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Behavioral/Cognitive

Cortical Activity Predicts Which Older Adults Recognize
Speech in Noise and When

Kenneth I. Vaden, Jr.,' “Stefanie E. Kuchinsky,” Jayne B. Ahlstrom,' Judy R. Dubno,' and Mark A. Eckert!

"Hearing Research Program, Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
29425, and ?Center for Advanced Study of Language, University of Maryland, College Park, Maryland 20742

Speech recognition in noise can be challenging for older adults and elicits elevated activity throughout a cingulo-opercular network that
is hypothesized to monitor and modify behaviors to optimize performance. A word recognition in noise experiment was used to test the
hypothesis that cingulo-opercular engagement provides performance benefit for older adults. Healthy older adults (N = 31; 50 - 81 years
of age; mean pure tone thresholds <32 dB HL from 0.25 to 8 kHz, best ear; species: human) performed word recognition in multitalker
babble at 2 signal-to-noise ratios (SNR = +3 or +10 dB) during a sparse sampling fMRI experiment. Elevated cingulo-opercular activity
was associated with an increased likelihood of correct recognition on the following trial independently of SNR and performance on the
preceding trial. The cingulo-opercular effect increased for participants with the best overall performance. These effects were lower for
older adults compared with a younger, normal-hearing adult sample (N = 18). Visual cortex activity also predicted trial-level recognition
for the older adults, which resulted from discrete decreases in activity before errors and occurred for the oldest adults with the poorest
recognition. Participants demonstrating larger visual cortex effects also had reduced fractional anisotropy in an anterior portion of the
left inferior frontal-occipital fasciculus, which projects between frontal and occipital regions where activity predicted word recognition.
Together, the results indicate that older adults experience performance benefit from elevated cingulo-opercular activity, but not to the

same extent as younger adults, and that declines in attentional control can limit word recognition.
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Introduction

Speech recognition in noise requires considerable effort and fo-
cused attention, which can elicit activity in a cingulo-opercular
network that includes the dorsal paracingulate, anterior insula,
and frontal opercula (Eckert et al., 2009; Wild et al., 2012; Vaden
et al., 2013). Cingulo-opercular activity is frequently observed
with uncertainty and errors for a range of tasks (Duncan and
Owen, 2000; Braver et al., 2001; Dosenbach et al., 2006) and
is thought to facilitate adaptive control (i.e., adjusting behavior
and monitoring outcomes to optimize performance). Indeed,
cingulo-opercular activity has been observed to predict subse-
quent behavior for younger adults (Carter et al., 2000; Kerns et
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al., 2004; Weissman et al., 2006; Eichele et al., 2008; Vaden et al.,
2013). Although age-related increases in cingulo-opercular activ-
ity are observed during speech recognition in noise (Sharp et al.,
2006; Harris et al., 2009; Erb and Obleser, 2013 ), this may reflect
increased difficulty for older adults (Dubno et al., 1984; Humes
and Christopherson, 1991; Souza et al., 2007), which raises ques-
tions about whether frontal activity supports speech recognition
with increasing age.

Older adults demonstrate elevated prefrontal cortex activa-
tion in response to increased difficulty across a range of tasks
compared with younger adults (Schneider-Garces et al., 2010; Stern
et al,, 2012; Ennis et al., 2013), which is hypothesized to reflect a
compensatory response to enhance performance (Reuter-Lorenz
and Cappell, 2008; Davis et al., 2008). This premise is indirectly
supported by observations that older adults with better perfor-
mance often exhibit greater cingulo-opercular activity than
poorer performers (Reuter-Lorenz et al., 2000; Cabeza et al.,
2002; Reuter-Lorenz and Lustig, 2005; but see Meinzer et al.,
2012). In the present study, we tested this prediction in the con-
text of adaptive control by investigating whether cingulo-
opercular activity predicted trial-level performance for older
adults.

During perceptual tasks, elevated prefrontal activity can occur
with elevated activity in sensory and association cortices, which
appears to reflect the enhancement of relevant sensory represen-
tations (Davis et al., 2008; Grady, 2012; Erb and Obleser, 2013).
Older adults also have exhibited increased visual cortex activity
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while performing speech recognition and other listening tasks
(Fernandes et al., 2006; Eckert et al., 2008; Peiffer et al., 2009;
Kuchinsky et al., 2012). This activity may support word recogni-
tion because early visual cortex activity encodes category infor-
mation for sounds (Vetter et al., 2014) and is sensitive to the
imageability of spoken words (Lewis and Poeppel, 2014).
Alternatively, cross-modal activity during a unimodal task
could reflect impaired performance (Sandmann et al., 2012). For
example, declines in frontally mediated suppression of irrelevant
visual processing would be predicted to relate to poorer perfor-
mance (Gazzaley and D’Esposito, 2007; Campbell et al., 2012).
The inferior frontal fasciculus (IFOF) provides an avenue for
communication between frontal and visual cortices where white
matter microstructure has been related to cognitive function (Peters
etal., 2014) and declines with age (Teipel et al., 2010; Yeatman et al.,
2014). We also tested the prediction that the IFOF supports the
control of visual processes by characterizing the relationship be-
tween microstructure and visual activity during word recognition.

Materials and Methods

Participants. Thirty-one healthy middle-aged to older adult participants
(19 female; 50— 81 years of age; 60.2 = 8.1, mean = SD) were selected for
the present study on the basis of demonstrating generally normal hear-
ing. The selected participants were native English speakers with a mean
Edinburgh handedness questionnaire score of 76.1 * 46.1 from a possi-
ble range of —100 (strongly left-handed) to 100 (strongly right-handed;
Oldfield, 1971). The participants had an average of 15.5 * 2.3 years of
education and exhibited little or no mild cognitive impairment based on
their Mini Mental Status Examination (Folstein, Robins, and Helzer,
1983) performance (29.0 £ 0.8 of 30 items; cf. Tombaugh and McIntyre,
1992). The participants reported no history of neurological or psychiatric
events. Informed consent was obtained in compliance with the Insti-
tutional Review Board at the Medical University of South Carolina
and experiments were conducted in accordance with the Declaration
of Helsinki.

Audiometric assessment. Pure tone thresholds were measured with a
Madsen OB922 audiometer and TDH-39 headphones that were cali-
brated to American National Standards Institute standards (American
National Standards Institute, 2010). On average, the participants had
normal hearing up to 4 kHz with gradually sloping hearing loss at higher
frequencies. Each participant had mean pure tone thresholds <32 dB HL
from 0.25 to 8 kHz (best ear), no more than 10 dB differences between
mean pure-tone thresholds for the right and left ears, and normal immit-
tance measures.

Stimuli. Speech intelligibility was experimentally manipulated by vary-
ing the signal-to-noise ratios (SNR) of words presented in a multitalker
babble. Digital recordings of 120 monosyllabic consonant-vowel-
consonant words spoken by a male (Dirks et al., 2001) were presented to
both ears with Sensimetrics piezoelectric insert ear phones. A recording
of continuous multitalker babble from the Speech Perception in Noise
test (Kalikow et al., 1977) was presented at 82 dB SPL and words were
presented at either 85 dB SPL (+3 dB SNR) or 92 dB SPL (+10 dB SNR).
The presentation levels were calibrated in the scanner control room be-
fore the experiment. The multitalker babble recording consisted of 12
talkers, which results in energetic speech masking similar to steady-state
noise presented at the same SNR (Miller, 1947; Carhart et al., 1969;
Wilson et al., 2012). Each word was presented in one SNR condition to
avoid potential interactions between intelligibility and item recognition
or priming.

Experimental procedure. The word recognition experiment and scan-
ning protocol (sparse acquisition with TR = 8.6 s) used in the present
study were also used with younger adults in Vaden et al. (2013). Each
session consisted of two word recognition epochs (60 TRs each), two
babble-only epochs (15 TRs each), and three rest intervals (10 TRs each)
at the beginning, middle, and end of the experiment. Each word recog-
nition epoch consisted of 60 trials, during which participants performed
a word recognition task in multitalker babble (+3 or +10 dB SNR).
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Words were presented in one SNR condition for four to six consecutive
trials to limit the predictability of transitions between blocks of SNR
condition trials. Participants were instructed to listen to each word pre-
sented and repeat the word aloud or, if the word was not recognized, to
say “nope.” Performance feedback was not provided during the experi-
ment. An onscreen cue prepared participants for each word recognition
epoch with the words “get ready,” which was viewed on a projection
screen through a periscope mirror mounted on the head coil. During
each word recognition trial, a crosshair appeared onscreen and changed
color from white to red to indicate the beginning and back to white to
indicate the ending of the response interval (Fig. 1).

Word recognition scores. Two raters listened to participant responses
during the experiment and scored responses as correct whenever the
participant repeated the word exactly as it was presented. Word recognition
scores from the two raters agreed for 93.23% of the trials and discrepancies
were clarified using recordings collected with an MRI-compatible micro-
phone (Magnetic Resonance Technologies). Unintelligible or missing re-
sponses were omitted from analyses (135 trials across subjects) and “nope”
responses were scored as incorrect (87 trials across subjects).

Structural and functional image acquisition. A Siemens 3 T scanner and
32-channel head coil were used to collect structural and functional im-
ages. The T1-weighted images were acquired in 160 slices with a 256 X
256 matrix, TR = 8.13 ms, TE = 3.7 ms, flip angle = 8°, slice thickness =
1.0 mm, and no slice gap. A single-shot echoplanar imaging sequence was
used to acquire 180 whole-brain functional images (36 slices with 64 X
64 matrix, TR = 8.6 s, TE = 35 ms, acquisition time: TA = 1647 ms, slice
thickness = 3.0 mm, gap = 0, sequential order, GRAPPA-parallel imag-
ing with acceleration factor = 2). Each functional image had 3.0 mm
isomorphic voxels.

Preprocessing. The anatomical T1-weighted images were iteratively
normalized using the Advanced Normalization Tools (ANTS version 1.9;
Avantsetal., 2011) to create a study-specific space for functional analyses
(Avants and Gee, 2004; Vaden et al., 2012). Each participant’s prepro-
cessed functional image data were coregistered to their native space an-
atomical image and then spatially warped to match the study-specific
template using the ANTS-derived parameters. The Montreal Neurolog-
ical Institute (MNI) coordinates for peak effects were also determined
with ANTS by spatially transforming the study-specific template to the
MNI template and then applying those parameters to peak voxel coordi-
nates in the study-specific space.

Each participant’s functional blood oxygen level-dependent (BOLD)
data were preprocessed using SPM8 software (www.fil.ion.ucl.ac.
uk/spm) to realign, unwarp, and coregister each functional image to the
corresponding structural scan before spatial normalization and smooth-
ing with a Gaussian kernel (FWHM = 8 mm). No participants or trials
were excluded due to head motion. Across participants, the largest trial-
level translations were =1.86 mm and rotations =0.04° based on Pythag-
orean distance estimates from the motion parameters (http://www.nitrc.
org/projects/pythagoras). The Linear Model of the Global Signal method
(Macey et al., 2004) was used to residualize the global mean signal from
the preprocessed images. Next, two signal outlier vectors were produced
that represented images with extreme values using an algorithm detailed
in Vaden et al. (2010), which identified 4.48% of the functional images
with voxel or volume intensities that exceeded 2.5 SDs from the mean
time series intensity. In addition to the two signal outlier vectors, four
nuisance vectors summarized changes in head position and motion
(Kuchinsky et al., 2012; Wilke, 2012). For the general linear mixed model
(GLMM) analyses described below, the data were high-pass filtered (1/
128 Hz) and nuisance regressors were residualized from the BOLD data
using multiple regression.

General linear model analysis: BOLD contrast. A general linear model
(GLM) analysis was performed in SPM8 to test the predictions that
BOLD contrast was elevated in cingulo-opercular regions during a word
recognition in noise task with two SNR conditions (i.e., +3 dB SNR >
+10 dB SNR) and when participants made recognition errors (i.e., in-
correct > correct). Salient transitions between experiment blocks were
also included in the model to disambiguate these effects on BOLD con-
trast from performance related activity by specifying the initial trial of
rest, babble, or word recognition blocks as transition events. The GLM
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Figure 1.

Experimental design. Each word recognition trial in the fMRI experiment included a fixed presentation and response timing that was synchronized to the onset of the sparse-sampling

acquisition (TR = 8.65). This timing allowed precise SNR manipulations for each aural word presentation in continuous multitalker babble and allowed participant responses to be recorded without
gradient noise. Visually cued response intervals also provided participants enough time to stabilize their head after each response to limit head motion during the image acquisition.

specified each trial as discrete events: (1) +3 dB SNR word recognition,
(2) +10 dB SNR word recognition, (3) babble presentations, or (4) tran-
sitions and included parameters for correct or incorrect recognition.
Subject-level effect maps were submitted to group-level statistic tests to
identify consistent changes in BOLD contrast across participants.

GLMM analysis: word recognition. A GLMM-based logistic regression
analysis was performed to test the prediction that increased BOLD con-
trast in cingulo-opercular regions was associated with correct recogni-
tion of the next word that was presented (R statistics software version
2.15.0 with R-packages: Ime4, version 0.999375.42, AnalyzeFMRI, ver-
sion 1.1-14). Binary word recognition ( W) for each trial (¢) was specified
as the dependent variable and trials were excluded that immediately
followed a different SNR condition or rest (i.e., first trial of each block).
The GLMM that was used for voxel-level analyses included the following
predictors: (1) SNR condition, (2) BOLD contrast measured before the
word presentation (BOLD,,), (3) SNR X BOLD interaction, and (4)
random subject effects (1|SUB), which can be expressed: W, = SNR, +
BOLD, , + SNR, X BOLD,_, + (1|SUB) + error. For the trials that were
included in the GLMM analysis (2797 trials), each participant’s data were
centered and scaled within SNR condition to ensure that signal variabil-
ity did not reflect participant or SNR-dependent intensity differences
(Vaden et al., 2013). Standard estimates for the BOLD effect on subse-
quent recognition, referred to as betas in the present study, were calcu-
lated by modifying the random effects term (1 + BOLD,_,|SUB) and then
pooling results for each participant within each significant cluster to
examine potential associations with participant age and mean word
recognition.

Follow-up logistic regression analyses were performed using the
GLMM detailed above with binarized voxel time series to characterize
whether discrete increases or decreases in BOLD contrast accounted for
subsequent word recognition. Thresholds were used on the SNR-scaled
BOLD to define discrete increases (6 > 1 SD) and discrete decreases (6 <
—1 SD) in each voxel time series. Control analyses were also performed
for trials that followed a correct response (1556 trials) or trials that only
followed an incorrect response (1241 trials) to determine the extent to
which the effects could be driven by post-error improvements in perfor-
mance (Rabbitt, 1966; Laming, 1979).

Statistic map thresholds. Each statistic map was submitted to a voxel
statistic threshold of Z > 2.33, p ;¢ = 0.01 and FWE-corrected cluster
extent threshold of ppywy < 0.05 (Friston et al., 1994; Worsley, 2006;
FMRISTAT) for the GLM and GLMM analyses. Although this is a rela-
tively conservative threshold (Hayasaka and Nichols, 2003), especially
given the previous findings involving cingulo-opercular activity (Vaden
etal., 2013), this was used to appropriately threshold effects that occurred
outside of the predicted cingulo-opercular regions.

Replication and age differences. Age-related differences in cingulo-
opercular effects on trial-level word recognition were examined by com-
paring betas obtained from the present sample of older adults and those
from younger adults (N = 18; aged 20-38 years), previously reported in
Vaden et al. (2013). First, we identified significant results that were con-
sistent in the younger and older groups by estimating the conjoint signif-
icance for independent tests (Uncapher and Rugg, 2005) based on group
statistic maps from each study in the template space of the present study.
Results from the previous study were spatially transformed using ANTS
(Avants et al,, 2011) and then group-level t-statistic maps from each
study were masked inclusively with a p.. < 0.01 voxel threshold and
multiplied so that the replication map had a conjoint-pye < 0.0001.

Subject-level betas were estimated using GLMMs and pooled across
cingulo-opercular voxels that were significantly predictive of perfor-
mance in the younger and older adult groups. These betas were then
compared between age groups to characterize differences in the recogni-
tion benefit from cingulo-opercular engagement.

Diffusion tensor imaging. Tract-based fractional anisotropy (FA) anal-
yses were performed to examine the extent to which age-related func-
tional imaging effects could be explained by variation in white matter
microstructure. We tested the prediction that age-related differences in
visual cortex activity during an aural word recognition task stem from
age-related structural differences in the left IFOF (Martino et al., 2010),
which connects frontal and occipital regions where activity related to
correct recognition on the next trial.

Diffusion imaging acquisition parameters include: 32-channel head
coil, GRAPPA with acceleration factor = 2, B-values = 0, 1000, 64 direc-
tions, TE = 88 ms, TR = 8000 ms, flip angle = 90°, FOV = 208 mm,
image dimensions = 104 X 104 X 64 slices, and 2 mm? isomorphic
voxels. Eddy current correction and tensor fitting was performed using
the FMRIB Diffusion Toolbox (Behrens et al., 2003). The diffusion im-
ages from each participant were coregistered to their native space T1
image using the SPM mutual information algorithm and then imported
into MR Diffusion (http://vistalab.stanford.edu/software) so that deter-
ministic streamlines tractography could be performed across all voxels
(Yeatman et al., 2012).

Whole brain tractography was performed using Automated Fiber
Quantification and mrDiffusion (AFQ; Yeatman et al., 2012) with de-
fault settings to only include tracts with angle <30°, FA >0.2, and tract
lengths between 50 and 250 mm. IFOF fibers were defined by streamline
fibers intersecting frontal and occipital regions of interest (ROIs) that
were spatially transformed from MNI space into native space using AFQ
calls to SPM8. The anterior ROI was a plane in coronal orientation span-
ning the extent of frontal white matter that was placed at the anterior
border of the corpus callosum genu. The posterior ROI was a plane in
coronal orientation extending medial to lateral from the anterior bound-
ary of the cuneus to the preoccipital notch and superiorly to the parieto-
occipital sulcus. One participant was excluded from statistical analyses
because only 29 fibers were identified in the IFOF, which was too few to
obtain reliable FA estimates along this tract.

Multiple-comparison-corrected correlation tests were performed on
core-weighted FA values that were calculated for 100 evenly spaced po-
sitions (i.e., “nodes”) between the frontal and occipital ROIs along the
center of each participant’s IFOF in native space using AFQ. This ap-
proach normalizes the distances along each native-space tract so that
Pearson correlations can be performed across subjects (Yeatman et al.,
2011; Wandell and Yeatman, 2013). Because statistic results in neighbor-
ing tract positions are spatially non-independent, results were corrected
for multiple comparisons using nonparametric permutation tests (cor-
rected two-tailed a = 0.05; Nichols and Holmes, 2002). The FA values
were averaged across the significantly predictive nodes for control anal-
yses. Additional control analyses were performed to determine whether
cortical atrophy affected the diffusion imaging results by averaging the
distance from each significant node to the nearest gray matter voxel (50%
or greater gray matter probability, SPM8 New Segment Tool). Tensor
linearity, planarity, and sphericity (Westin et al., 2002) were used to
characterize the influence of tensor shape on FA effects.
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Results

Task-related activity and word
recognition

Cingulo-opercular cortex exhibited in-
creased BOLD contrast when participants
made word recognition errors and to a
lesser extent for the difficult +3 dB SNR
condition compared with the +10 dB
SNR condition (Fig. 2, Table 1). The con-
junction analysis results demonstrated
that a similar pattern of results was ob-
served for the younger adults in Vaden et
al. (2013), although older adults were
more likely to exhibit left superior tempo-
ral sulcus activity and exhibited dorsal
cingulate/paracingulate activity that was
less sensitive to differences in SNR com-
pared to the younger group.

In the older adult sample, word recog-
nition was poorer in the +3 dB SNR (42.6 * 6.8%) compared
with the +10 dB SNR condition (70.4 * 7.3%), a significant
difference in the GLMM: Z = —13.61, p < 0.001. Mean word
recognition across SNR conditions was not related to age (r =
—0.23, p = 0.21) or average pure tone threshold (r = —0.30, p =
0.10 for best ear threshold: 0.25 to 8 kHz). Therefore, the task
produced cingulo-opercular activity and variable performance
amenable to trial-level analyses.

Figure 2.

BOLD contrast and subsequent word recognition

Correct word recognition was significantly more likely after trials
with elevated activity in cingulo-opercular regions that included the
left inferior frontal gyrus, right anterior insula and frontal opercu-
lum, and dorsal cingulate or paracingulate. Control analyses showed
that elevated BOLD contrast was associated with word recognition
for trials that followed correct responses or incorrect responses (Ta-
ble 2, top). The same pattern of results was observed for younger
adults, with the exception of posterior cuneus and occipitotemporal
regions in visual cortex that were predictive of trial-level perfor-
mance for older adults (Fig. 3A, Table 2, top).

Word recognition benefit from elevated cingulo-opercular
activity was relatively limited for older adults compared with
younger adults, with significantly lower cingulo-opercular effects
(i.e., pooled betas) for older compared with younger adults (Z =
—5.24, p < 0.001; Fig. 3B). Among the older adults, however, age
was not related to the betas (r = —0.11, p = 0.56). These results
indicate that age effects on adaptive control began before the age of
this middle-aged to older adult sample (i.e., earlier than age 50).

The visual cortex effects were not observed in the younger
adult sample and increased with age for older adult group (r =
0.37, p = 0.04). The visual cortex effects were predicted to stem
from transient changes in directed attention, reflected by a de-
crease in visual cortex activity before word recognition errors.
Indeed, a discrete reduction in posterior cuneus activity was sig-
nificantly associated with incorrect recognition on the next trial
(97 voxels or 83.6% of the cluster in Fig. 3A).

Individual differences in word recognition and activity

Older adults with evidence of greater trial-level benefit from pre-
ceding cingulo-opercular activity demonstrated better overall
word recognition (r = 0.49, p = 0.005; Fig. 3C). This effect was
present after controlling for age (partial r = 0.48, p = 0.006). In
contrast, the occipital betas pooled from visual cortex revealed a

A Error Responses
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B Reduced SNR

Elevated activity was observed in cingulo-opercular cortex during incorrect word recognition trials (A) and in the
anterior insula, inferior frontal gyrus, and orbitofrontal cortex, bilaterally (B) for trials with reduced speech intelligibility (red: pyyc
= 0.01, yellow: overlap with Vaden et al., 2013, conjunction py, << 0.0001; each cluster had extent-based pge << 0.05).

Table 1. GLM results: changes in BOLD activity

Description of cluster extent PeakZ  #Voxels Peak MNI
Incorrect > correct
Anterior to middle cingulate, dorsal paracinqulate ~ 4.57 597%** 2,15,50
L. anterior insula, L. inferior frontal gyrusand ~ 4.04 587%%%  —38,24, —4
sulcus, L. precentral sulcus
R. anterior insula, R. inferior frontal gyrus 455 458%** 40,21, -2
R. parietal-occipital sulcus and isthmus, 3.81 203%** 10, —79, 12
calcarine sulcus
R. middle frontal gyrus, R. inferior frontal sulcus ~ 3.48 131%* 49, 26, 34
Correct > incorrect
Rostral cingulate, L. medial orbitofrontal cortex 3.80 200%** 10,33,1
+3dBSNR > +10dB SNR
R. anterior insula, R. inferior frontal gyrus, R. 3.53 297%%* 59,30,4
orbitofrontal cortex
L. anterior insula, L. inferior frontal gyrus (pars ~ 4.54 219 —44,15,—8
orbitalis), L. orbitofrontal cortex
L. posterior to mid superior temporal sulcus, L.~ 3.26 95% —64, —21, =15
middle temporal gyrus
R. mid superior temporal sulcus, R. middle 3.58 84* 55, —30, —8
temporal gyrus
+10dBSNR > +3 dB SNR
Posterior cingulate, precuneus, parietal-occipi- ~ 4.18 2007***  —9,0,33
tal sulcus, R. parietal operculum, R. post-
central gyrus
R. inferior parietal lobule 428 236*** 42, —178,36
L. inferior parietal lobule 4.00 138%*  —49, —73,30

Asterisks denote familywise error-corrected significance for each cluster: *peye << 0.05, **prye < 0.01, ***prye < 0.001.
L, left; R, right (otherwise bilateral).

Table 2. BOLD signals correlated with performance on the next trial

Description PeakZ  #Voxels  Peak MNI
Main effects of BOLD activity
L. inferior frontal gyrus and sulcus 382 232 —55,13,32
L. occipito-temporal cortex, L. posterior superior 3.09 213, —50, —75,16
temporal sulcus
Cingulate sulcus, paracingulate 392 164, —3,21,40
R. anterior insula, R. inferior frontal gyrus 335 151, 50, 23,2
Posterior medial cuneus 347 116, 6, —93,22
SNR X BOLD interaction
R. superior temporal gyrus, R. Heschl's gyrus 363 179 56, —29,13
Anterior medial cuneus 3.05 139 0,—73,15
(—) R. middle to posterior cingulate/paracingulate ~ —3.65 3895 6, —1,54

Subscripts Aand B denote that significant voxels were found in each cluster when control analyses were restricted to
post-correct trials or post-error trials, respectively.

L, left; R, right (otherwise bilateral).
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A BOLD Contrast Related to Subsequent Word Recognition

B Age Group Differences C Frontal Effects & Performance D Occipital Effects & Performance
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Figure 3. A, Elevated activity in cingulo-opercular cortex was related to an increased likelihood of word recognition on the next trial (red: pyyc = 0.01; yellow: cingulo-opercular effects that
overlapped with Vaden etal., 2013, with conjunction p,c << 0.0001). B, Individual effects (betas) from the replicated cingulo-opercular regions were significantly lower for the present sample of
older adults than for the younger adults (Vaden et al., 2013). , D, Individual effects from the cingulo-opercular clusters and occipital clusters exhibited positive and negative relationships,
respectively, with mean word recognition for the older adults.
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Figure 4.  FA was lower in the left anterior IFOF for the participants with higher occipital betas and for the older participants. A, The left IFOF rendered as a spatially normalized and averaged
blue-green tract with the structural image peeled away in sagittal slices toward the midline. Red indicates voxels with BOLD related to subsequent word recognition. The IFOF projects between the
frontal operculum and the occipital cortex, close to the clusters identified using the GLMM. B, €, Average FA and SDs are plotted for each position and filled lighter blue points that indicate stronger
negative correlations between FA and occipital betas (B) or participant age (). The orange background (B, €) indicates significant negative correlations that were corrected for multiple comparisons
using nonparametric permutation tests (corrected cv = 0.05; Nichols and Holmes, 2002). The nodes with FA that were significantly related to occipital betas (A; positions 1—4) were spatially
transformed from native space and rendered onto the study template as the orange spot with arrows (A). Pooled FA scores (positions 1— 4) were related to occipital betas after controlling for mean
distance to gray matter (partial r = —0.42, p = 0.02) and participant age (partial r = —0.58, p << 0.001), indicating that cortical atrophy and volume averaging did not account for the FA results.
This interpretation is also supported by tensor shape data (Westin et al., 2002). Tensor planarity can also reflect volume averaging and did not account for the associations between pooled FA and
occipital betas (partial r = —0.62,p << 0.001) orage (partialr = —0.62, p <<0.001). In contrast, tensor linearity could explain the occipital beta associations with FA (partial r = —0.19,p = 0.31),
indicating that participants with stronger visual cortex effects and lower FA scores also had diffusion tensors with less uniform orientation in the left anterior IFOF.

different pattern (Fig. 3D). Participants with larger visual cortex
effects had poorer mean word recognition (r = —0.91, p < 0.001;
Fig. 3D). This result remained significant after controlling for age
and hearing threshold (partial r < —0.90, p < 0.001).

Posterior activations and tract-based fractional anisotropy
The left inferior frontal and occipital regions identified above in
the trial-level analyses are connected by the IFOF (Fig. 4A). Lower

FA values were observed across the left IFOF in the older partic-
ipants who exhibited a strong relation between visual cortex ac-
tivity and word recognition. The occipital betas were significantly
associated with FA values in the four most anterior positions in
the IFOF after multiple-comparison correction (r = —0.56, pcor
= 0.04; Fig. 4B) and FA values in those anterior positions also
decreased with increasing participant age (r = —0.55, pcor =
0.04; Fig. 4C). Importantly, the relationship between participant
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age and occipital betas (r = 0.37, p = 0.04) was not significant
after controlling for FA scores pooled across positions 1—4 (par-
tial r = 0.04, p = 0.85; R decrease = —0.14), indicating that FA
differences in the anterior IFOF accounted for the age-related
differences in occipital betas. The FA values in the right IFOF
were not related to visual cortex effects (poor > 0.39), suggesting
that the visual cortex effects were more likely to occur with age-
related declines in the left IFOF.

Discussion

The present results address a long-standing hypothesis for cogni-
tive and perceptual aging by examining brain activity in relation
to subsequent performance on a trial-by-trial basis. Middle-aged
to older adults were more likely to recognize words in noise after
elevated cingulo-opercular activity, an effect that was the most
pronounced for participants with better overall word recogni-
tion. Although the cingulo-opercular results from the present
sample of older adults spatially overlapped with effects previously
obtained with younger adults (Vaden et al., 2013), age-group
differences in word recognition benefit from cingulo-opercular
activity indicate that this normal response to challenging task
conditions declines with age. The impact of aging on word rec-
ognition was also demonstrated by visual cortex associations with
trial-level word recognition that occurred when there was a drop in
activity and subsequent performance. The visual cortex results were
unique to the older adult sample, increased with advancing age, and
related to evidence of microstructure declines within IFOF fibers.
Together, the results highlight the importance of adaptive control
and the direction of attention for successful word recognition in
older adults.

Cingulo-opercular cortex is sensitive to task outcomes
(Dosenbach et al., 2007; Eckert et al., 2009) and the cingulate in
particular is thought to reflect intention to engage in a task based
on potential outcomes (Shenhav et al., 2013). Activity across
these regions increases when behaviorally relevant information is
presented and can increase tonic alertness (Sadaghiani et al.,
2010, 2012) to enhance performance monitoring and adapt be-
havior (Carter et al., 2000; Kerns et al., 2004; Weissman et al.,
2006; Eichele et al., 2008). Increasing activity in this adaptive
control system would therefore be expected to optimize subse-
quent task performance.

The cingulo-opercular cortex has been characterized as a do-
main general network based on its function for a range of percep-
tual and cognitive tasks (Dosenbach et al., 2006), as well as
functional connectivity without specific task demands (Dosen-
bach et al., 2007). We interpret the relatively large number of
cingulo-opercular results from speech production and percep-
tion studies with challenging listening conditions (Adank, 2012)
as evidence that language tasks can elicit domain general adaptive
control functions. Elevated cingulo-opercular BOLD responses
also have been observed in aphasia patients with better language
task performance, raising important questions about the contri-
bution of adaptive control and language networks (Geranmayeh
etal., 2014a).

Importantly, our word recognition in noise task involved
speech production to assess recognition, which means that
cingulo-opercular activity could reflect the engagement of hy-
pothesized speech control mechanisms (Tourville and Guenther,
2011; Hickok, 2012). Speech control models are broadly consis-
tent with the hypothesized adaptive control function for the
cingulo-opercular network, but more specifically propose that
frontal cortex facilitates the detection and repair of speech errors.
Indeed, cingulo-opercular activity robustly increased during
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errors without external feedback in the present experiment and in
Vaden et al. (2013). Adaptive control during language tasks may
recruit domain general and language-specific systems to support
communication (Geranmayeh et al., 2014b; Simmonds et al.,
2014), including response selection (Rodd et al., 2005; Davis et
al., 2011) or inhibition of alternative responses (Xue et al., 2008).

The present cingulo-opercular results are important because
they show when performance is likely to be optimal on a trial-by-
trial basis. This is a methodological, but also a conceptual differ-
ence from previous studies in which elevated frontal activity
across blocks of trials was observed for older adults with the best
performance (Reuter-Lorenz et al., 2000; Cabeza et al., 2002;
Cabeza, 2002; Reuter-Lorenz and Cappell, 2008; Wierenga et al.,
2008). We observed that better performing participants exhibited
a greater ability to drive the cingulo-opercular adaptive control
system to support performance, at least for a basic and familiar
word recognition in noise task. This result supports the proposal
from cognitive aging models that frontal activity is compensatory
(Reuter-Lorenz and Cappell, 2008; Davis et al., 2008).

Word recognition benefit from cingulo-opercular activity in
the older adults was significantly lower compared with a younger
adult group, even when comparing beta values from cingulo-
opercular regions that were significant predictors of word recog-
nition in both samples. Higher pure-tone thresholds for the older
than younger participants was considered as a possible explana-
tion for the group difference in word recognition benefit. How-
ever, given that audibility of the speech was determined by the
background noise and not listeners’ pure-tone thresholds, hear-
ing differences among subjects are unlikely to be the source of
reduced benefit for older than younger adults. Rather, age-related
declines occurring in the central auditory system (Harris et al.,
2009; Peelle et al., 2011; Eckert et al., 2012; Erb and Obleser, 2013)
and/or declines in the prefrontal cortex (Raz et al., 1997; Good et
al., 2001; Resnick et al., 2003; Salat et al., 2004; Eckert, 2011) are
more likely to account for the cingulo-opercular age group dif-
ferences. Although there may have been developmental differ-
ences between age groups, these group differences are predicted
to stem from central declines that occur during middle age be-
cause we did not observe a linear association between the betas
and age within the broad age distribution of the middle-aged to
older adult sample.

Age-related differences within the older adult group were ob-
served for visual cortex activity. Elevated visual cortex activity
during aural tasks is commonly observed in studies of older
adults (Peelle et al., 2010; Kuchinsky et al., 2012). Our trial-level
results support the premise that control of visual attention can be
critical for word recognition. In particular, discrete decreases in
posterior cuneus activity occurred before word recognition er-
rors. This finding is consistent with evidence that older adults are
susceptible to distraction during aural tasks (Tun et al., 2002;
Guerreiro et al., 2010; Guerreiro and Van Gerven, 2011).

Age-related executive function declines have been associated
with changes in frontal and occipital white matter (Grieve et al.,
2007; Kennedy and Raz, 2009; Peters et al., 2014). Although we
limited our fiber tract analyses to the IFOF because of its spatial
correspondence to the functional results, our findings suggest
that structural declines limit selective attention and word recog-
nition in noise as a result. Specifically, lower FA values were seen
in the left anterior IFOF for the oldest adults with stronger visual
cortex effects. This association was primarily driven by reduced
linearity of diffusion tensors, which can be affected by the density
of axon membranes (Alexander et al., 2000; Beaulieu, 2002; Mori
and Zhang, 2006). Therefore, age-related declines in the ability to
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maintain attention (Lustig et al., 2001; Tun et al., 2009) during
speech recognition in noise are predicted to stem, at least in part,
from IFOF declines.

In summary, our results indicate that elevated cingulo-
opercular activity occurs before word recognition. This result is
important because it suggests, together with evidence for perfor-
mance benefit from conflict adaptation (Kan et al., 2013), that
methods to engage cingulo-opercular activity may enhance com-
munication. The visual cortex results suggest that methods for
maintaining attention or redirecting attention to a task also have
the potential to enhance performance (Weissman et al., 2006),
particularly for older adults. Together, the cingulo-opercular re-
sults and the visual cortex results indicate when older adults are
more likely to understand words in noise and which older adults
are more likely to have word recognition difficulties.
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