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Executive Control Signals in Orbitofrontal Cortex during
Response Inhibition

Daniel W. Bryden'? and Matthew R. Roesch'
'Department of Psychology, and 2Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742

Orbitofrontal cortex (OFC) lesions produce deficits in response inhibition and imaging studies suggest that activity in OFCis stronger on
trials that require suppression of behavior, yet few studies have examined neural correlates at the single-unit level in a behavioral task that
probes response inhibition without varying other factors, such as anticipated outcomes. Here we recorded from single neurons in lateral
OFC in a task that required animals in the minority of trials to STOP or inhibit an ongoing movement and respond in the opposite
direction. We found that population and single-unit firing was modulated primarily by response direction and movement speed, and that
very few OFC neurons exhibited a response independent inhibition signal. Remarkably, the strength of the directional signal was not
diminished on STOP trials and was actually stronger on STOP trials during conflict adaptation. Finally, directional signals were stronger
during sessions in which rats had the most difficulty inhibiting behavior. These results suggest that “inhibition” deficits observed with
OFCinterference studies reflect deficits unrelated to signaling the need to inhibit behavior, but instead support a role for OFC in executive

functions related to dissociating between two perceptually similar actions during response conflict.
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Introduction

The ability to inhibit unwanted actions is necessary for everyday
behavior. Research has suggested that orbitofrontal cortex (OFC)
acts as a critical frontal area that informs downstream regions of
the need to suppress behavior. Evidence for this arose as damage
to OFC was shown to promote disinhibition operationalized as
perseveration during extinction tasks (Charles, 1969), reduced
reversal ability (McEnaney and Butter, 1969; Iversen and Mish-
kin, 1970; Jones and Mishkin, 1972; Rolls et al., 1994; Meunier et
al., 1997; Chudasama and Robbins, 2003; Fellows and Farah,
2003; McAlonan and Brown, 2003; Schoenbaum et al., 2003;
Hornak et al., 2004; Izquierdo et al., 2004; Bissonette et al., 2008),
impulsive choice in both delay discounting (Mobini et al., 2002;
Zeeb et al., 2010) and stop tasks (Eagle et al., 2008; Majid et al.,
2013), and impaired gambling behavior (Bechara et al., 1999;
Zeeb and Winstanley, 2011). Many of these studies suggest that
OFC provides a type of inhibitory signal that overrides or dampens
behavioral responding when such control is necessary for accurate
performance. Indeed, imaging studies have shown heightened
BOLD signals generating from OFC on trials that require partici-
pants to inhibit behavior (Casey et al., 1997; Horn et al., 2003; Rubia
et al., 2005; Chikazoe et al., 2009; Majid et al., 2013).
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Over the past decade, the theory that inhibitory function is
causally linked to OFC has lost some ground due to data revealing
that OFC lesioned animals can exhibit certain forms of inhibitory
restraint as well as healthy control animals (Kheramin et al., 2003;
Winstanley et al., 2004; Chudasama et al., 2007; Swick et al,,
2008). For example, rats with OFC lesions can discontinue re-
sponding to stimuli that unpredictably lead to punishment dur-
ing discrimination learning (Schoenbaum et al, 2003) or
suddenly predict no reward during set-shifting (McAlonan and
Brown, 2003; Ghods-Sharifi et al., 2008).

With the abundance of attention OFC has received during the
past few decades, it comes as a surprise that there have been few
recordings from OFC during performance of a task that indepen-
dently probes response inhibition. Most tasks vary both the need
to inhibit behavior and aspects related to expected outcomes. To
address these issues we recorded from OFC in our rodent variant
of the stop-signal task (Bryden et al., 2012). In the majority of trials
(80%), rats were instructed to respond (GO) to a directional cue-
light. On the remaining 20% of trials rats had to inhibit their initiated
response and redirect movement in the opposite direction to achieve
reward (STOP trials). We show that activity in OFC does not carry a
pure nondirectional inhibitory signal when the animal successfully
inhibits a behavioral response and that directional signals are en-
hanced on STOP trials following STOP trials, consistent with con-
flict adaptation (Botvinick et al., 2001; Mansouri et al., 2014).

Materials and Methods

Subjects. Five male Long—Evans rats were obtained at 175-200 g from
Charles River Laboratories. Rats were tested at the University of Mary-
land in accordance with NIH and JACUC guidelines.

Surgical procedures and histology. Surgical procedures followed guide-
lines for aseptic technique. Electrodes were manufactured and implanted
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Figure1.

Stop-signal task and behavior. 4, House lights instructed rats that nose-poke into the central port would initiate a trial. Rats were required to nose-poke and remain in the port for 1000

ms before one of the two directional lights (left or right) illuminated for 100 ms. The cue-light disclosed the response direction in which the animal could retrieve fluid reward. On 20% of all trials,
simultaneous with port exit, the light opposite the first illuminated to instruct the rat to inhibit the current action and redirect behavior to the corresponding well under the second light. With the
selection of the correct fluid well, reward was delivered after an 800 —1000 ms delay. B, Two conditions by two directions yields four possible trial-types (GO and STOP). Errors are unrewarded. C,
Percentage of correct trials (== SEM) for GO and STOP trials. D, Movement time in milliseconds (= SEM) for GO trials, STOP trials, and STOP errors defined as the latency from port exit to fluid well entry.
Asterisks indicate planned comparisons revealing statistically significant differences (t test, p << 0.05). E, Speed—accuracy tradeoff. Percentage correct on STOP trials for every session plotted against
average movement time (port exit to well entry). F, Location of recording sites. Gray boxes mark extent of the recording locations. Black dots mark the bottom of the recording tract. Sessions from
one rat (data not shown) were terminated early due to technical issues. Data from this animal’s two neurons were not significantly modulated by the task and were excluded from further analysis.

as in prior recording experiments (Bryden et al., 2011; Burton et al.,
2014). Rats were implanted with a drivable bundle of ten 25-um-
diameter FeNiCr wires (Stablohm 675, California Fine Wire) in the left or
right hemisphere dorsal to lateral OFC [n = 5 rats; 3 mm anterior to
bregma, 3.2 mm left (n = 2) or right (n = 3) of midline, and 4 mm ventral
to the brain surface]. Immediately before implantation, these wires were
freshly cut with surgical scissors to extend ~1 mm beyond the cannula
and electroplated with platinum (H,PtCly, Aldrich) to an impedance of
~300 kOhms. Cephalexin (15 mg/kg p.o.) was administered twice daily
for 2 weeks postoperatively to prevent infection.

Behavioral task. Recording was conducted in aluminum chambers
~18 inch on each side with downward sloping walls narrowing to an area
of 12 X 12 inches at the bottom. On one wall, a central odor port was
located above two adjacent fluid wells. Directional lights were located
next to the fluid wells. House lights were located above the panel. Task
control was implemented via computer. Port entry and licking was mon-
itored by disruption of photobeams.

The basic design of a trial is illustrated in Figure 1 A, B. Each trial began
by illumination of house lights that instructed the rat to nose poke into
the central port. Nose poking initiated a 1000 ms pre-cue delay period
during which the rat was required to stay inside the central port. At the
end of this delay, a directional light to the animal’s left or right was
flashed for 100 ms. The trial was aborted if the rat exited the port at any
time before offset of the directional cue light. On 80% of trials, presen-
tation of either the left or right light signaled the direction in which the
animal could respond to obtain sucrose reward in the corresponding

fluid well below. These are referred to as GO trials. On 20% of trials,
simultaneous with the rat exiting the nose-port, the light opposite to the
location of the originally cued direction turned on and remained illumi-
nated until the behavioral response was made. These STOP trials were
randomly interleaved with GO trials. Rats were required to inhibit the
movement signaled by the first light and respond in the direction of the
second light. After correct responses, rats were required to remain in
the fluid well for a variable period between 800 and 1000 ms (pre-fluid
delay) before reward delivery (10% sucrose solution). Trials were pre-
sented in a pseudorandom sequence such that left and right trials were
presented in equal numbers (£ 1 per 250 trials). The intertrial interval
was 4 s. The time necessary to stop and redirect behavior (stop change
reaction time; SCRT) on STOP trials was computed by calculating the
difference between average correct STOP trial movement time and aver-
age correct GO trial movement time. Movement time is calculated by the
latency between port exit and well entry.

Single-unit recording. Procedures were the same as described previ-
ously (Bryden et al., 2011). Wires were screened for activity daily; if no
activity was detected, the rat was removed, and the electrode assembly
was advanced 40 or 80 wm. Otherwise, active wires were selected to be
recorded, a session was conducted, and the electrode was advanced 40 or
80 wm to obtain recordings from new cells. Neural activity was recorded
using four identical Plexon Multichannel Acquisition Processor systems,
interfaced with training chambers. Signals from the electrode wires were
amplified 20X by an op-amp headstage, located on the electrode array.
Immediately outside of the training chamber, the signals were passed
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Figure 2.  Impact of direction and trial-type on increasing-type OFC neurons. A, B, Population histograms of all OFC neurons that fired significantly above baseline (n = 209). Firing rate is
normalized to the strongest elicited firing frequency. Direction preference is based on the response direction that elicited the highest firing rate for both correct STOP and correct GO trials during the
response epoch. Preference is specified for each cell individually (thick lines represent preferred direction, thin lines represent nonpreferred direction). Red lines refer to STOP trials and blue lines refer
to GO trials. Solid lines represent correct trials; dashed lines represent incorrect trials. Activity is aligned to port exit (4) and fluid-well entry (B), respectively. Vertical dashed line indicates the average
SCRT for these sessions marked at 233 ms. Tick marks represent time points of statistically significant direction firing (preferred vs nonpreferred direction) for GO trials (blue) or STOP trials (red)
analyzed by sliding a 100 ms window every 10 ms (t test, p << 0.01). Although each tick mark signifies statistical difference fora 100 ms epoch, tick width is 10 ms for the purpose of presentational
detail. Individual arrows depict average movement time for STOP trials (red arrowhead; 806 ms) and GO trials (blue arrowhead; 573 ms) for the analyzed sessions. Legend: For red lines, the top-most
text refers to the GO direction (e.g., “stop nonpref” = animal was cued to inhibit responding to the nonpreferred direction). The bottom-most text refers to the animal’s ultimate response direction.
C-E, Direction indices which took firing in the preferred direction, subtracted firing in the nonpreferred direction, and divided the difference by the sum of firing in both directions (preferred-
nonpreferred)/(preferred + nonpreferred) for each cell. This firing analysis is taken during the response epoch and is separate for correct GO trials (C), correct STOP trials (D), and STOP errors (E).
Distributions are determined to be significantly different from zero via Wilcoxon (p << 0.05). Asterisks signify whether two distributions are significantly different from one another via Wilcoxon

(p < 0.05).

through a differential preamplifier (Plexon, PBX2/16sp-r-G50/16fp-
G50), where single-unit signals were amplified 50X and filtered at 150—
9000 Hz. The single-unit signals were then sent to the Multichannel
Acquisition Processor box, where they were further filtered at 250—8000
Hz, digitized at 40 kHz and amplified at 1-32X. Waveforms (>2.5:1
signal-to-noise) were extracted from active channels and recorded to
disk by an associated workstation with event timestamps from the behav-
ior computer. Waveforms were not inverted before data analysis.

Data analysis. Units were sorted using Offline Sorter software from
Plexon, using a template matching algorithm. Sorted files were then
processed in Neuroexplorer to extract unit timestamps and relevant
event markers. These data were subsequently analyzed in MATLAB.
Baseline firing was taken during a 1 s epoch starting 2 s before trial
initiation (nose-poke). This baseline epoch was used exclusively to clas-
sify neurons as task-related (i.e., increasing- or decreasing-type) and was
chosen as a period where rats are relatively stationary, yet prepared to
initiate the upcoming trial. For the majority of the analyses, activity was
examined during the period between nose poke exit and well entry
(termed “response epoch”), while the movement was being made and/or
cancelled. Activity in population histograms (Figs. 2, 3,5,6A,B, 84,C)
was normalized by dividing by the maximal firing rate of each neuron. All
statistical procedures were executed using raw firing rates. Wilcoxon tests
were used to measure significant shifts from zero in distribution plots

(p < 0.05). T tests were used to measure within cell differences in firing
rates and behavioral data where indicated (p < 0.05). Chi-square tests
(p <0.05) were used to determine whether counts of cells were different
from zero. Significant direction signaling, as a function of time, was
determined using a sliding window analysis. For STOP and GO trials
independently, activity between the preferred and nonpreferred direc-
tions was compared in 100 ms epochs, which slid 10 ms after each itera-
tion. To complement these analyses, we used least-squares multiple
regression as a means to determine the number of cells where firing rate was
significantly correlated with either the trial-type (STOP/GO), movement
time, and/or response direction parameters when variance for the two re-
maining factors was accounted for. To achieve this, we ran the following
multiple model for each individual cell:

Y = B, + B,Movement Time + B,Trial Type + B;Direction,

where Y = firing rate (spikes/s) during the response epoch, Movement
Time = latency between unpoke and well entry, Direction = coded as
(—1 = ipsilateral) (1 = contralateral), and Trial Type = coded as (—1 =
GO) (1 = STOP).

To determine the significance for each predictor as a function of firing
rate during the response epoch, we computed the unique variance of each
individual parameter and divided it by the variance unaccounted for
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Firing of increasing-type OFC neurons was related to movement time. A, B, Population histograms of all increasing-type OFC neurons (n = 209). Movement time median split for each

direction in each trial-type yields one histogram of FAST trials (4) and one of SLOW trials (B) each aligned on GO cue onset. Tick marks represent time points of statistically significant direction firing
(preferred vs nonpreferred direction) for GO trials (blue) or STOP trials (red) analyzed by sliding a 100 ms window every 10 ms (t test, p << 0.01). Left-most arrows depict average latency to unpoke
after GO cue illumination for STOP trials (red arrowheads; FAST = 397 ms; SLOW = 330 ms) and GO trials (blue arrowheads; FAST = 338 ms; SLOW = 326 ms) for the analyzed sessions. Right-most
arrows depict average latency to well entry after GO cue illumination for STOP trials (red arrowheads; FAST = 1043 ms; SLOW = 1318 ms) and GO trials (blue arrowheads; FAST = 766 ms; SLOW =
1047 ms) for the analyzed sessions. C, Direction index distributions calculated without dividing by the sum of preferred and nonpreferred activity. This procedure deviates slightly from that of Figures
2 and 4 due to more frequent extreme difference scores after the number of trials for each distribution was splitin half. Direction distributions encompass all FAST movements during GO trials (left)
and STOP trials (right). D, Direction index distributions for SLOW trials. Other conventions as in C. Distributions are determined to be significantly different from zero via Wilcoxon (p << 0.05).
Distributions are determined to be significantly different from one another via Wilcoxon (p << 0.05).

when each respective parameter was not included in the model (partial
r?). Significance of each partial r* was recorded along with the valence of
the B-value. Counts of positively and negatively correlated cells were
compared via binomial sign test (p < 0.05). For clarity, it was possible
that a single cell could show a significant partial r* for all three parame-
ters. Each parameter was calculated in the same manner regardless of
whether a neuron was an increasing- or decreasing-type cell. Absolute
value of the firing rate was never used.

Results

Rats were trained on a task in which spatially opposite (left and
right) cue lights instructed the direction of the behavioral re-
sponse necessary to obtain fluid reward. The task is illustrated in
Figure 1 A, B. lllumination of the house lights signaled the start of
each trial. Rats could then initiate a trial by nose-poking into the
central port (Fig. 1A). After a 1000 ms delay period where the rat
was required to stay in the nose-port, a directional cue light to the
left or right of the nose-port flashed (100 ms) indicating the
direction in which the animal must respond to receive reward.
These trials will be referred to as GO trials and occurred on a
random 80% of all trials. The remaining 20% of trials began in the
same manner but, simultaneous with withdrawal from the nose-
port, a second cue light illuminated opposite the first, instructing
the animal to stop its initiated movement and respond in the
opposite direction (the well corresponding to the second light).

These trials will be referred to as “STOP-change” or “STOP” trials
for short. The STOP cue was illuminated only after the initial
movement had commenced (i.e., simultaneous with port exit),
thus we are examining the rats’ ability to inhibit a prepotent and
programmed motor behavior. For each trial, animals were re-
quired to remain in the reward well for a random duration be-
tween 800 and 1000 ms before receiving reward. There were a
total of four different trial-types: GO-left, GO-right, STOP-left-
GO-right, and STOP-right-GO-left; however, for the remainder
of the paper, response direction (i.e., left and right) will be refer-
enced to the hemisphere of the recording site (contralateral or
ipsilateral) or the directional preference of each individual neu-
ron (preferred or nonpreferred).

On STOP trials rats exhibited significantly slower movement
speeds (latency between port exit and well entry) and reduced
accuracy compared with GO trials (Fig. 1C,D; t test; percentage
correct: t(s,7) = 15.5, p < 0.01; movement time: f(5,45, = 39.8,p <
0.01). Slower latencies resulted in STOP trial performance con-
sistent with a speed accuracy trade off. This is illustrated in Figure
1E which plots average movement times (well entry minus port
exit) on STOP trials against percentage of correct STOP trials for
all recording sessions. During sessions in which rats were slower,
performance was better (r = 0.44; p < 0.01). Consistent with this
finding, movement times on STOP error trials were significantly
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faster than movement times on correctly performed STOP trials
(Fig. 1D; t(1916) = 20.64, p < 0.01). Combined, these results dem-
onstrate that there is high conflict between two competing re-
sponses during STOP trials. That is, rats were planning and
generating a movement before illumination of the STOP cue in
response to the first cue light, and that inhibition and redirection
of the behavioral response was necessary to correctly perform
STOP trials. Trials during which the movement had to be stopped
and redirected will be compared with responses made in the same
ultimate direction, which cannot be accomplished with more
typical stop-signal tasks that require subjects to either pause all
movement or redirect toward a centralized food cup. This is im-
portant because the activity of neurons in rat OFC have been
shown to be directionally selective (Feierstein et al., 2006; Roesch
et al., 2006; Furuyashiki et al., 2008).

We recorded 548 OFC neurons from four rats over 112 ses-
sions. The recording locations are illustrated in Figure 1F. We
first assessed how many neurons significantly increased or de-
creased firing rate relative to baseline. The chosen epoch of anal-
ysis lasted from the time the rat withdrew from the nose-port
until reaching the fluid well (response epoch), whereas the base-
line epoch lasted 1 s beginning 2 s before nose-poke (trial initia-
tion). In OFC, 209 (38%) and 131 (24%) neurons increased and
decreased firing during the response epoch relative to baseline,
respectively. The number of neurons that exhibited firing signif-
icantly different from baseline was more than expected from
chance alone (increasing-type, x> = 1260.25, p < 0.01;
decreasing-type, x* = 409.64, p < 0.01) and there were signifi-
cantly more increasing-type compared with decreasing-type neu-
rons (x* = 17.85, p < 0.01). Below we address how these
populations of cells were modulated by trial-type (GO vs STOP),
response direction, correctness, and movement speed.

Increasing-type cells in OFC

To qualify activity over the increasing-type neurons in OFC, we
constructed population histograms that represent the average fir-
ing over time during execution of a trial. Because activity in OFC
is often modulated by response direction, but not always the same
direction, we segregated population activity into each cell’s pre-
ferred and nonpreferred response directions. Preferred direction
is defined as the movement direction that elicited the strongest
firing during the response epoch, averaged over correct STOP
and GO trials (always referred to the ultimate response direction
performed, not the successfully inhibited direction). As defined
by our analysis, activity in the preferred direction (Fig. 2A,B,
thick solid lines) is always stronger than activity in the nonpre-
ferred direction (Fig. 2 A, B, thin solid lines) during the response
epoch.

As described previously, increasing-type neurons in rat OFC
are spatially selective (Feierstein et al., 2006; Roesch et al., 2006;
Furuyashiki et al., 2008), firing more strongly for movements
made in one direction over another. On correct GO (blue) trials,
activity differentiated between the preferred (thick) and nonpre-
ferred (thin) directions before withdrawal from the nose port.
This can be observed via the tick marks in Figure 2A that repre-
sent statistically significant (¢ test, p << 0.01) directional activity
(preferred vs nonpreferred directions) in 100 ms windows that
slide every 10 ms. This direction specificity on GO trials (blue
ticks) suggests that the correct direction was encoded swiftly. On
correct STOP trials (Fig. 2A, B), the correct direction was en-
coded after the rat exited the nose-port as can be observed by the
red tick marks. The noticeable difference between STOP and GO
trials is that the directional signal took longer to develop during
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STOP trials. Neural activity for all trial types increased before
port exit. On STOP trials in which rats had to inhibit responding
to the cell’s preferred direction and redirect behavior toward the
nonpreferred direction (thin red) activity ceased firing shortly
after the onset of the STOP cue and before the SCRT (234 ms; Fig.
2A, vertical dashed line). This relatively delayed directional en-
coding on STOP trials is consistent with longer movement times
(Figs. 1D, 2A, red vs blue arrowheads).

Although we observed behavioral evidence of response con-
flict on STOP trials and directional signals took longer to develop,
the strength of the directional signal during the entire response
epoch was not significantly weaker on STOP relative to GO trials.
This is illustrated in Figure 2C,D, which plots the distributions of
directional indices (preferred-nonpreferred/preferred + non-
preferred) for both correct GO and STOP trials during the re-
sponse epoch. Like above, we defined each cell’s preference as the
direction that showed the stronger response when averaging over
the mean firing on STOP trials and the mean firing on GO trials.
Thus, this analysis allows us to ask whether the distribution of
directional indices, and therefore the strength of the directional
signal, is different between the two trial-types across the popula-
tion of increasing-type neurons. The same analysis performed on
data from dorsal striatum (DS) neurons illustrated weaker direc-
tional signals on STOP trials (Bryden et al., 2012). Here, in OFC,
the directional index distribution for both GO and STOP trial-
types (Fig. 2 A, B, solid lines) was shifted significantly above zero
(Fig. 2C,D; Wilcoxon, p values < 0.01; us = 0.12,0.12) and there
was no difference between the two distributions (Fig. 2C,D; Wil-
coxon, p = 0.84), suggesting that even though the directional
signal took longer to develop under STOP trials, it was resolved
before the completion of the response as is evident in the neural
activity aligned to well entry in Figure 2B. On STOP error trials
(dashed lines), the directional signal during the response epoch
was reduced implying that adequate encoding of direction in
OFC was necessary for correct performance. On STOP error tri-
als, the mean of the distribution of directional indices was signif-
icantly lower compared with correct STOP trials (Fig. 2D, E;
Wilcoxon, p < 0.05).

Opverall these results suggest that when the directional signal is
not fully reconciled on STOP trials, rats tend to make mistakes.
This implies that the strength of the directional signal is directly
tied to the motor output of the animal; thus, when it is weak, the
correct direction is not discerned and errors are made. Therefore
the strength of the directional signal might also be related to the
speed of the response on correct trials (Feierstein et al., 2006).
When rats are fast and correct, one might expect that the direc-
tional signal was strong (i.e., large difference), whereas when rats
were slow, the directional signal might have been weak or taken
longer to accurately encode the correct response.

To test this hypothesis we divided trials into FAST and SLOW
speeds based on a median split of movement times (latency be-
tween port exit and well entry) separately for both directions on
correct STOP and GO trials, and replotted the histograms and
distributions of direction indices (average movement times:
FAST GO = 429 ms, FAST STOP = 646 ms, SLOW GO = 721
ms, SLOW STOP = 987 ms; Fig. 3A-D). Notably, FAST and
SLOW movement times were accompanied by longer and shorter
reaction times (as defined by the latency to leave the central port;
ttest, p < 0.01), respectively. Consistent with the hypothesis laid
out above, directional signals took longer to develop (Fig. 3A, B)
and the shift in the distribution of directional indices was signif-
icantly stronger during FAST compared with SLOW STOP trials
(Fig. 3C, right, D, right; Wilcoxon; p < 0.01).
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ing a significant partial r2 value for the movement time parameter. The blue circle reveals the
number (and percentage) of OFC increasing-type cells that show significant partial r? values for
the trial-type (i.e., STOP vs GO) parameter. “+" and “—" values signify the number of cells
within a given parameter that show associated positive or negative (3 values, respectively.
Asterisks represent that the number of positive and negative 3 values for a given parameter are
significantly different from 50/50 chance (binomial sign test, p << 0.05). Overlapping portions
represent the number of cells where two (orange, green, purple) or three (brown) parameters
show significant partial r? values. Sizes of individual circles and overlapping portions are pro-
portional to the percentage of neurons showing their respective effects. The gray circle repre-
sents the number (and percentage) of OFC increasing-type neurons where neither direction,
movement time, nor trial-type exhibited significant partial r* values.

To determine whether neuronal firing correlates with move-
ment speed, direction, and/or type of trial at the single-cell level,
we performed the multiple regression procedure described in
Materials and Methods. The top circle in Figure 4 indicates the
number and percentage of increasing-type OFC cells that were
significantly modulated by the direction of the response when
variance for the other parameters was accounted for (partial r2).
Thirty-seven percent of increasing-type neurons (n = 78) were
significantly modulated by direction and of these 78 neurons, 48
B values of the direction parameter were negative (greater firing
for the ipsilateral direction), whereas 30 were positive (binomial
sign test, p = 0.05). Forty-nine cells (23%) were significantly
modulated by movement time (Fig. 4; movement time). Of these
49, equal numbers showed positive and negative 8 values for the
movement time parameter (20 vs 29; binomial sign test, p =
0.25). In 26 neurons, both the direction and movement speed
parameters showed significant partial 7> values (Fig. 4, orange +
brown). Thus, consistent with the population analysis described
above, OFC neurons encoded both response direction and move-
ment speed.

Clearly signals in OFC are related to motor output and re-
sponse direction. However, from these results it appears that
OFC does not encode a pure response inhibition signal which one
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might predict to be independent of response direction (Schmidt
etal., 2013). At the population-level, activity was not significantly
different on a simple GO versus STOP trial comparison (¢ test,
p = 0.60) for increasing-type neurons. At the single cell level, 30
neurons (14%) showed significant partial r* values in our regres-
sion procedure (Fig. 4; trial-type), but only 11 of those neurons,
5% of the population of increasing-type neurons, showed a sig-
nificant partial r* independent of significant modulation by di-
rection and movement speed factors; a number not significantly
different from chance (x> = 0.03, p = 0.86).

Decreasing-type cells in OFC

Of the 548 neurons recorded in OFC, 131 (24%) fired signifi-
cantly less during the response epoch compared with baseline.
We performed identical analyses on decreasing-type cells as for
the increasing-type neurons described above.

Population firing for decreasing-type neurons exhibited sub-
tle modulation by response direction (i.e., preferred vs nonpre-
ferred) with little modulation by trial-type (Fig. 5A,B, solid
lines). This minimal directional effect is apparent when observing
the tick marks in Figure 5A which represent the significant differ-
ence (t test, p < 0.01) between the preferred and nonpreferred
directions during sliding 100 ms epochs for correct GO trials
(blue ticks) and correct STOP trials (red ticks). Consistent with
this observation, direction index distributions for both preferred
and nonpreferred directions were significantly shifted above zero
for correct GO and STOP trial-types (Fig. 5C,D; Wilcoxon; p
values < 0.01) and not significantly different from one another
(Fig. 5C,D; Wilcoxon, p = 0.84). Thus, decreasing-type OFC
neurons also appear to signal direction related responses when
inhibition and redirection of behavior is necessary. To further
support this assertion, we analyzed errant STOP trials and found
that activity during these trials was not modulated by response
direction as indicated by a nonsignificant shift in the directional
index distribution (Fig. 5E; Wilcoxon, p = 0.59). Importantly,
the direction distribution for STOP errors was significantly re-
duced relative to correct STOP trials (Fig. 5D, E; Wilcoxon, p <
0.01). This lack of directionality on STOP errors suggests that
when animals fail to inhibit and redirect their response, the ac-
tivity involved in directional responding does not reliably distin-
guish between the two actions.

To infer the extent to which OFC decreasing-type neurons are
modulated by movement speed, we divided trials into FAST and
SLOW movement speeds via median split (average movement
times: FAST GO = 420 ms, FAST STOP = 633 ms, SLOW GO =
720 ms, SLOW STOP = 972 ms; Fig. 6A-D). As in the increasing-
type population, SLOW movement speeds coincided with
shorter reaction time (cue to unpoke) latencies when compared
with reaction times in FAST movement trials (# test, p < 0.01).

Unlike increasing-type neurons, average activity (for all trial-
types) was reduced in decreasing-type neurons when rats were
FAST compared with when they were SLOW (¢ test, p < 0.01).
However, like increasing-type neurons, directional signals on
STOP trials were significantly stronger when rats were FAST ver-
sus when they were SLOW (Fig. 6C, right, D, right; Wilcoxon, p <
0.01) and there was a trend toward greater directional signals
when rats were faster on GO trials (Fig. 6C, left, D, left; Wilcoxon,
p=0.14).

In the multiple regression analysis, 31 neurons (24%) were
significantly modulated by movement time (Fig. 7; movement
time). Significantly more of these neurons (n = 25) showed pos-
itive B values (i.e., greater firing for slower movement) than neg-
ative 3 values (n = 6; binomial sign test, p < 0.01). Of these 31



Bryden and Roesch e Role of OFCin Inhibitory Control

J. Neurosci., March 4, 2015 - 35(9):3903—3914 * 3909

A /SCRT B
0.25 0.25+¢
2 £
v ic §
73 §5
N — N —
= ER:
©
g ,5:" :gg Ect;fpref STOP Errors: g e
=z s StOP NONpref, " '\?»}gr‘:t‘;)r?eff’ =z
went pref _ _ . stop nonpref,
__ stop pref, went nonpref
went nonpref
0.10 : . . . . 0.10 . . : . .
-3 -2 -1 0] 1 2 3 -3 -2 -1 0 1 2 3
time from port exit (s) time from well entry (s)
*
| ns * |
| | |
35 35 35 ;

C 01 D E i P=0.59
= 16 € € ! p=0.01
=1 3 3 !

-1 0 1 -1 -1 0 1
(Pref-Nonp/Pref+Nonp) (Pref-Nonp/Pref+Nonp) (Pref-Nonp/Pref+Nonp)
[spk/s] [spk/s] [spk/s]

GO Trials STOP Trials STOP Error Trials

Figure 5.

Impact of direction and trial-type on decreasing-type OFC neurons. 4, B, Population histograms of all OFC neurons that fired significantly below baseline (n = 131). Average SCRT

(vertical dashed line) is 224 ms. Average movement times were 793 ms on STOP trials (red arrowhead) and 569 ms on GO trials (blue arrowhead). Other conventions as in Figure 2. C-E, All

conventions as in Figure 2.

neurons, eight of them were also modulated by direction (Fig. 7,
orange). Twenty neurons (15%) were only modulated by the
direction parameter (Fig. 7; direction). Last, trial-type yielded
only five neurons (4%) that exhibited significant partial r* values
(Fig. 7; trial-type). Thus, like increasing-type neurons, activity of
decreasing-type neurons was closely tied the direction and speed
of behavior, rather than the need to inhibit action.

Conflict-induced executive control of directional signals

in OFC

Although our task was designed to study the role of response
inhibition on single cells, the swift and continuous manner in
which our rats completed trials in addition to the random se-
quence of our trial types allows us to investigate the impact of
immediate prior experience on activity. Behaviorally, using mul-
tiple tasks, it has been shown that efficient performance on the
current trial is dependent on the degree of conflict on the previ-
ous trial (Carter and van Veen, 2007). The theory suggests that on
a nonconflict trial preceded by a conflict trial, the subject should
exhibit slower response times and higher control than in situa-
tions where the nonconflict trial is preceded by a nonconflict
trial. Additionally, on a conflict trial preceded by a nonconflict
trial, the competing irrelevant response should have a larger
impact on the ultimate response and therefore increase re-
sponse latencies relative to when a conflict trial is preceded by
a conflict trial. These behavioral findings have been referred to
as the “conflict adaptation effect” (Botvinick et al., 2001; Mayr
et al., 2003).

Consistent with conflict adaptation, rats in our task were
faster on correct STOP trials following STOP (i.e., conflict) trials
relative to those that followed GO (i.e., no conflict) trials (Fig. 84,
green vs red arrowheads; ¢ test, p < 0.01). Additionally, move-
ment times were faster on correct GO trials following GO trials
than they were on correct GO trials following STOP trials (Fig.
8C, green vs red arrowheads; f test, p < 0.01).

So far we have shown that directional signals on STOP trials
are fairly resilient to the competition between two conflicting
responses, demonstrating the OFCis accurately signaling the cor-
rect direction during response inhibition. Here, we ask whether
directional tuning in OFC might actually be enhanced during
conflict adaption, when executive control is more engaged due to
trial sequence. To address this issue, we plotted average firing of
increasing-type cells broken down by STOP trials that were pre-
ceded by either a GO (Fig. 84, red lines) or a STOP (Fig. 84, green
lines) trial. Quite strikingly, direction signals on correct STOP
trials following STOP trials were greater than on correct STOP
trials following GO trials. This observation is statistically vali-
dated in Figure 8 B which shows that the distribution of direction
indices was greater on STOP trials following STOP trials relative
to STOP trials following GO trials (Fig. 8 middle, right; Wil-
coxon; p < 0.01) and relative to direction signals on all correct
GO trials (Fig. 84, blue lines, B left, right; Wilcoxon, p < 0.05).
Notably, this effect was not dependent on whether the previous
trial was correct or an error; the directional signal on correct
STOP trials following correct and incorrect STOP trials was not
significantly different (Wilcoxon; p = 0.17).
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Firing of decreasing-type OFC neurons was related to movement time. 4, B, Population histograms of all decreasing-type OFC neurons (n = 131). Tick marks represent time points of

statistically significant direction firing (preferred vs nonpreferred direction) for GO trials (blue) or STOP trials (red) analyzed by sliding a 100 ms window every 10 ms (t test, p << 0.01). Left-most
arrows depict average latency to unpoke after GO cue illumination for STOP trials (red arrowheads; FAST = 407 ms; SLOW = 338 ms) and GO trials (blue arrowheads; FAST = 344 ms; SLOW = 322
ms) for the analyzed sessions. Right-most arrows depict average latency to well entry after GO cue illumination for STOP trials (red arrowheads; FAST = 1041 ms; SLOW = 1310 ms) and GO trials
(blue arrowheads; FAST = 764 ms; SLOW = 1042 ms) for the analyzed sessions. Other conventions as in Figure 3. C, D, All conventions as in Figure 3.
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Figure7.  Multiple regression analysis for individual decreasing-type neurons. Conventions
as in Figure 4 for decreasing-type neurons.

Importantly, this effect was dependent on the current trial
being a STOP trial, suggesting that directional signals were en-
hanced only when it was needed to inhibit and redirect behavior.
This is illustrated in Figure 8C,D, which examines the impact of
the previous trial on GO trials. Directional signals on correct GO
trials was not significantly modulated by the identity of the previous
trial (i.e., STOP or GO; Fig. 8D, left, right; Wilcoxon, p = 0.99).

Directional signals in OFC are negatively correlated
with performance
Last, we asked whether directional signals in OFC were correlated
with task performance. We hypothesized the OFC is most critical
during sessions when rats were performing worse at that task.
During these sessions, rats would require additional conflict-
induced executive control to cope with conflicting responses. To
determine the relationship between these directional signals and
performance, we plotted the difference between activity during
the response epoch on preferred and nonpreferred directions
(direction signal) against accuracy on STOP trials. Remarkably,
directional signals in increasing-type neurons tended to be stron-
ger when rats were less accurate on STOP trials. The correlation
between the two was significant and negative (Fig. 8E; p < 0.05,
r = —0.16) suggesting that when rats had the most trouble inhib-
iting and redirecting behavior, directional signals in OFC were
stronger. This implies that the OFC was critical for controlling
direction-based behavior when the need to override prepotent
habitual behavior was the greatest.

For decreasing-type neurons, this correlation was also nega-
tive, but not significant (Fig. 8F; p = 0.22, r = —0.11).

Discussion

Research has suggested that OFC acts as a frontal area integral for
inhibitory control. Dysfunction in OFC has been critically impli-
cated in many disorders that impact inhibitory control including
addiction, Tourette syndrome, obsessive compulsive disorder,
and attention deficit hyperactivity disorder (Schachar et al., 1995,
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Strength of direction signals is modulated by presence of previous trial conflict. 4, Population histogram of all OFC neurons that fired significantly above baseline (n = 209). Blue lines

refer to all correct GO trials. Red lines refer to correct STOP trials where the previous trial was a GO trial. Green lines refer to correct STOP trials where the previous trial was a STOP trial. Tick marks
represent time points of statistically significant direction firing (preferred vs nonpreferred direction) for GO trials (blue), STOP trials following GO trials (red), and STOP trials following STOP trials
(green) analyzed by sliding a 100 ms window every 10 ms (¢ test, p < 0.01). Individual arrows depict average movement time for GO trials (blue arrowhead; 570 ms), STOP trials following GO trials
(red arrowhead; 804 ms) and STOP trials following STOP trials (green arrowhead; 770 ms) for the analyzed sessions. All other conventions as in Figure 2. B, Direction index distributions for correct
GO trials (left), correct STOP trials following GO trials (middle), and correct STOP trials following STOP trials (right). All other conventions asin Figure 2. €, Population histogram of all OFC neurons that
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2007; Weeks et al., 1996; Oosterlaan and Sergeant, 1998; Ooster-
laan et al., 1998; Rubia et al., 1998, 2005, 2007; Fillmore and Rush,
2002; Gauggel et al., 2004; Aron and Poldrack, 2005; Kalanithi et
al., 2005; Monterosso et al., 2005; Nigg et al., 2005; Bellgrove et
al., 2006; Fillmore et al., 2006; Makris et al., 2007; Durston et al.,
2009; Eagle and Baunez, 2010; Kataoka et al., 2010; Leventhal et
al., 2012). In fact, recent work has demonstrated that optogenetic
stimulation of lateral OFC and its terminals in striatum can re-

store normal levels of response inhibition in a mouse model of
compulsive behavior (Burguiére et al., 2013) and pharmacologi-
cal manipulation of this brain area in rats has been suggested to
disrupt stopping with striking parallels to observations made in
inferior frontal cortex in humans (Aron et al., 2014).

Although this previous work suggests that OFC provides a
type of inhibitory signal that can aid in response suppression,
others have strongly refuted this theory arguing that rats with
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impaired OFC function can still perform a number of tasks that
require response inhibition. Furthermore, a barrage of single-
unit studies over the past few years have suggested that neural
activity in OFC better reflects expectations about future out-
comes critical for reward-guided decision-making tasks that do
not necessarily involve response inhibition (Schultz et al., 2000;
Wallis, 2007; Schoenbaum et al., 2009; Padoa-Schioppa, 2011;
Moorman and Aston-Jones, 2014). Decreased function after
OFC lesions in tasks such as reversal and reinforcer devaluation
can be parsimoniously explained by reward expectancy encoding
rather than a decrement in the capacity to inhibit behavior.

Considering the debate on OFC’s role in response inhibition,
it comes as a surprise that no one has recorded from OFC in a task
that requires response inhibition independent from manipula-
tions of expected outcomes. We chose to examine neural corre-
lates during performance of a stop-signal task for several reasons.
First, stop-signal performance is disrupted in a number of psy-
chiatric disorders that are thought to impact function of the OFC
circuit (Weeks et al., 1996; Aron and Poldrack, 2005; Rubia et al.,
2005; Makris et al., 2007; Durston et al., 2009; Eagle and Baunez,
2010). Second, imaging studies clearly suggest higher firing on
stop relative to go trials in OFC in several tasks including ones
that require suppression of specific response types (e.g., left/right;
Rubia et al., 2005; Chikazoe et al., 2009; Majid et al., 2013). The
third reason we chose a stop-signal task is that pharmacological
studies suggest that OFC is critical for normal stop-signal perfor-
mance. Lesions disrupt performance on stop-signal tasks and
administration of atomoxetine (ADHD drug) into OFC im-
proves stop-signal performance (Bari et al., 2011). Although
these studies do not “require” rats to redirect movement on
STOP trials, rats do redirect their ongoing movement away from
the habitual response directly to the food cup to receive reward.
From these studies, it is clear that during performance of stop-
signal tasks, OFC is critical for inhibition of movement on stop
trials and that when subjects successfully suppress behavior, ac-
tivity in OFC appears to be elevated.

Here, we recorded from OFC in our variant of the classic
stop-signal task. On STOP trials, which occurred on 20% of trials,
rats had to inhibit their directional response and redirect behav-
ior to the opposite location. By having rats redirect behavior, we
can compare activity on STOP and GO trials when the same
ultimate movement is made. Rats were slower and performed
more poorly on STOP trials relative to simple GO trials. Further,
rats were significantly faster on STOP errors demonstrating that
errors occurred because rats were rapidly planning their response
in the wrong direction, and therefore needed to inhibit the move-
ment to perform STOP trials (Schmidt et al., 2013). Thus, use of
this task in the context of behavioral neurophysiology allows for
direct comparison of responses made in the same direction in the
presence and absence of response suppression because rats had to
make a response on every trial to receive reward. This approach
cannot be taken with more typical stop-signal tasks or other tasks
that probe response inhibition (e.g., Go—NoGo, reversal).

The finding that BOLD signal is increased in OFC during
response suppression can be interpreted in several different ways.
On one hand, increased signal on stop relative to go trials might
arise from neurons that signal the need for response inhibition.
That is, single neurons in OFC elevate firing whenever subjects
are required to suppress an ongoing movement. On the other
hand, increased BOLD signal may arise from neurons active in
conjunction with planning different actions. Similar to the argu-
ment originally posited by Nakamura and colleagues, on stop
trials, there is simultaneous activation of neurons signaling the
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movement that needs to be stopped and the one necessary for
accurate performance (Nakamura et al., 2005). Thus, the net ac-
tivity of this population of neurons might increase during re-
sponse inhibition because neurons that signal for opposing
actions will be simultaneously active.

Our results are more consistent with the second explanation.
Opverall, we found that activity in OFC does not appear to carry a
pure inhibitory signal. Population firing in OFC was not signifi-
cantly stronger under STOP trials, nor were there a preponder-
ance of single neurons that fired significantly more strongly on
STOP over GO trials. Instead we found that OFC neurons exhib-
ited directional tuning as previously reported (Feierstein et al.,
2006; Roesch et al., 2006; Furuyashiki et al., 2008), and that di-
rectional selectivity was enhanced by the need to suppress and
redirect behavior, especially during sequences of increased con-
flict resolution. This interpretation is broadly consistent with re-
cent work in monkeys suggesting that OFC is involved in
reconciling cognitive signals during conflict adaptation (Man-
souri et al., 2014).

All of this suggests that OFC is more involved in executive
functions that control and enhance response selectivity when un-
wanted movements are suppressed and redirected. We suspect
that this signal is critical for resolving conflict observed in neural
signals downstream of OFC, such as DS (Bryden et al., 2012).
Dysfunction of these correlates can explain why interference of
OFC function impairs response inhibition. Although the most
obvious interpretation is that OFC provides some sort of inhibi-
tion signal, our results suggest that OFC plays an important role
in conflict-induced executive control (Mansouri et al., 2014).
Such a function might be critical for performance on several tasks
that require inhibition and are impaired after OFC lesions, in-
cluding reversal learning (Butter, 1969), delay discounting (Mo-
bini et al., 2002), extinction (Bouton, 2004), delayed alternation
(Mishkin et al., 1969), and devaluation (Pickens et al., 2003).
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