, HIV infection is associated with increased serum
iron in HIV-positive patients regardless of treatment with ART. These results establish a relationship between
iron and HIV infection and suggest that iron homeostasis may be a viable therapeutic target for HIV.

Although great progress has been made in HIV
treatment using antiretroviral therapy (ART), infection

with this virus remains a major cause of mortality in the
world. Thus, novel therapies involving new pathways are
needed to eradicate this disease. Iron is essential for many
cellular processes, but an increase in its levels leads to oxi-
dative stress. In particular, high serum iron levels are asso-
ciated with increased oxidative stress in HIV-infected men.1

As a result, the levels of cellular iron are tightly regulated.
The role of iron in bacterial and fungal infections is well
established2–4; however, changes in cellular or systemic iron
after HIV infection is not well understood. It is known that
anemia is associated with worse outcomes in HIV infection,5

but iron overload is also implicated as a risk factor for rapid
progression of the disease. Observational studies prior to the
introduction of ART demonstrated that patients with iron
overload due to genetic polymorphisms had a more rapid
progression of HIV infection.6 In addition, iron chelation in
HIV-positive patients with thalassemia major slowed down
the disease course while iron supplementation was associated
with worse outcomes.7–9 In vitro studies also provided con-
flicting evidence linking iron with HIV progression. Higher
cellular iron levels in HIV-infected macrophages are asso-
ciated with increasing HIV transcription,10,11 and treatment
of monocytes with the iron chelator deferoxamine (DFO)
decreased NF-jB and HIV-1 reactivation by oxidative

stress.12 However, another study found no change in NF-jB
with iron chelation.13 A reduction in cyclin-dependent kinase
(CDK) 2/cyclin E complex activity has also been suggested
as one of the mechanisms of how iron deficiency reduces HIV
replication,11,14 but changes in CDK2/cyclin E complex ac-
tivity were not observed in another study using DFO to de-
crease cellular iron.15 Therefore, the interaction between HIV
infection and cellular and systemic iron status, particularly in
the post-ART era, remains unclear.

While the aforementioned observational studies focused
on the link between iron and HIV, a few observational studies
suggested that ART can also influence systemic iron levels.
Treatment of pregnant HIV-positive women with ART in
Botswana was associated with severe infant anemia.16 Also,
lower ferritin levels were observed in immunosuppressed
Thai HIV-positive patients with an interruption of ART,17

and cessation of ART exacerbated microcytic anemia in a
parvovirus B19- and HIV-positive b-thalassemia patient.18

However, whether ART influences iron levels independent of
HIV and whether ART corrects or worsens the altered iron
homeostasis during HIV infection remain to be determined.
In this article, we studied the effects of HIV infection and
ART on cellular and systemic iron and the role of iron in HIV
infection.

We first generated replication-competent HIV-1BaL virus
and showed that the virus is capable of infecting GHOST cells,
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an HIV indicator cell line with CD4 and CXCR5 over-
expression (Fig. 1A). Primary cultures of CD4 + T cells en-
riched from human peripheral blood mononuclear cells
(PBMCs) were established using a magnetic bead-based de-
pletion method (Fig. 1B). Using this virus and CD4 + cells,
we then studied the effect of iron modulation on established
HIV infection. Treatment of primary CD4 + T cells with the
iron chelator DFO and ferric ammonium citrate (FAC) re-
sulted in an increase and decrease in transferrin receptor 1
(TfR1) mRNA levels (which correlates with cellular iron
levels),19–21 respectively, suggesting that these cells are re-
sponsive to iron modulation in vitro (Fig. 2A). HIV replica-
tion was slowed down in iron-depleted cells, while iron
supplementation increased viral replication and release, as
measured by Env mRNA inside the cells and p24 release into
the media (Fig. 2B and C). The effect was independent of
changes in cellular replication as the p24 release was nor-
malized to cellular protein levels. The Env mRNA levels
were negatively correlated with TfR1 mRNA levels, a sur-
rogate for cellular iron levels (Fig. 2D). These observations
suggest that HIV replication is accelerated in the presence of
higher iron levels.

We next investigated whether changes in cellular iron had
an impact on HIV infection. Cellular iron in primary CD4 + T
cells was modulated with FAC or DFO prior to HIV infec-

tion, and the efficiency of iron modulation was confirmed by
changes in TfR1 mRNA levels (Fig. 3A). Iron chelation re-
duced Env mRNA levels (Fig. 3B) and p24 release (Fig. 3C),
while iron overload had opposite effects. These findings are
consistent with reduced viral infection in iron-deficient cells.
To ensure that the observed changes in viral infection were
not due to the choice of iron chelator, we performed similar
studies with a mechanistically different iron chelator 2,2¢-
bipyridyl (BPD). BPD pretreatment also reduced Env mRNA
levels and p24 release after infection (Fig. 3D and E). We also
observed a statistically significant negative correlation be-
tween cellular iron (measured by TfR1 mRNA levels) and
Env mRNA levels (Fig. 3F). These findings indicate that a
decrease in cellular iron is protective against HIV infection.

The above studies demonstrated that changes in cellular
iron influence the replication and infection of HIV, but
whether HIV infection alters cellular iron is unknown. We
examined the effects of HIV infection on iron regulatory
pathways in primary CD4 + T cells. HIV infection of primary
CD4 + T cells resulted in a significant increase in TfR1
mRNA levels (Fig. 4A), while no significant changes were
observed in the levels of ferroportin 1 (FPN1), the major
cellular iron exporter (Fig. 4B). Consistently, we observed a
significant increase in cellular iron content after HIV infec-
tion, as measured by intracellular 55Fe levels after incubating

FIG. 1. Production of HIV virus and isolation of primary human CD4 + T cells. (A) Infection of GHOST cells with
HIV1BaL virus. 1X represents 0.5 MOI of virus. (B) Representative flow cytometry histograms of peripheral blood
mononuclear cells (PBMCs) before (left) and after (right) isolation for CD4 + T cells. The percentage of CD4 + T cells after
enrichment is routinely higher than 90%.
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FIG. 2. Iron modulation
influences HIV replication in
infected CD4 + T cells. (A)
Cellular transferrin receptor
1 (TfR1) mRNA levels in re-
sponse to iron chelation (DFO)
and iron overload (FAC). In-
tracellular Env mRNA (B) and
p24 release into media (C) in
HIV-infected CD4+ T cells
with iron modulation for 48 h.
(D) Correlation between TfR1
expression (a marker for cel-
lular iron levels) and Env ex-
pression for samples in A and
B. N = 6 for A–C. *p < 0.05 vs.
HIV infection alone.

FIG. 3. Iron modulation influences HIV infection of primary CD4 + T cells. (A) TfR1 mRNA level in response to iron
modulation. Intracellular Env mRNA (B) and p24 release (C) in CD4 + cells with HIV infection after iron modulation.
Intracellular Env mRNA (D) and p24 release (E) in CD4 + cells infected with HIV after being treated with 2,2¢-bipyridyl
(BPD). (F) Correlation between TfR1 expression (a marker for cellular iron levels) and Env expression for samples in A, B,
D, and E. *p < 0.05 vs. control. N = 4–6 for A–E.
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cells with 55Fe-nitrilotriacetic acid (NTA) for 48 h (Fig. 4C).
These findings demonstrate that HIV infection results in
cellular iron overload through increasing iron uptake.

Limited numbers of studies examined the effect of ART on
systemic and cellular iron and the data were not conclu-
sive.16–18 Therefore, we next investigated the effect of three
drugs from three different classes of ART—darunavir (pro-
tease inhibitor), efavirenz [non-nucleoside (tide) reverse

transcriptase inhibitor (NNRTI)], and tenofovir [nucleoside
(tide) reverse transcriptase inhibitor (NRTI)]—on cellular
iron homeostasis. CD4 + T cells treated with darunavir or
tenofovir alone without HIV infection had a significant in-
crease in TfR1 mRNA levels and a concurrent reduction in
FPN1 mRNA levels (Fig. 5A and 5C). Such changes resulted
in a significant increase in cellular iron (Fig. 5B and 5D). On
the other hand, efavirenz treatment did not alter cellular iron

FIG. 4. HIV infection modulates iron levels in primary CD4 + T cells. mRNA levels of TfR1 (A) and ferroportin 1 (FPN1)
(B) in CD4 + T cells in response to HIV infection. (C) Cellular 55Fe content in CD4 + T cells incubated with radioactive iron
with or without HIV infection. N = 6 for A and B and N = 3–4 for C. *p < 0.05.

FIG. 5. Certain antiretroviral medications modulate cellular iron. Iron regulatory genes (A) and cellular iron levels (B) in
CD4 + T cells treated with darunavir (DRV). Iron regulatory genes (C) and cellular iron levels (D) in CD4 + T cells treated
with tenofovir (TDF). Iron regulatory genes (E) and cellular iron levels (F) in CD4 + T cells treated with efavirenz (EFV).
N = 6 for A–F. *p < 0.05 vs. 0lM drug treatment.
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or the expression of iron regulatory genes (Fig. 5E and F).
These findings show that some ART medications influence
cellular iron independent of their effects on HIV virology.

As our in vitro findings demonstrated that HIV indepen-
dently influences cellular iron, we hypothesized that systemic
iron levels are also altered in HIV patients. We analyzed iron
parameters in serum samples of 10 age- and race-matched
HIV-negative control and HIV-positive patients before ART
therapies from the Multicenter AIDS Cohort Study. For HIV-
positive patients, blood samples were drawn on average 4.2
years before the initiation of ART. Serum samples from HIV-
positive patients prior to ART exposure displayed significant
alteration in a number of iron parameters compared with
HIV-negative controls, including a significant increase in
serum iron level and transferrin saturation and a significant
decrease in unsaturated iron-binding capacity (UIBC). Total
iron-binding capacity (TIBC) did not differ between HIV-
negative and HIV-positive samples (Fig. 6). The increase in
iron saturation with HIV infection is consistent with an in-
crease in systemic iron levels.

Previous studies and our findings suggested that ART is
capable of altering systemic and cellular iron, so we hy-
pothesized that the changes in systemic iron persist even after
ART treatment. To address this hypothesis, we measured iron
parameters in the same HIV-positive patients on average 2.6
years after they were started on ART, at which time the serum
viral load was below the detection limit (< 50 copies ml - 1). A
summary of ART medications is included in Table 1. At the
time of sample collection, all patients were on the same
regimen for at least 6 months. Serum iron and iron saturation
remained significantly elevated while UIBC remained sig-
nificantly reduced in HIV-positive patients even after proper
ART therapies (Fig. 6). Thus, HIV infection perturbs sys-
temic iron homeostasis, and systemic iron derangement
persists despite appropriate treatment with ART.

Our studies show that increased cellular iron facilitates
both HIV infection and replication. Iron plays an important

role in the synthesis of nucleic acids and is involved in DNA
replication and repair.22 As a result, iron chelation might
reduce the amount of available nucleic acids or directly im-
pair viral protein function, both of which can decrease viral
replication and release. Additionally, it is possible that iron
chelation could downregulate the expression of adhesion
molecules required for HIV attachment or proteins necessary
for viral internalization. These changes in gene expression in
response to a reduction in cellular iron can account for the
protective effect of iron deprivation against HIV infection.

Increased intracellular iron content is required for the rep-
lication and pathogenesis of bacteria and fungus,2–4 and viruses
may exhibit similar iron requirements for their replication.

FIG. 6. Antiretroviral therapy
(ART) in HIV-positive patient does
not correct the changes in serum
iron profile associated with HIV
infection. Serum iron, total iron-
binding capacity (TIBC), unsatu-
rated iron-binding capacity
(UIBC), and iron saturation are
measured in serum samples from
HIV - control (HIV - ) and HIV +

patients before (HIV + pre) and af-
ter (HIV + post) ART therapies.
*p < 0.05 vs. HIV - . N = 9 in HIV -

and HIV + after ART. N = 10 in
HIV + before ART.

Table 1. Antiviral Regimens of Study Subjects

Treatment regimen Count (% of total subjects)

Two NRTIs + two PIs
TRU, RTV, ATZ 2 (20%)
EPZ, RTV, ATZ 1 (10%)

Two NRTIs + one PI
TRU, RTV 1 (10%)

Two PIs + one II
RTV, DRV, IST 1 (10%)

Two NRTIs + one NNRTI
TDF, FTC, EFV 3 (30%)

Two NRTIs + two PIs + one II
TRU, RTV, DRV, IST 1 (10%)

Two NRTIs + one II
TRU, IST 1 (10%)

NRTI, nucleoside (tide) reverse trascriptase inhibitors; PI, protease
inhibitors; II, integrase inhibitor; NNRTI, non-nucleoside (tide) reverse
transcriptase inhibitors; TRU, truvada (combination of tenofovir and
emtricitabine); RTV, ritonavir; ATZ, atazanavir; EPZ, epzicom (com-
bination of abacavir and lamivudine); DRV, darunavir; IST, raltegravir;
TDF, tenofovir; FTC, emtricitabine; EFV, efavirenz.
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While HIV infection in primary CD4 + T cells resulted in only a
modest change in cellular iron, even a small alteration in cel-
lular iron and iron regulatory genes similar to our results has
been shown to have significant physiological effects in other
contexts.23–29 Normally, an increase in cellular iron inactivates
iron regulatory proteins and decreases TfR1 mRNA levels. We
observed increased TfR1 mRNA levels and a concurrent cel-
lular iron overload with HIV infection, which suggests that HIV
infection is driving the upregulation of TfR1 independent of
other cellular iron regulatory machineries. This finding is
contrary to other studies demonstrating that overexpression of
HIV-1 Nef protein impairs the recycling of TfR1 to the cell
surface,30,31 which would decrease cellular iron uptake and
lead to cellular iron deficiency. However, one recent study
suggested that the effect of Nef on TfR1 may be strain spe-
cific.32 The increased cellular iron levels observed in our
studies may be a consequence of virus attempting to establish a
favorable environment for its own replication. As tissue iron
accumulation is seen in many HIV-associated diseases, in-
cluding neurodegeneration and diastolic cardiac dysfunc-
tion,33–37 it is tempting to speculate that altered cellular iron
homeostasis secondary to HIV infection may, at least partially,
contribute to the organ damage associated with HIV infection.

Although ART medications are designed to target various
aspects of HIV life cycles, many off-target effects have been
described. NRTI such as tenofovir may target mitochondrial
DNA polymerase c and induce oxidative stress,38,39 and ox-
idative stress can lead to cellular iron overload.40 While
mitochondrial toxicity is less associated with darunavir,
various protease inhibitors were shown to inhibit mitochon-
drial proteases and cause oxidative stress.41,42 It is therefore
tempting to speculate that these off-target effects may ac-
count for at least part of the alteration of cellular iron levels
with HIV medications. However, these effects may be cell-
type specific and require further investigation.

Systemic iron levels can change due to alterations in the
absolute amount of iron in the blood or the serum iron-
binding capacity. We observed an increase in systemic iron
with HIV infection that persists despite proper ART treat-
ment. A higher level of serum iron and a similar level of
TIBC in HIV-positive patients suggest that HIV infection
induces iron release from systemic iron storage organs and
cells, such as the liver, intestine, and macrophages. The
release of stored iron can be a direct effect of HIV virus on
iron storage sites or an indirect consequence of HIV infec-
tion altering the expression of hepcidin, the major regulator
of systemic iron. Altered hepcidin expression has been de-
scribed in hepatitis B and hepatitis C infection,43,44 but
observations of changes in hepcidin levels in HIV infection
are conflicting. Hepcidin levels were shown to be increased
in HIV infection with or without ART, which is consistent
with reduced serum iron levels,45 but another study dem-
onstrated reduced hepcidin levels in HIV-positive women,
which can lead to increased iron release into the circula-
tion.46 Our results are more consistent with reduced hepci-
din levels leading to increased serum iron, although we did
not measure hepcidin levels in our studies.

HIV infection is often associated with a heightened in-
flammatory state,47,48 and immune activation is a known
modulator of cellular and systemic iron homeostasis.49–51

Increased immune activation in HIV patients is associated
with lower hemoglobin levels,52 while ART treatment de-

creases immune activation and ameliorated the reduction of
hemoglobin.53 Additionally, vitamin B deficiency during
HIV infection can contribute to anemia in HIV-positive pa-
tients, and ART normalizes serum vitamin B12 levels.53,54

Our current study focused on serum iron level rather than
hemoglobin level as many factors in addition to serum iron
regulate the production of red blood cells. During acute in-
fection and inflammation, increased hepcidin expression me-
diates the reduction of circulatory iron, which is considered a
defensive mechanism.55 However, we observed an increase
rather than a decrease in serum iron in HIV-positive patients,
suggesting that HIV infection may influence systemic iron
homeostasis independent of the immune activation state. This
observation is also consistent with a recent report of increased
serum iron levels in ART-naive HIV + patients.56

Our results collectively demonstrate that altered iron status
can have a profound impact on HIV infection and replication
and that HIV infection influences both cellular and systemic
iron levels. In addition, our data indicate that some ART
drugs directly affect cellular iron homeostasis, and that HIV-
induced changes in systemic iron levels persist despite ade-
quate ART treatment. These observations establish a link
between iron homeostasis and HIV infection in the post-ART
era, and highlight iron regulation as a potential therapeutic
target against HIV itself or HIV-associated pathologies that
remain prevalent today.
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