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Coronin-1 and Calcium Signaling Governs Sympathetic Final
Target Innervation
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Development of a functional peripheral nervous system requires axons to rapidly innervate and arborize into final target organs and then
slow but not halt their growth to establish stable connections while keeping pace with organ growth. Here we examine the role of the
NGEF-TrkA effector protein, Coronin-1, on postganglionic sympathetic neuron final target innervation. In the absence of Coronin-1 we
find that NGF-TrkA-PI3K signaling drives robust axon growth and branching in part by suppressing GSK3 . In contrast, the presence of
Coronin-1 (wild-type neurons) suppresses but does not halt NGF-TrkA-dependent growth and branching. This relative suppression in
axon growth behaviors is due to Coronin-1-dependent calcium release via PLC-+y1 signaling, which releases PI3K-dependent suppression
of GSK3. Finally, we demonstrate that Corola '~ mice display sympathetic axon overgrowth and overbranching phenotypes in the
developing heart. Together with previous work demonstrating the Coronin-1 expression is NGF dependent, this work suggests that
periods before and after NGF-TrkA-induced Coronin-1 expression (and likely other factors) defines two distinct axon growth states,

which are critical for proper circuit formation in the sympathetic nervous system.
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Introduction

Wiring a functional nervous system during development requires
axons to make several choices and change behaviors as they tran-
sition between intermediate targets (e.g., blood vessels) and even-
tually into a final target (e.g., heart, muscle, and eye). The
sympathetic nervous system represents a relatively simple para-
digm to study how these axons change their behavior en route to
their final destination. Sympathetic axons grow along their inter-
mediate targets in fascicles indicating that they likely experience
signaling that suppresses branching and turning (Carmeliet,
2003). However, upon arrival to their final targets, axons must
become much more dynamic to achieve proper coverage of the
organ indicating another switch in axonal signaling properties.
After this robust period of NGF-TrkA-dependent growth and
branching in sympathetic final targets, these processes are damp-
ened suggesting another change in axonal signaling (Kohn et al.,
1999; Singh et al., 2008; Manousiouthakis et al., 2014). Impor-
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tantly, NGF-TrkA signaling appears to be required for axon
growth and ramification during both early and late stages of final
target innervation but not for growth along the intermediate tar-
get (Glebova and Ginty, 2004; Kuruvilla et al., 2004; Nam et al.,
2013). Herein, we explore the molecular basis by which NGF-
TrkA-dependent sympathetic axon growth properties change
during final target innervation.

Coronin-1 is an NGF-dependent gene, dynamically changing
from undetectable before sympathetic final target innervation to
high expression after neurons encounter NGF (Deppmann et al.,
2008; Suo et al., 2014). Coronin-1 is known to regulate both
calcium and cAMP-dependent signaling pathways in response to
stimuli ranging from pathogen infection to learning paradigms
(Jayachandran et al., 2007, 2014). Calcium and cAMP have also
been reported to influence axon growth behavior (Song et al,,
1997; Henley and Poo, 2004; Gomez and Zheng, 2006). The re-
markable NGF dependence of Coronin-1 expression along with
the notion that Coronin-1 regulates several signaling pathways
known to influence axon growth makes this an attractive candi-
date for a molecular switch influencing final target innervation.
Moreover, the finding that loss of Coronin-1 uncouples NGF-
TrkA from calcium signaling provides a powerful tool as we seek
to dissect the signaling pathways underlying sympathetic nervous
system development (Suo et al., 2014).

In this study, we provide in vitro and in vivo evidence that
Coronin-1 acts as a molecular switch required for sympathetic
axons to change their growth properties in final target organs: (1)
its expression changes from undetectable to robust levels upon
final target innervation and exposure to NGF (Suo et al., 2014);
(2) its upregulation corresponds to a switch from primarily PI3K-
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influenced to calcium-influenced axon growth, branching, and
growth cone morphology; and (3) the NGF-TrkA-Coronin-1-
calcium signaling axis is required to slow axon growth and re-
press branching via disinhibition of GSK3 as axons approach
their final destination.

Materials and Methods

Reagents. Antibodies were previously validated for the applications used.
The dilutions and applications were as follows: Coronin-la (Abcam,
ab53395; 1:400 for immunohistochemistry), Tubb3 (Covance, MMS-
435P-250; 1:400 for immunohistochemistry), rhodamine phalloidin
(Life Technologies, R-4150; 1:400 for immunohistochemistry), phos-
pho-p44/42 MAPK (Erk1/2) mouse mAb (Cell Signaling Technology,
#9106; 1:1000 for Western blot), pan-p44/42 MAPK (Erk1/2) antibody
(Cell Signaling Technology, #9102s; 1:1000 for Western blot), anti-tyrosine
hydroxylase (Millipore, AB1542; 1:130 for immunohistochemistry), horse-
radish peroxidase-conjugated donkey anti-sheep IgG (Fisher/Jackson
ImmunoResearch, NC9754415; 1:250), 3,3’-diaminobenzidine tetrahy-
drochloride tablet (Sigma, D5905-50TAB; 1 tablet/20 ml for staining),
neurotrophin 3 (Millipore, GF031), U-73122 (Sigma, U6756), GSK3
inhibitor XIX (Millipore, 361565), ionomycin (Sigma, 19657),
BAPTA-AM (Invitrogen, B-1205), LY294002 (Sigma, 1L.9908), BEZ235
(Selleckchem, S1009), and PD0325901 (Selleckchem, S1036).

Animals. All animal protocols followed are as described previously
(Suo etal., 2014) and were conducted in accordance with the Association
for Assessment of Laboratory Animal Care Policies and approved by the
University of Virginia Animal Care and Use Committee. Sprague Dawley
rats were purchased from Harlan. Sympathetic neurons were dissected
from PO—P2 rats or mice of either sex as previously described (Zareen and
Greene, 2009). All mice were in a C57BL/6 background and J. Pieters
generously provided the Corola™’~ mice. Genotyping was performed as
described previously (Jayachandran et al., 2007).

Tissue culture. Sympathetic neuron cultures were plated as previously
described (Deppmann, 2008). Mass culture and microfluidic culture me-
dia was DMEM containing 10% FBS, penicillin-streptomycin (1 U
ml "), and 2 ng ml ' of mouse salivary gland-purified NGF (Kuruvilla
et al., 2004; Park et al., 2006). Aphidicolin was applied for 48 h after
plating to remove glia contamination.

Immunocytochemistry. Immunocytochemistry and immunohisto-
chemistry were performed as previously described (Sharma et al., 2010).
At room temperature samples were fixed by 4% paraformaldehyde and
blocked for 30 min using 5% goat serum and 0.05% Triton X-100 in PBS.
Next, primary antibody was applied overnight at 4°C. Secondary anti-
body was applied for 1 h at room temperature. Samples were washed
three times using 1X PBS and mounted in Vectashield Fluoromount.
Images were collected using confocal microscopy.

Immunoblot analysis. Immunoblot analysis was performed as previ-
ously described (Suo et al., 2014). Briefly, sympathetic neurons were
harvested by boiling in 2X Laemmli buffer for 10 min. SDS-PAGE fol-
lowed by Western blot analysis was performed using the indicated anti-
bodies and LI-COR for visualization.

Microfluidic devices. The microfluidic devices used, were as previously
described (Park et al., 2006). Chambers were attached to glass coverslips
coated with poly-p-lysine (50 wg/ml) and laminin (1 ug/ml). A 100 ul
volume difference was maintained between two compartments to ensure
fluidic isolation.

Axon growth assay. PO—P3 sympathetic superior cervical ganglia (SCG)
neurons were plated in the cell body chamber of a microfluidic device in
the presence of NGF and aphidicolin (5 um). After 2-3 d axons emerged
in the distal axon chamber of the microfluidic device at which time NGF
was deprived for 17 h by adding anti-NGF and boc-aspartyl-(OMe)-
fluoromethyl-ketone (BAF; 5 um). The axon chamber media was then
changed to anti-NGF (1 ug/ml) or NGF (2 ng/ml) and images of the
entire distal axon chamber field were acquired at this “zero time point.”
After 24 h, images of the same axons were re-acquired and axon growth
rates were quantified as the difference between the two datasets.

Growth cone staining. Staining protocol was adapted from previous
studies by Marsick and Letourneau (2011). Coverslips were coated with
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laminin (40 ug/ml) for 2 h before plating. PO—P3 sympathetic neurons
were plated in mass culture with anti-NGF (1 pg/ml) with BAF (5 um) or
NGF (2 ng/ml). After 1 d in culture at 37°C neurons were fixed with 4%
PFA containing Ca?" (1.5 mm) and MgZJr (1 mm). Double immuno-
staining was then performed with Tujl and phalloidin. Images were
acquired using 63X confocal microscopy.

Branch assay. PO—P3 sympathetic neurons were plated in mass culture
under NGF (2 ng/ml) or other treatment as indicated. After 1 d in culture
at 37°C, neurons were fixed with 4% PFA. Double immunostaining was
then performed with Tujl. Images were taken using 10X confocal mi-
croscopy and analyzed by Sholl analysis.

Whole-mount TH immunohistochemistry. Whole-mount TH immu-
nohistochemistry was performed as previously described (Enomoto et
al., 2001). Briefly, samples were incubated with sheep anti-TH affinity-
purified polyclonal antibody (Millipore) at 0.5 wg/ml for 72 h at 4°C.
Next horseradish peroxidase-conjugated donkey anti-sheep 1gG (4 g/
ul) was applied overnight at 4°C. Next DAB was applied for visualization.

Results

Coronin-1 acts as a molecular switch that dampens NGF-
dependent axon growth, growth cone morphology, and
branching

We investigated whether Coronin-1 plays a role in governing
axon behavior in vitro. Toward this end sympathetic neurons
from WT (Corola™*) or Corola™’~ mice were established in
microfluidic devices to separate axons from cell bodies and pro-
vide easily identifiable landmarks to find the same axon from day
to day (Park et al., 2006). All neurons were established in 45
ng/ml NGF, which is sufficient to support Coronin-1 expression
(Suo etal., 2014), until axons traversed the microgrooves. Under
fluidic isolation, 2 ng/ml NGF was added exclusively to distal
axons, while the cell bodies and proximal axons were treated with
anti-NGF and a broad-spectrum caspase inhibitor, BAF, to pre-
vent apoptosis. Positive and negative growth of individual axons
was measured over a 24 h period. Remarkably, neurons from
Corola™’~ mice display an approximately twofold increase in
NGF-dependent axon growth compared with WT (Corola™’™")
neurons (Fig. 1 A,B).

NGF has also been shown to regulate growth cone size, which
relates to axon growth rate (Argiro et al., 1984; Bray and Chap-
man, 1985). Therefore, we next examined growth cone area in
NGF-treated neurons from WT and Corola™’~ mice. These neu-
rons were grown in mass culture for 1 DIV followed by immuno-
cytochemistry for 33-tubulin and phalloidin staining (F-actin).
As reported previously, growth cones of WT neurons without
neurotrophin were collapsed consistent with a retraction bulb,
whereas NGF-treated neurons displayed larger bulbous tips (Fig.
1C,D; Seeley and Greene, 1983; Kuruvilla et al., 2004; Harrington
etal.,2011). In contrast, neurons from Corola™ '~ mice displayed
an approximately fourfold decrease in growth cone area (Fig.
1C,D). It has been previously suggested that smaller, simpler
growth cones appear to correspond with faster axon growth,
while larger growth cones appear to be more dynamic, often
paused and poised to make choices with respect to directionality
and termination in response to instructive environmental cues
(Godement et al., 1994). This notion is consistent with acceler-
ated axon growth observed in the absence of Coronin-1 (Fig. 1B).

We next examined the role of Coronin-1 in NGF-dependent
axon branching. Sympathetic neurons from PO WT or Corola™’~
mice were cultured in low-density for 1 DIV in the presence of 2
ng/ml NGF. Neurons were immunostained for 33-tubulin and
branching was assessed via Sholl analysis as previously described
(Magarinos et al., 2006). Consistent with axon growth and
growth cone area analyses, the ability of NGF to induce branching
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is dramatically increased in the absence of Coronin-1 relative to
WT neurons (Fig. 1E,F). This apparent role for Coronin-1 in
regulating NGF-dependent branching does not appear to be de-
pendent on neurotrophin concentration, since we observe a sim-
ilar trend using 45 ng/ml NGF (Fig. 1E, G).These data suggest
that Coronin-1 is required to regulate sympathetic axon growth
rate, growth cone size, and branching.

PI3K signaling promotes axon growth and branching in the
absence of Coronin-1

We next sought to determine whether Coronin-1 influences clas-
sic TrkA-dependent pathways known to be involved in axon
growth and branching including Ras-MAPK, PI3K, and/or PLC-
y1-calcium (Arévalo and Wu, 2006). NGF-dependent PI3K sig-
naling has also been shown to promote axon growth in TrkA+
sensory neurons (Zhou et al, 2004). We asked whether
Coronin-1 influences NGF-TrkA-dependent PI3K activation by
assessing phospho-AKT levels in cultured sympathetic neurons
as described in Figure 1A and B. NGF induces p-AKT to similar
extents in both WT and Corola™’/~ neurons (Fig.2A,B). We then
examined whether PI3K signaling is required for regulating axon
behaviors in the absence or presence of Coronin-1. We first per-

formed axon growth assays as described in Figure 1, A and B, in
the presence or absence of PI3K inhibitors, LY290002 (50 uM) or
BEZ235 (1 uM). Remarkably, both inhibitors suppress the robust
NGF-dependent axon growth and branching observed in
Corola™’" neurons but had no effect on WT neurons (Fig. 2C—
G). These data suggest that PI3K signaling is necessary for the
exuberant axon growth and branching in the absence of
Coronin-1 but is dispensable in the presence of Coronin-1 (WT
neurons). Importantly, NGF activates PI3K to similar extents in
WT and Corola '~ neurons. Therefore, we speculate that
Coronin-1 blocks PI3K-dependent axon growth downstream
AKT phosphorylation. PI3K/AKT is known to promote axon
growth in part via an inhibitory downstream phosphorylation
event on GSK3B (Goold et al., 2004). Inhibition of GSK3 allows
for the full activity of adenomatous polyposis coli (APC), a mi-
crotubule plus end binding protein known to promote axon
growth in sensory neurons (Zhou et al., 2004). Below, we explore
the possibility that the presence of Coronin-1 blocks NGF-
induced GSK3p phosphorylation, which would explain damp-
ened axon growth behaviors in WT neurons relative to
Corola™’~ neurons.
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Figure2. PI3Ksignaling drives exuberant axon growth and branching in the absence of Coronin-1. A, NGF-dependent P-AKT induction in sympathetic neurons cultured from WT or Coro7a™"~

mice for 2—3 DIV. Neurons were deprived of NGF for 17 h then treated with anti-NGF or NGF for 20 min followed by immunoblot analysis for P-AKT and AKT. B, Quantification of the data in A.
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Ras-MAPK signaling does not influence axon growth or
branching in sympathetic neurons

Ras-MAPK signaling is known to regulate axon growth and
branching in TrkA+ sensory neurons (Markus et al., 2002; New-
bern et al., 2011). Therefore, we next examined whether this is
also true in sympathetic neurons and whether Coronin-1 plays a
role. We first cultured sympathetic neurons from wild-type and
Corola™’~ mice and assessed NGF-dependent p-ERK levels via
immunoblot analysis (Fig. 3A). Similar to p-AKT induction, WT
and Corola /" neurons displayed similar levels of NGEF-
dependent p-ERK induction (Fig. 3B). We next examined
whether RAS-MAPK signaling is required for the axon growth
and branching phenotypes observed in our in vitro models for
axon behavior in the presence or absence of Coronin-1. To this
end, we performed axon growth assays as described in Figure 1,
on NGF-treated neurons from WT or Corola /" mice in the
presence or absence of the MEK inhibitors, PD98059 (50 uMm) or
PD0325901 (1 uMm). In neurons from both WT and Corola™/~
mice MEK signaling is not required for axon growth or branching
(Fig. 3C-G). These data suggest that NGF-TrkA-Ras-Erk signal-
ing is dispensable for sympathetic axon growth in the presence or
absence of Coronin-1.

Coronin-1-dependent calcium release represses NGF-
dependent axon growth and branching

What is the mechanism by which Coronin-1 suppresses NGF-
TrkA-dependent axon growth behaviors? We have previously
shown that Coronin-1 is essential for NGF-dependent calcium
release, whereas Coronin-1 is dispensable for MAPK and PI3K
activation (Figs. 2B, 3B; Suo et al., 2014). Therefore, we speculate
that the exuberant NGF-dependent axon growth behaviors ob-
served in the absence of Coronin-1 are due to depressed NGF-
dependent calcium release. To determine whether Coronin-1
influences NGF-TrkA-dependent axon growth and branching
via calcium signaling we used a cell-permeable calcium chelator
orionophore in neurons from WT and Corola™’~ mice to inhibit
or activate calcium signaling, respectively. Chelation of intracel-
lular calcium using BAPTA-AM (1 uMm) had no effect on axon
growth or branching in neurons from Corola™’~ mice presum-
ably because calcium levels are already low (Fig. 4A—E). However,
in WT neurons BAPTA-AM increases NGF-dependent axon
growth and branching to levels similar to those observed
in neurons lacking Coronin-1 (Fig. 4A-E). In contrast, the
calcium ionophore, ionomycin (10 um), reduced NGEF-
dependent axon growth and branching in NGF-treated neu-
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rons from Corola /" mice to levels similar to those observed
in WT neurons (Fig. 4F-]). However, ionomycin had no effect
on axon growth and branching in WT neurons presumably
because NGF-TrkA-Coronin-1 is already driving sufficient
calcium signaling to suppress these processes (Fig. 4F-J).
These findings suggest that the mechanism by which
Coronin-1 influences axon growth and branching is by gov-
erning NGF-dependent calcium release.

It has been previously shown that NGF-TrkA-dependent
calcium release requires PLC-y1 (Vetter et al., 1991; Ober-
meier et al., 1994). Pieters and colleagues has previously
shown in thymocytes that Coronin-1 interacts with and is
required for PLC-vy1 activation in response to engagement of
the T-cell receptor (Mueller et al., 2008). Consistent with a
similar role in neurons, we found that inhibition of PLC-vy1
with U73122 (1 puM) had no effect on NGF-dependent axon
growth and branching in neurons from Corola /" mice (Fig.
5A—E). However, similar to BAPTA-AM treatment, U73122
treatment of WT neurons phenocopies the elevated NGF-

dependent axon growth and branching observed in neurons
lacking Coronin-1 (Fig. 5A-E). This supports the notion that
PLC-y1 and Coronin-1 work together to support NGF-
dependent calcium signaling and suppress axon growth
behaviors.

Coronin-1-dependent calcium signaling disinhibits GSK3f3 to
repress axon growth and branching

Together with our finding that loss of Coronin-1 does not
impact the ability of NGF to induce PI3K activity, we suggest
that the point of cross talk between these two pathways lies
several steps downstream of PI3K activation. GSK38 is an
excellent candidate for this. PI3K activation results in an in-
hibitory phosphorylation event on GSK3p, resulting in disin-
hibition of APC microtubule polymerization activity and
promotion of axon growth and branching activity (Zhou et al.,
2004; Jiangetal., 2005). Therefore, we sought to assess the role
of Coronin-1 on inhibition of GSK38 by phosphorylation.
Toward this end, we cultured sympathetic neurons from WT
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and Corola™’~ mice and assessed NGE-dependent p-GSK3p3
levels via immunoblot analysis (Fig. 6A). Remarkably, NGF
elevates p-GSK3Bin Corola™’~ but not WT neurons (Fig. 6B).
We next examined whether GSK3f signaling is required for
NGEF-dependent axon growth and branching in the presence or ab-
sence of Coronin-1. To this end, we performed axon growth assays
on NGF-treated neurons from WT or Corola™’~ mice in the pres-
ence or absence of the GSK3 inhibitor XIX (200 nm; GSKi), which
is analogous to inhibitory phosphorylation of GSK3. The GSK3/3
inhibitor had no effect on axon growth or branching in neurons
from Corola /" mice but elevated these properties in WT neurons
(Fig. 6C-G).These data suggest that NGF-TrkA-Coronin-1-
PLC-vyl-calcium signaling suppresses axon growth and
branching by disinhibiting GSK3.

Coronin-1 regulates NGF-dependent axon growth and
branching in vivo

These in vitro data provide a clear prediction for axon growth
and branching in vivo in mice lacking Coronin-1. If initiation
of dampened axon growth and branching is associated with
induction of Coronin-1 expression, we would expect sympa-
thetic overgrowth and excessive branching in final target or-

gans of mice lacking Coronin-1. To test this prediction, we
performed whole-mount tyrosine hydroxylase staining to la-
bel sympathetic axons originating from the stellate ganglia as
they innervate the heart. We examined hearts taken from WT
and Corola™’~ animals at E14 and E17.5, times that are either
before or after NGF-dependent Coronin-1 induction, respec-
tively (Manousiouthakis et al., 2014; Nam et al., 2013; Suo et al.,
2014). Importantly, at E14 there is no difference in axon exten-
sion along the superior vena cava ganglia, suggesting a similar
role for Coronin-1 across the sympathetic nervous system (Fig.
7A). In hearts from E17.5 WT animals, the majority of axons
appear at the dorsal surface of the ventricular chamber. However,
in the absence of Coronin-1, axons grow much further toward the
lateral walls and the apex of the heart (Fig. 7B). Additionally at
ages later than E17.5, we observed a significant increase in branch
number in hearts from Corola™’~ mice (Fig. 7C). Although in
vitro experiments were performed using neurons from the SCG,
sympathetic axons that supply the heart are derived from stellate
ganglia. This suggests that, just as NGF regulates sympathetic
neural growth and survival in all sympathetic end organs, the role
of Coronin-1 is likely to be similarly broad.
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Discussion

Here we examine the role of Coronin-1 in sympathetic axon
growth and branching. Because Coronin-1 expression in sympa-
thetic neurons is dependent on NGF at the final target (Suo et al.,
2014), we speculate that Coronin-1 is a physiological switch in-
volved in interpreting NGF-TrkA signaling in at least two differ-
ent axon growth states during final target innervation. (1) The
early innervation stage when axons experience local NGF-TrkA

signaling before Coronin-1 expression and display smaller
growth cones, accelerated axon growth, and increased branching
in a PI3K-dependent manner (Fig. 8A). As neurons effectively
compete for target-derived neurotrophic factors, they begin to
engage transcriptionally mediated feedback loops (Deppmann et
al., 2008; Suo et al., 2014) and neurons that are “winning” the
competition for survival upregulate Coronin-1. We suggest that
the duration of this early stage of final target innervation is de-
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pendent on the lag between initial exposure to target-derived
NGF and expression of Coronin-1 (and perhaps other genes).
Indeed this interval may be as long as 2—4 d since sympathetic
axons begin to infiltrate many of their final targets by E14.5 and
begin expressing Coronin-1between E15.5 and E18.5 followed by
peak expression at PO (Suo et al., 2014). (2) The late, final target
innervation stage corresponds to Coronin-1 upregulation, which
increases NGF-induced calcium release and depresses axon
growth and branching by suppressing signaling downstream of
PI3K resulting in disinhibition of GSK3 (Fig. 8B). The presence

of Coronin-1 slows but does not completely halt growth and
branching, which is likely important to support continued cov-
erage of end organs as they grow. We speculate that axon growth
and branching in neurons that are “losing” the competition for
neurotrophic factor will be slower to induce Coronin-1 expression
and will experience alonger early stage, remaining highly active until
they either find a sufficient concentration of NGF to support survival
or are eliminated via apoptosis between E18.5 and P0O. This may
provide a general logic for how axons switch their behaviors during
developmental wiring of the nervous system.
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Axon growth in sympathetic axons can be driven through
local signaling in distal axons (Campenot, 1977). Based on
previously reported kinetics of NGF-TrkA internalization, we
speculate that much of the NGF-dependent local signaling
emanates from an endosomal platform in distal axons (Kuru-
villa etal., 2004; Chen et al., 2005; Harrington et al., 2011). The
notion that Coronin-1 expression and association with the
NGEF-TrkA endosome are both NGF dependent (Suo et al.,
2014) suggests that the constituents of the signaling endosome
platform are quite dynamic. Coronin-1 is likely to recruit or
influence several other endosomal proteins. For example, our
data together with previous studies suggest that although
PLC-v1 may be immediately recruited to activated TrkA via its
SH2 domain, it is not functional until Coronin-1 is recruited
during the late stage of final target innervation (Ohmichi et al.,
1991; Mueller et al., 2008). It is intriguing to speculate that
neurotrophin-induced calcium release occurs as a function of
effector proteins associated with post-endocytic TrkA. It has
been shown that calcium modulation is directly linked to axon
growth rate and turning behavior (Mattson and Kater, 1987;
Song et al., 1997). Low calcium levels correspond to rapid
growth and decreased turning while high calcium levels cor-
respond to slowed growth, consistent with Coronin-1 func-
tion in sympathetic neurons and is suggestive of a general
principal in axon growth (Song et al., 1997; Robles et al,,
2003).

Beyond influencing signaling, endosomally associated Coronin-1
may directly influence cytoskeleton dynamics by inhibiting actin nu-
cleation protein(s) Arp2/3 (Rodal et al., 2005). Coronin family

members have also been reported to associate with the actin-
severing protein cofilin, which interacts with the signaling en-
dosome and regulates proper NGF-TrkA trafficking (Gandhi
et al., 2009; Harrington et al., 2011). Whether and how
Coronin-1 recruits and/or regulates endosomal proteins in-
volved in cytoskeletal modification will be the subject of future
inquiry.

TrkA signaling has also been shown to influence sensory neu-
ron axon growth and branching (Klein et al., 1994; Markus et al.,
2002; Zhou et al., 2004; Wheeler et al., 2014). Despite similar
trophic dependencies between sympathetic and nociceptive
sensory neurons, they appear to use classic TrkA-dependent sig-
naling pathways differently to control axon growth. While inhi-
bition of PI3K influences axon growth in wild-type sensory
neurons, similar inhibition is only observed in the absence of
Coronin-1 and calcium signaling in sympathetic neurons
(Markus et al., 2002; Zhou et al., 2004). This may indicate a
fundamentally different role for TrkA-dependent calcium signal-
ing between peripheral neuron subtypes. On the other hand, we
find that inhibition of Ras-MAPK signaling has little to no effect
on growth and branching of sympathetic axons, which is con-
sistent with recent in vivo studies examining this pathway in
sensory axons (Newbern et al., 2011). Future studies on these
differences in what have been widely assumed to be relatively
similar PNS neuron populations will provide an opportunity
to dissect key downstream pathways and better understand the
logic of axon behavior as they transition from path finding to
target innervation.
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