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Abstract

Statistical learning is typically considered to be a domain-general mechanism by which cognitive 

systems discover the underlying distributional properties of the input. Recent studies examining 

whether there are commonalities in the learning of distributional information across different 

domains or modalities consistently reveal, however, modality and stimulus specificity. An 

important question is, therefore, how and why a hypothesized domain-general learning mechanism 

systematically produces such effects. We offer a theoretical framework according to which 

statistical learning is not a unitary mechanism, but a set of domain-general computational 

principles, that operate in different modalities and therefore are subject to the specific constraints 

characteristic of their respective brain regions. This framework offers testable predictions and we 

discuss its computational and neurobiological plausibility.
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The promise of statistical learning

Humans and other animals are constantly bombarded by streams of sensory information. 

Statistical learning (SL)—the extraction of distributional properties from sensory input 
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across time and space—provides a mechanism by which cognitive systems discover the 

underlying structure of such stimulation. SL therefore plays a key role in the detection of 

regularities and quasi-regularities in the environment, results in discrimination, 

categorization and segmentation of continuous information, allows prediction of upcoming 

events, and thereby shapes the basic representations underlying a wide range of sensory, 

motor, and cognitive abilities.

In cognitive science, theories of SL have emerged as potential domain-general alternatives 

to the influential domain-specific Chomskyan account of language acquisition ([1], see also 

[2] for related claims). Rather than assuming an innate, modular, and neurobiologically 

hardwired human capacity for processing linguistic information, SL, as a theoretical 

construct, was offered as a general mechanism for learning and processing any type of 

sensory input that unfolds across time and space. To date, evidence for SL have been found 

across an array of cognitive functions, such as segmenting continuous auditory input [3], 

visual search [4], contextual cuing [5], visuomotor learning [6], conditioning (e.g., [7]), and 

in general, any predictive behavior (e.g., [8,9]).

In this paper, we propose a broad theoretical account of SL, starting with a discussion of 

how a domain-general ability may be subject to modality- (see glossary) and stimulus-

specific constraints. We define ‘learning’ as the process responsible for updating internal 

representations given specific input and encoding potential relationships between them, 

thereby improving the processing of that input. Similarly, ‘processing’ is construed as 

determining how an input to a neural system interacts with the current knowledge stored in 

that system to generate internal representations. Knowledge in the system is thus 

continuously updated via learning. Specifically, we take SL to reflect updates based on the 

discovery of systematic regularities embedded in the input, and provide a mechanistic 

account of how distributional properties are picked up across domains, eventually shaping 

behavior. We further outline how this account is constrained by neuroanatomy and systems 

neuroscience, offering independent insights into the specific constraints on SL. Finally, we 

highlight individual differences in abilities for SL as a major, largely untapped source of 

evidence for which our account makes clear predictions.

Domain generality versus domain specificity

Originally, domain generality was invoked to argue against language modularity; its 

definition therefore implicitly implied “something that is not language specific”. 

Consequently, within this context, “domain” implies a range of stimuli that share physical 

and structural properties (e.g., spoken words, musical tones, tactile input), whereas 

“generality” is taken to be “something that does not operate along principles restricted to 

language learning”. Note, however, that this approach says what domain generality is not, 

rather than saying what it is (e.g., [10]). More recent accounts of SL ascribe domain 

generality to a unitary learning system (e.g., [11]), that executes similar computations across 

stimuli (e.g., [12]), and that can be observed across domains (e.g., [13]), and across species 

(e.g., [14,15]).
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As a theoretical construct, SL promised to bring together a wide range of cognitive functions 

within a single mechanism. Extensive research over the last decade has therefore focused on 

mapping the commonalities involved in the learning of distributional information across 

different domains. From an operational perspective, these studies investigated whether 

overall performance in SL tasks is indeed similar across different types of stimuli [16], 

whether there is transfer of learning across domains (see Box 1), whether there is 

interference between simultaneously learning of multiple artificial grammars (e.g., [17]) or 

from multiple input streams within and across domains [18], or whether individual 

capacities in detecting distributional probabilities in a variety of SL tasks are correlated 

([19]).

The pattern of results across these different studies is intriguingly consistent: contrary to the 

most intuitive predictions of domain-generality, the evidence persistently shows patterns of 

modality specificity and sometimes even stimulus specificity. For example, studies of 

artificial grammar learning (AGL, see Glossary) systematically demonstrate very limited 

transfer of learning across modalities, if at all (e.g., [20,21]). Similarly, the simultaneous 

learning of two artificial grammars can proceed without interference once they are 

implemented in separate modalities [17]. Modality specificity is also revealed by qualitative 

differences in patterns of SL in the auditory, visual, and tactile modalities [16], sometimes 

with opposite effects of presentation parameters across modalities [22]. To complicate 

matters even further, SL within modality reveals striking stimulus specificity, so that no 

transfer (and conversely, no interference) occurs within modality provided the stimuli have 

separable perceptual features (e.g., [17,23]). Finally, although performance in SL tasks 

displays substantial test-retest reliability within modality, there is no evidence of any 

correlation within individuals in their capacities to detect conditional probabilities across 

modalities and across stimuli (Siegelman & Frost, unpublished). This contrasts with what 

might be expected if SL was subserved by a unitary learning system: that individual 

variation in its basic function would manifest itself in at least some degree of correlation 

across different SL tasks. If not, its unitary aspect remains theoretically empty because it 

does not have an empirical reality in terms of specific testable predictions. Taken together, 

these studies suggest that there are independent modality constraints in learning 

distributional information [16], pointing to modality specificity, and further to stimulus 

specificity akin to perceptual learning [24].

Whereas this set of findings is not easy to reconcile with the notion of a unitary, domain-

general system for SL, it does not necessarily invalidate the promise of SL to provide an 

overarching framework underlying learning across domains. Instead, what is needed is an 

account of SL that can explicate the manifestations of domain-generality in distributional 

learning with the evidence of its modality- and stimulus-specificity, restricted 

generalization, little transfer, and very low correlations of performance between tasks within 

individuals. More broadly, any general theory of learning that aims to describe a wide range 

of phenomena through a specific set of computational principles has to offer a theoretical 

account of how and why transfer, discrimination, and generalization take place, or not.
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Towards a mechanistic model of SL

Our approach construes SL as involving a set of domain-general neurobiological 

mechanisms for learning, representation, and processing that detect and encode a wide range 

of distributional properties within different modalities or types of input (see [13], for a 

related approach). Crucially, though, in our account, these principles are not instantiated by 

a unitary learning system but, rather, by separate neural networks in different cortical areas 

(e.g., visual, auditory, and somatosensory cortex). Thus, the process of encoding an internal 

representation follows constraints that are determined by the specific properties of the input 

processed in the respective cortices. As a result, the outcomes of computations in these 

networks are necessarily modality specific, despite multiple cortical and subcortical regions 

invoking similar sets of computational principles and some shared brain regions (e.g., 

Hebbian learning, reinforcement learning; for discussion, see [25,26]).

For example, the auditory cortex displays lower sensitivity to spatial information but 

enhanced sensitivity to temporal information, whereas the visual cortex displays enhanced 

sensitivity to spatial information, but lower sensitivity to temporal information (e.g., 

[27,28]). Iconic memory is short-lived (scale of ms), whereas echoic memory lasts 

significantly longer (scale of seconds; e.g., [29]). Because auditory information unfolds in 

time, the auditory cortex must be sensitive to the temporal accumulation of information in 

order to make sense of the input. In contrast, visual information is instantaneous, and 

although temporal integration is necessary in some cases such as in deciphering motion, the 

visual cortex is relatively less sensitive to temporal accumulation of information over 

extended periods of time. These inherent differences are reflected in the way the sensory 

input eventually is encoded into internal representations for further computation. Moreover, 

within modality, encoding of events displays graded stimulus specificity given their 

complexity, similarity, saliency, and other factors related to the quality and nature of the 

input (see [30,31], for evidence in visual SL). For example, participants are able to learn two 

separate artificial grammars simultaneously in the visual domain when the stimuli are from 

separate perceptual dimensions—such as color and shape—but not when they are from 

within the same perceptual dimension [16]. Figure 1 represents a schematic account of our 

approach and shows how the same learning and representation principles result in modality 

and stimulus specificity because they are instantiated in different brain regions, each with 

their characteristic constraints.

Note that modality-specific constraints do not preclude the neurobiological ability to process 

multimodal events. Indeed, this has recently been shown within SL using the McGurk effect 

(see Glossary) in a cross-modal segmentation study [32]. More generally, perception of the 

world routinely involves multisensory integration (e.g., [33]), occurring at both low levels 

(i.e., the thalamus, [34]; the dorsal cochlear nucleus, [35]) and higher levels of cortical 

processing (e.g., anterior temporal poles; [36]). Critically, however, each of these 

multimodal areas would be subject to its own distinct set of constraints, which would not 

necessarily be the same as those from the unimodal regions that feed into it or to the 

constraints in other multimodal areas. For example, coherence in the timing at which an 

auditory and a visual stimulus unfold is important for specific types of integration [18] in 

audio-visual brain areas [37], but not as important for detecting regularities in the case of 
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integrating two different visual representations in the visual system. Note that this view is 

distinct from alternative accounts suggesting that a unitary learning mechanism operates on 

“abstract” amodal representations (e.g., [38]; see Glossary). Instead, we suggest that 

multimodal regions are shaped by their own distinct sets of constraints.

This brings us to an operational definition of ‘domain generality’. Within our framework, 

domain generality primarily emerges because neural networks across modalities instantiate 

similar computational principles. Moreover, domain generality may also arise either through 

the possible engagement of partially-shared neural networks that modulate the encoding of 

the to-be-learned statistical structure [39], or if stimulus input representations encoded in a 

given modality (e.g., visual or auditory) are fed into a multi-modal region for further 

computation and learning. As we shall see next, the current neurobiological evidence is 

consistent with both of these latter possibilities.

The neurobiological bases of SL

Recent neuroimaging studies have shown that statistical regularities of visual shapes results 

in activation in higher-level visual networks (e.g., lateral occipital cortex, inferior temporal 

gyrus; [40,41]), whereas statistical regularities in auditory stimuli result in activation in 

analogous auditory networks (e.g., left temporal and inferior parietal cortices; 

frontotemporal networks including portions of the inferior frontal gyrus, motor areas 

involved in speech production, [42]; and the pars opercularis and pars triangularis regions of 

the left inferior frontal gyrus; [43]). Since these studies contrasted activation for structured 

vs. random blocks of stimuli, the stronger activation for structured stimuli in the above ROIs 

is consistent with the notion that some SL occurs already in brain regions that are largely 

dedicated to processing unimodal stimuli, thus allowing for modality-specific constraints to 

shape the outcome of computations.

In addition to identifying modality-specific learning mechanisms, imaging and ERP studies 

point to some brain regions that are active regardless of the modality in which the stimulus 

is presented. Often, this work has associated SL effects with the hippocampus, and more 

generally with the medial temporal lobe (MTL) memory system (see, e.g., [44]). This is 

consistent with considerable systems neuroscience work that has established the 

hippocampus as a locus for encoding and binding temporal and spatial contingencies 

presented in multiple different modalities [40,44–48], as well as for consolidation of 

representations.

Hippocampal involvement in SL could consist of indirect modulation of the representations 

in sensory areas or direct computations on hippocampal representations that are driven by 

sensorimotor representations (see [48] for a discussion). Note, however, that even in the case 

of direct hippocampal computations, the computed representations are not necessarily 

amodal, as traces of their original specificity nevertheless remain (e.g., [49]). Sub-regions of 

the hippocampus have been shown to send and receive different types of information from 

different brain regions, while developing specialization for representing those different types 

of information [50]. In addition, representations within the hippocampus itself are typically 

sparse, and are wired to be maximally dissimilar even when stimuli evoke similar activation 
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in a given sensorimotor region [51–54]. Thus, even with a direct hippocampal involvement 

in SL, such computations would likely result in a high degree of stimulus specificity, as 

observed across many SL studies.

Additional imaging work has identified regions of the basal ganglia [55] and thalamus 

[42,56] as important collaborating brain regions that work with the MTL memory system to 

complete relevant sub-tasks involved in statistical learning. For instance, the thalamus may 

provide synchronizing oscillatory activity in the alpha-gamma and theta-gamma ranges that 

enables the rapid and accurate encoding of sequences of events [56]. Thus, as summarized in 

Figure 2, the current neurobiological evidence indeed suggests that detection of statistical 

regularities emerges from local computations carried out within a given modality, and 

through a multi-domain neurocognitive system that either modulates or operates on inputs 

from modality-specific representations. Whether unimodal computations are necessary or 

sufficient for SL, remains an open question. Whereas some studies report no learning 

following hippocampal damage [44], other report significant SL in spite of such damage 

(e.g., [57]). In this context we should note, that lack of SL cannot be unequivocally 

attributed to neurobiological impairment. Many normal participants do not show SL even 

with an intact MTL system (see, for example, performance of a subset of the control 

participants observed by [44], who do not fare better than the specific reported patient). This 

leads us to our next section on individual differences.

Individual and group differences in SL

The proposed framework leads us to argue that individual differences provide key evidence 

for understanding the mechanism of SL. In past work, it has often been assumed that 

individual variance in implicit learning tasks is significantly smaller than that of explicit 

learning (e.g., [58]). Consequently, the source of variability in performance in SL has been 

largely overlooked, and had led researchers to focus on average success rate (but see [19,59–

61]).

In the context of SL, however, measures of central tendency can be particularly misleading, 

as often about one third of the sample or more is not performing the task above chance level 

(e.g., [12,60,61]). Moreover, tracking individual learning trajectories throughout the phases 

of a given SL task has recently suggested that there is a commensurate high level of 

variability in the learning curves of different individuals (e.g., [43,61]). In several areas of 

cognitive science, it is now well established that understanding the source of individual 

differences holds the promise of revealing critical insight regarding the cognitive operations 

underlying performance, leading to more refined theories of behaviour. Furthermore, a 

theory that addresses individual differences should aim to explain how learning mechanisms 

operate online to gradually extract statistical structure, as opposed to focusing strictly on the 

outcome of a learning phase in a subsequent test (e.g., [62]).

As a first approximation, our theoretical model splits the variance across individuals into 

two main sources. First, as indicated by Figure 1, there is the variance related to efficiency 

in encoding representations within modality in the visual, auditory, and somatosensory 

cortex. This variance could derive from individual differences in the efficacy of encoding 
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fast sequential inputs or complex spatial stimuli, and thus potentially could be traced to the 

neuronal mechanisms that determine the effective resolution of one's sensory system. The 

second variance relates to the relative computational efficiency of processing multiple 

temporally and spatially encoded representations and detecting their distributional 

properties. This variance potentially could be traced to cellular- and systems-level 

differences in factors that include (but are not limited to) white matter density, which have 

been shown to affect AGL performance [63], and variation in the speed of changes in 

synaptic efficacy [64]. In modeling terms, these factors would relate to parameters such as 

connectivity, learning rates, and the quality and type of information to be encoded and 

transmitted by a given brain region (see Box 2).

The advantage of this approach is that it offers precise and testable predictions that can be 

empirically evaluated. Thus, individuals can display relatively increased sensitivity in 

encoding auditory information, but a relative disadvantage in encoding sequential visual 

information. Conversely, two individuals that have similar efficiency in terms of 

representational encoding in a given modality could differ in their relative efficiency in 

computing the distributional properties of visual or auditory events. In either case, low 

correlation in performance within individuals in two SL tasks, would be the outcome, as has 

been reported in recent studies (e.g., [19]). However, as exemplified in Box 3, accurate 

individual trajectories of SL can in principle be obtained by employing parametric designs 

that independently target the two sources of variance.

Individual differences are particularly intriguing given recent claims regarding 

developmental invariance in some types of SL (e.g., [65]). If SL capacities per se do not 

change, and brain maturation and experience are primarily driving improvements in 

processes “peripheral” to SL such as attention, then the bulk of variability in individual 

developmental trajectories in SL abilities should be explained by these peripheral factors 

only. We believe that the current empirical support for this claim is limited (see [66] for a 

discussion). Further progress, however, requires a better fundamental understanding of 

individual differences in SL, as elaborated in Box 3.

Summary and conclusions

The present paper offers a novel theoretical perspective on SL that considers computational 

and neurobiological constraints. Previous work on SL offered a possible cognitive 

mechanistic account of how distributional properties are computed, with explicit 

demonstrations being provided only within the domain of language [65,67]. The perspective 

we offer has the advantage of providing a unifying neurobiological account of SL across 

domains, modalities, neural and cognitive investigations, and cross-species studies, thus 

connecting with and explaining an extensive set of data. The core claim of our framework is 

that SL reflects contributions from domain-general learning principles that are constrained to 

operate in specific modalities, with potential contributions from partially shared brain 

regions common to learning in different modalities. Both of these notions are well grounded 

in neuroscience. Moreover, they provide our account with the flexibility needed to explain 

the apparently contradictory SL phenomena observed both within and between individuals, 

such as stimulus and modality specificity, while still being constrained by the capacities of 
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the brain regions that subserve the processing of different types of stimuli. In addition to 

descriptive adequacy, our approach also provides targeted guidance for future investigations 

of SL via explicit neurobiological modeling and studies of the mechanics underlying 

individual differences. We therefore offer our framework as a novel platform for 

understanding and advancing the study of SL and related phenomena.
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GLOSSARY

Amodal 
representations

“Amodal” representations are typically taken to be “abstract” in the 

sense that they are not bound by specific sensory features (e.g., 

visual or auditory). Apart from the problem of defining a theoretical 

construct in terms of what it is not, the neurobiological evidence for 

such representations is scarce.

Artificial 
Grammar 
Learning (AGL)

In a typical AGL experiment, participants are exposed to sequences 

generated by a miniature grammar. Participants are only informed 

about the rule-based nature of the sequences after the exposure 

phase, when they are asked to classify a new set of sequences, some 

of which follow the grammar while others do not. AGL is also 

considered to be a kind of implicit learning task.

Generalization Refers to extension of learned statistical structure to unseen stimuli, 

typically from within the same modality or stimulus domain.

Internal 
Representation

In neurobiological terms, an internal representation of a stimulus is 

the pattern of neural activity evoked by a stimulus in a brain region 

(or network of brain regions).

McGurk effect The McGurk effect [88] illustrates the potentially complex 

interactions between two conflicting streams of information from the 

auditory and visual modalities. For instance, if a video of an 

individual pronouncing /ga/ is combined with the sound /ba/, a 

listener will tend to hear /da/ because the sound /da/ is most 

consistent with the visually-perceived positions of the lips and with 

the auditorily-perceived sound.

Modality The sensorimotor mode in which the stimulus was presented (e.g., 

vision, audition, touch). One modality may contain several sub-

modalities (e.g., visual motion, color), each of which is subserved by 

distinct neuroanatomy.

Multimodal 
representations

Representations that form when information from two or more 

modalities are integrated in a representational space and associated 
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brain region (or network of regions). Importantly, these 

representations are, therefore, not “amodal”.

Transfer A broader type of extension of learned knowledge than 

generalization, and refers to the application of learned regularities to 

novel domains and/or modalities.
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BOX 1: Generalization and transfer in statistical learning

A key aspect of learning is to be able to apply knowledge gained from past experiences to 

novel input. In some studies of SL, for example, participants are first presented with a set 

of items generated by a pre-defined set of rules, and then in a subsequent test phase asked 

to distinguish unseen items generated by these rules (i.e. “grammatical items”) from 

another set of novel items that violate these rules (i.e. “ungrammatical items”). If they are 

able to correctly classify the unseen items as “grammatical” or “ungrammatical” at above 

chance levels, generalization from seen items to the novel exemplars is assumed.

Many scientists initially interpreted successful generalization as evidence that the 

participants had acquired the rules used to generate the stimuli and applied them to the 

novel stimuli. However, several studies have shown that participants’ performance at test 

can be readily explained by sensitivity to so-called “fragment” information, consisting of 

distributional properties of subparts of individual items [16]. Consider a hypothetical 

novel test item, ABCDE, which consists of various bigram (AB, BC, CD, DE) and 

trigram (ABC, BCD, CDE) fragments. The likelihood of a participant endorsing this test 

item as grammatical will depend on how frequently these bigram and trigram fragments 

have occurred in the training items. If a test item contains a fragment that has not been 

seen during training, then participants will tend to reject that item as ungrammatical (see 

[68]) . Thus, generalization in SL is often, if not always, driven by local stimulus 

properties and overall judgements of similarity, rather than the extraction of abstract 

rules.

Another possible way in which past learning could be extrapolated to new input is 

through the transfer of regularities learned in one domain to another (e.g., from visual 

input to auditory input). Although early studies appeared to support cross-modal transfer 

(e.g., [58,69]), more recent studies have shown that there is little, or no evidence for 

transfer effects, once learning during test based on repetition or simple fragment 

information is taken into account (e.g., [20,21,70]).

Generalization and transfer significantly differ in their contribution to theories of 

learning. Whereas generalization has been demonstrated in SL studies—which is 

important for the application of SL to language—there is little evidence of cross-modal 

transfer, likely because of the substantial differences in neurobiological characteristics of 

the visual, auditory and somatosensory cortices.
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BOX 2: Advancing SL Theory via Computational Modeling

Computational modeling serves an important dual role in both providing a quantitative 

account of observed empirical effects as well as the means to generate novel predictions 

that can guide empirical research (see, e.g., [67,71,72]). Within our framework, such 

modeling should reflect the relevant neural hardware of sensory cortices (e.g., different 

time-courses for iconic vs. echoic memory), as well as advances related to what and how 

the neural networks track distributional properties [40,56,73]. It should also make direct 

contact with neural measures as opposed to focusing strictly on behavioral measures that 

reflect the end-state of processing (for related discussion, see [72,74,75]).

The development of explicit models allows for the parametric variation of different 

aspects of the SL system, including the contributions of different learning mechanisms 

(e.g., Hebbian learning, reinforcement learning), different brain regions (e.g., the MTL 

system and modality specific areas), as well as of the quality and nature of the 

representations in different parts of the system (Figure I). This allows the probing of the 

model's ability to account not only for group-averaged effects, but also for individual 

differences (see Box 3; [76]), and establish how and why variation in parameters 

affecting different aspects of the system modulate overall performance.

Recent advances in “deep” neural networks have also enabled interesting insights into the 

effects of allowing intermediate representations to emerge as a function of learning 

[77,78], as opposed to being explicitly stipulated. This relates directly to the issues of 

modality and stimulus specificity that currently challenge SL theories. For instance, 

representations closer to the sensory cortices are learned earlier and are more strongly 

shaped by the specific characteristics of individual stimuli. This contrasts with higher-

order (but possibly modality specific) areas that operate on these early sensory 

representations, and which can detect commonalities in higher-order statistics despite 

little similarity in the surface properties or lower-order statistical relationships amongst 

the stimuli (for related work using a Bayesian approach, see [79]). This predicts that SL 

tasks that involve stimuli whose relationships are only detectable in higher-order 

statistics should be more likely to show at least some generalization relative to early 

sensory regions, which are predicted to exhibit stronger stimulus-specificity (for a related 

proposal see [80]). For instance, the purpose of some brain regions is primarily to 

distinguish between highly-similar complex inputs (e.g., visual expertise areas such as 

the putative fusiform face area; [81]), or to transmit similar outputs to multiple brain 

regions regardless of the source of its input (e.g., the semantic memory system; [82]). 

Such a model is also able to account for stimulus specificity in some higher-order 

domains and to predict the possibility of generalization in others.
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Box 2 - Figure I – Candidate computational architecture for explaining and predicting 

the neural and behavioural data pertaining to statistical learning

Depiction of candidate SL model architecture. In this model, visual and auditory sensory 

input are first encoded and processed in pools of units (neurons) that code for low-level 

sensory features (e.g., sound frequency, edge orientation). These pools then project to 

higher-level visual and auditory areas which are better suited for detecting higher-order 

statistics and developing more sophisticated representations (e.g., of objects or syllables). 

Bimodal representations may also be learned in an area that receives inputs from both 

modalities. All of these modality-specific and bimodal areas also project to and receive 

feedback from shared representation and memory modulation systems. Arrows denote 

connections that send representations from one pool to another; blue lines denote 

connections that can either send representations, modulate processing, or both. Note that 

this figure is not intended to be exhaustive: other representations (e.g., low-level audio-

visual) are assumed to be part of a more complete model, as is the coding of more 

detailed sensory information inputs (e.g., color, shape, movement, taste, smell).
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BOX 3: Mapping individual trajectories in statistical learning

The present theoretical approach outlines a methodology for investigating individual 

performance in SL tasks by orthogonally manipulating the experimental parameters 

hypothesized to affect encoding efficacy on the one hand, and parameters related to 

efficiency in registering distributional properties, on the other. In general, manipulations 

that center on input encoding parameters (temporal rate of presentation, number of items 

in a spatial configuration, stimuli complexity, saliency of distinctive features, boundary 

information, etc.), will probe individual abilities in encoding stimuli in a given modality. 

In contrast, manipulations that center on transitional probabilities (i.e., the likelihood of 

Y following X, given the occurrence of X), level of predictability of events, type of 

statistical contingencies (e.g., adjacent or non-adjacent), or the similarity of foils to 

targets in the test phase, will probe the relative efficiency of a person's computational 

ability for registering distributional properties (see [6] for manipulation of transitional 

probabilities in an SRT (Serial Reaction Time) task). Such parametric experimental 

designs would reveal, for any given individual, a specific pattern of interactions of two 

main factors driving SL, outlining how their joint contribution determines his or her 

performance on a specific task.

Figure I presents hypothetical plots of the performance of two possible individuals in 

such parametric manipulations. The figure demonstrates differential trajectories of 

individual sensitivities to either type of manipulation, one that probes stimulus encoding 

efficacy (manipulating inter-stimulus intervals), and one that probes inter-stimulus 

statistic encoding efficiency (manipulating transitional probabilities). This experimental 

approach has the additional promise of revealing systematic commonalities or differences 

in sensitivity to various types of distributional properties across domains or modalities.

A possible extension of this line of research would incorporate the impact of prior 

knowledge on SL. The process of encoding representations of any continuous input is 

dependent on the characteristics of the representational space that exist at a given time 

point for a given individual. Thus, encoding an input of continuous syllabic elements 

(e.g., [12]) is different than encoding a sequence of non-linguistic novel sounds (e.g., 

[83]), affecting SL efficacy. This could generate significant individual differences in SL 

in domains such as language, where individuals differ significantly in their linguistic 

representations (e.g., vocabulary size, number of languages spoken).

Note that most current research on individual differences in SL focuses on predicting 

general cognitive or linguistic abilities from performance in SL tasks [19,59–61,84,85] or 

showing similar neural correlates within subjects for SL and language [86,87]. 

Investigating the various facets of performance in SL, as outlined above, is a necessary 

further step to describe and explain the specific sources of potential correlations between 

SL test measures and the cognitive functions they are aimed to predict. Identifying these 

sources would, in turn, allow researchers to refine predictions and generate well-defined 

a priori hypotheses.
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Box 3 - Figure I - Predicted empirical results illustrating how stimulus encoding and 

transitional probability shape individual differences

The two graphs above present hypothetical data from two participants and illustrates how 

the ability to detect regularities and to encode inputs may be separated experimentally. 

Panel A demonstrates the manipulation of rate of presentation and shows that whereas 

Participant 1 performs well even in relatively fast rates, Participant 2 shows no learning 

when stimuli are presented at or above a rate of one per 600 ms. Panel B displays the 

manipulation of transitional probabilities. Here the rate of presentation is the same across 

all 5 tasks, but transitional probabilities vary from 0.6 to 1. The results show that 

Participant 2, who performs above chance in the test even when the transitional 

probabilities between elements are low, is more efficient in detecting probabilities than 

Participant 1.
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BOX 4: Outstanding questions

• To what degree are high-level cognitive SL effects and low-level sensorimotor 

SL effects modulated by the partially shared SL systems (e.g., hippocampus, 

basal ganglia, inferior frontal gyrus) versus modality-specific systems?

• Can a better understanding of low-level cellular and systems neurobiology guide 

theoretical advance by predicting the specific types of information that a brain 

region will be most suited to encode and, consequently, the types of statistical 

learning that may take place?

• To what degree does variability in the quality and nature of an individual's 

modality-specific representations of individual stimuli, and variability in 

sensitivity to the dependencies between stimuli, explain individual differences in 

SL experiments?

• To what degree are the modality-specific and partially-shared neural processing 

systems that underlie SL modulated by experience versus neuronal maturation 

throughout development?

Frost et al. Page 18

Trends Cogn Sci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Statistical learning (SL) theory is challenged by modality/stimulus-specific 

effects.

• We argue SL is shaped by both modality-specific constraints and domain-

general principles.

• SL relies on modality-specific neural networks and partially-shared neural 

networks.

• Studies of individual differences provide targeted insights into the mechanisms 

of SL.
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Figure 1. Theoretical Model of Statistical Learning
Schematic representation of the processing of distributional information in the visual, 

auditory, and somatosensory cortex, for unimodal and multimodal events. Different encoded 

representations of continuous input presented in time or space result in task-stimulus 

specificity, in spite of similar computations and contributions from partially shared 

neurocomputational networks.
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Figure 2. Key Neural Networks involved in Visual and Auditory Statistical Learning
Key brain regions associated with domain-general (blue), and lower- and higher-level 

auditory (green) and visual (red) modality-specific processing and representation, plotted on 

a smoothed ICBM152 template brain. The depicted regions are not intended to constitute an 

exhaustive set of brain regions subserving each domain. C = Cuneus, FG = Fusiform Gyrus, 

STG = Superior Temporal Gyrus, IPL = Inferior Parietal Lobule, H = Hippocampus, T = 

Thalamus, CA = Caudate, IFG = Inferior Frontal Gyrus. Generated with the BrainNet 

Viewer [89].
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