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Abstract

Rather than simply acting as a photographic camera capturing two-dimensional (x, y) intensity 

images or a spectrometer acquiring spectra (λ), a hyperspectral imager measures entire three-

dimensional (x, y, λ) datacubes for multivariate analysis, providing structural, molecular, and 

functional information about biological cells or tissue with unprecedented detail. Such data also 

gives clinical insights for disease diagnosis and treatment. We summarize the principles 

underpinning this technology, highlight its practical implementation, and discuss its recent 

applications at microscopic to macroscopic scales.

1. Introduction

Spectral imaging collects information from three dimensions – two spatial (x, y) and one 

spectral (λ), resulting in a (x, y, λ) dataset which is typically referred to as a datacube. 

Depending on spectral resolution, the number of spectral bands, and the continuousness of 

the collected spectrum, spectral imaging is generally divided into multispectral imaging and 

hyperspectral imaging (HSI) (Table 1). It is noteworthy that there are two different criteria 

differentiating HSI from multispectral imaging. On the one hand, the criterion can be the 

number of spectral bands. HSI generally captures tens to hundreds of spectral bands while 

multispectral imaging has much less bands. On the other hand, the criterion can also be 

spectral band continuousness. HSI continuously measures the spectrum while multispectral 

imaging normally acquires non-continuous, spaced spectral bands. Compared to 

multispectral imaging, HSI collects more spectral information and thereby exhibits more 

sensitivity to subtle spectral variations. Although HSI was initially developed for astronomy 

[1-4] , widespread applications have been recently found in biomedicine, ranging from 

fundamental research [5] to clinical diagnostics [6, 7].

The prominent advantage of HSI is its superior capability for discriminating multiple 

chemical species, particularly when their emission or reflectance spectra are partially 

overlapped. In biomedicine, the major impetus towards the widespread application of HSI is 

the ongoing development of exogenous biosensors, such as fluorescent proteins [8], 

quantum dots [9], and organic fluorophores [10], and the revelation of various endogenous 
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chromophores, such as hemoglobin, lipid, and melanin. To fully utilize the information of 

these exogenous and endogenous contrast agents, detection systems must simultaneously 

monitor the spectroscopic variations of a combination of chromophores. This requirement 

comes from the fact that most cellular responses do not occur in isolation: rather, there is a 

complex sequence of events that occurs in response to cellular effectors. In order to 

determine the time sequence of such events in vivo, a biomedical HSI system must exhibit 

an appropriate combination of high spatial, spectral, and temporal resolution.

In this review, we review the fundamental principles of HSI, and discuss state-of-the-art HSI 

modalities in biomedicine, considering their pros and cons in light throughput, sectioning 

capability, computation complexity, and suitability for use in specific applications. In 

particular, we focus on the role of quantitative HSI in three typical biomedical applications: 

imaging Förster resonance energy transfer (FRET), hemodynamics, and ocular 

autofluorescence.

2. Fundamentals

2.1 Hyperspectral datacube acquisition strategies

Depending on the datacube acquisition mode, HSI is generally based on one of four distinct 

strategies (Fig. 1). The first strategy, referred to as point-scanning spectrometry, employs a 

linear array of detectors to measure spectral information (λ) at an instant, followed by 

scanning across all spatial locations (x, y) to fill out the datacube. The most common 

technique using this strategy is hyperspectral confocal microscopy [11, 12]. The second 

strategy, often referred to as pushbroom spectrometry, utilizes a 2D detector array to collect 

one (y, λ) slice of the datacube at once, so that only one spatial (x) dimension subsequently 

needs to be scanned. A representative modality is hyperspectral line-scanning microscopy 

[13, 14]. The third strategy, referred to as wavelength-scanning spectrometry, captures one 

(x, y) slice of the datacube at a time, and then scans across all wavelengths (λ). 

Representative methods are digital-light-processing-based imaging spectrometry [15], and 

acousto-optic [16] or liquid crystal tunable filter-based imaging spectroscopy [17]. The 

fourth strategy, referred to as snapshot imaging spectrometry, acquires the entire 3D 

datacube in a single exposure, leading to a dramatic improvement in light throughput 

compared to scanning-based systems. Within this category, representative technologies 

include image mapping spectrometry (IMS) [18-20], computed tomography imaging 

spectrometry (CTIS) [21], and coded aperture snapshot spectral imaging (CASSI) [22].

2.2 Hyperspectral imaging advantages and linear spectral unmixing basics

Linear spectral unmixing is one of the basic methods used for HSI datacube analysis [23]. 

Given the (M × L) hyperspectral measurement matrix X, where L is the number of image 

pixels and M is the number of spectral wavelengths, linear spectral unmixing assumes that X 

represents a linear mixture of underlying constituents, i.e.,

(1)

Here S is the spectral component matrix and has dimensions (M × K), consisting of the 

absorption extinction coefficients of K postulated components at the M measurement 
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wavelengths. A is the chromophore concentration matrix and has dimensions (K × L). And N 

is the matrix representing additive noise. Depending on whether the matrix S is known or 

not, linear spectral unmixing is based on one of two strategies: supervised or unsupervised. 

Supervised linear spectral unmixing requires a priori knowledge of the matrix S. Under this 

condition, the chromophore concentration matrix A can be estimated as [24]

(2)

Here Â represents an estimate of matrix A and S+ is the Moore-Penrose pseudo-inverse of 

the matrix S. Obtaining a reasonable estimate for the concentration matrix A typically 

requires that the rank of the spectral component matrix S must be equal to or larger than the 

number of the postulated chromophores K. If any two or more of the chromophores are too 

spectrally similar, however, A will have a low condition number, and a regularized form of 

Eq. 2 will be more useful.

Compared to multispectral imaging systems with relatively low spectral resolution [25], a 

HSI system offers two advantages. First, HSI allows a generic experimental setting 

applicable to imaging a variety of chromophore combinations without the need to change 

filter settings. Provided that the detectors are shot noise limited, the accuracy of linear 

spectral unmixing is dependent on the condition number of the spectral component matrix S 

– the smaller the value, the lower the magnitude of the unmixing errors. Unlike with HSI, 

the condition number of the matrix S in multispectral imaging is sensitive to the positioning 

of spectral channels. For example, in a typical FRET imaging experiment, two spectral 

channels are used to unmix the constituent donor fluorophore, cyan fluorescent protein 

(CFP), and the acceptor fluorophore, green fluorescent protein (GFP). The entire 

fluorescence emission spectrum from this FRET pair is separated into two channels by a 

dichroic filter with a cut-on wavelength λ0 (Fig. 2a). The condition number of the matrix S 

was calculated for different λ0 (Fig. 2b). Assuming we require a condition number ≤ 5 for 

optimal spectral unmixing, the results shown in Fig. 2b indicate that this condition exists 

only when λ0 falls within the spectral range 493 – 503 nm. For different chromophore 

combinations, this spectral range varies. For instance, the optimal dichroic cut-on 

wavelength for imaging a GFP/YFP (yellow fluorescent protein) FRET pair is within the 

spectral range 510 – 550 nm (condition number ≤ 5) (Fig. 2c-d). Achieving an optimized 

condition number for each fluorophore combination necessitates adjusting the positioning of 

spectral channels, thereby complicating the experimental procedure. In contrast, if these 

fluorophores are imaged by a HSI system continuously sampling the same spectral range 

with a 5 nm spectral channel bandwidth, the condition number of the matrix S remains 

optimized (e.g., condition number = 3.3 for CFP/GFP, and condition number = 2.0 for GFP/

YFP), allowing the same system to image various FRET pairs without hardware adjustment.

A second advantage of HSI is that it facilitates the unsupervised linear spectral unmixing. To 

construct the spectral component matrix S, the supervised linear spectral unmixing needs 

accurate information about the number of chromophores in the mixture and their emission or 

reflectance spectra. However, if such knowledge is either difficult to obtain, as when the 

mixture contains unknown sources, e.g., for in vivo tissue measurements, or the knowledge 

is unreliable to use, as when the chromophores’ spectra are subject to experimental and 
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biological variability, the supervised spectral unmixing falters. In these circumstances, HSI's 

continuous spectral sampling becomes necessary because optimizing the positions of 

spectral channels as described earlier is impracticable. In addition, to estimate both the 

spectral component matrix S and the chromophore concentration matrix A, unsupervised 

linear spectral unmixing algorithms must be employed. Unlike its supervised counterpart, 

the unsupervised linear spectral unmixing does not rely on exact knowledge about the 

spectral component matrix S; rather, S is unknown or only approximately known. 

Representative unsupervised spectral unmixing algorithms are principal components 

analysis (PCA) [26], independent component analysis (ICA) [27], and non-negative matrix 

factorization (NMF) [28, 29].

Among these algorithms, NMF attracts the most attention in biomedical applications 

because it provides the most easily interpretable results which are consistent with physical 

reality [30, 31]. Although NMF was initially developed for remote sensing, the 

extraordinary versatility of the method lends itself to applications far from the imaging 

realm. More recently, for example, NMF has been exploited in various applications in 

computational biology and bioinformatics [32-34].

Briefly, in Eq. 1, since the matrix A represents concentrations, we can assume A to be non-

negative. Additionally, because the spectral component matrix S denotes signal intensities, 

the values of S should also be non-negative. Therefore the basic NMF algorithm imposes 

two constraints,

(3)

on the matrix factorization of the hyperspectral measurement X. However, in practice, the 

nonnegative constraint alone may not be sufficient to generate an adequate result [35]. In 

these cases, additional constraints, such as sparsity [36], piecewise smoothness of spectral 

data [30], and forcing the minimum amplitude of the spectral data to be zero [37], are also 

needed as regularization. The NMF paradigms employing these additional constraints are 

generally referred to as constrained non-negative matrix factorization (cNMF).

Moreover, traditionally the NMF algorithm is initialized with random spectra and then 

converges to a solution by minimizing an error function which describes the similarity 

between the hyperspectral measurement X and the matrix product SA. Thus no information 

about the structure of the spectral shape of the components is typically employed in the basic 

NMF algorithm. However, it is important to remember that, in contrast to the supervised 

spectral unmixing described earlier, the solution of NMF might not converge to a global 

minimum, and hence might not provide a physiologically reasonable estimate about 

chromophore concentrations. In fact, even the optimum number of postulated chromophores 

to use in the matrix S might not be obvious, and often it must be user-defined and evaluated. 

Therefore, to get a more reliable estimate of constituents’ spectra and concentration, the 

NMF technique may include a supervision step that models a subset of the measured spectra 

[31, 38]. Multiple applications of the algorithm, with a variety of random or partially 

supervised initial conditions, and with statistical and empirical evaluation of the results, are 

sometimes required to achieve a useful solution. As an example, a real-world biomedical 
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application of the supervised NMF algorithm is discussed in Section 4.3. Additionally, 

interested readers can also refer [33] and references therein for more details.

3. Major implementations of hyperspectral imaging

In this section, we review state-of-the-art biomedical HSI modalities, classified by their 

datacube acquisition strategy as discussed in Section 2.1. For each modality we compare 

advantages and limitations regarding light throughput, sectioning capability, computation 

complexity, and applicability.

3.1 Hyperspectral confocal microscopy

A hyperspectral confocal microscope is a point-scanning spectrometer with a typical optical 

setup as shown in Fig. 3. The microscope is based on a standard laser scanning confocal 

microscope. However, rather than directly collecting the fluorescence by a photodetector, a 

hyperspectral confocal microscope first disperses the light with a spectral dispersion unit, 

such as a prism or grating, and then images the spectrum onto a linear detector array. Due to 

its diffraction-limited spatial resolution and high spectral resolution (3 nm [11]), 

hyperspectral confocal microscopy has been widely used in live cell multiplexed imaging [5, 

39]. The number of spectral channels varies from 32 in commercial microscopes (LSM 780 

microscope from Carl Zeiss or C2+ microscope from Nikon) to 512 in a custom-built 

microscope [11], measuring photons with wavelengths in the visible light range.

The major advantage that hyperspectral confocal microscopy provides is its intrinsic depth-

resolved spectral imaging capability, reducing the crosstalk among adjacent depth layers and 

generating a four-dimensional datacube (x, y, z, λ). However, since the acquisition of this 

datacube is mostly achieved via raster scanning, hyperspectral confocal microscopy suffers 

from the trade-off between signal-to-noise ratio (SNR) and microscope's temporal 

resolution, particularly when monitoring low light level cellular dynamic processes [40]. 

Although, to some extent, confocal microscopy can compensate for this trade-off by using a 

high intensity excitation source, this increases photobleaching and photo-toxicity to the 

sample [41-43]. Moreover, once the fluorophores are boosted to their saturation excitation 

state, a situation that is commonly reached by current confocal microscopes, even the 

method of using high power excitation sources fails because one could not further increase 

the fluorescence emission rate [44].

3.2 Hyperspectral line-scanning microscopy

A hyperspectral line-scanning microscope is a pushbroom spectrometer with a typical 

optical setup as shown in Fig. 4. By using a line-focusing lens, such as a Powell lens [13], 

the excitation light is focused into a uniform line at the sample. The excited fluorescence is 

then collected by the same objective and imaged onto the entrance slit of a spectrometer. 

The line image is dispersed, and its spectral components are imaged onto a 2D detector 

array, such as a CCD camera. By scanning the sample along the other spatial axis (x axis in 

Fig. 4), an entire (x, y, λ) datacube is acquired. Compared to hyperspectral point-scanning 

confocal microscopy, hyperspectral line-scanning microscopy scans only along one spatial 

dimension (x axis in Fig. 4), thereby accelerating the datacube acquisition speed by a factor 
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of Ny with no loss in SNR. However, since the microscope operates with slits rather than 

pinholes, the gain in datacube acquisition speed is accomplished at the cost of a decreased 

spatial resolution and image contrast [45]. The spectral range of a hyperspectral line-

scanning microscope varies from visible light [13, 46-49] to near infrared [50, 51].

3.3 Tunable-filter-based imaging spectrometry (TF-IS) and digital-light-processing-based 
imaging spectrometry (DLP-IS)

A tunable-filter-based imaging spectrometer (TF-IS) is a wavelength-scanning spectrometer. 

The most important tunable filters used in this category are acousto-optic tunable filters 

(AOTF) [16, 52], liquid-crystal tunable filters (LCTF) [17, 53-56], filter array [57], and 

linear variable filters (LVF) [58]. There are two types of tunable-filter-based imaging 

spectrometers: one type, referred to as excitation-side TF-IS, mounts tunable filters in front 

of a light source, and sequentially illuminates the sample with different wavelengths [57, 59, 

60]. The corresponding monochromatic scenes are then captured by a 2D detector array. The 

other type, referred to as emission-side TF-IS, mounts tunable filters in front of a detector, 

followed by scanning the spectral window to image selected wavelengths [53, 55]. 

Representative commercial HSI tunable filters are the Gooch & Housego HSi-300 and the 

PerkinElmer VariSpec LC Tunable Filter, with typical wavelength tuning response times of 

100 μs and 50 ms, respectively. The measured spectra vary from visible light [16, 56] to near 

infra-red [54]. It is worth mentioning that, in reflectance imaging spectrometry, the 

excitation-side filtering techniques are advantageous over the emission-side counterparts. 

This is because, to achieve a given SNR, the excitation-side filtering requires less dose of 

illumination, thereby presenting the sample from being altered by the measurement.

Another important embodiment of excitation-side wavelength-scanning spectrometry in 

biomedicine is the digital-light-processing-based imaging spectrometer (DLP-IS). Compared 

to the tunable-filter-based imaging spectrometry, DLP-IS enables higher wavelength tuning 

speed (up to 12.5 kHz, Gooch & Housego OL 490 Agile Light) and generates arbitrary 

illumination spectra [15, 61]. DLP-IS has been demonstrated in a variety of clinical and 

surgical applications, such as non-invasive measuring of chemical contents in tissue and 

monitoring wound healing [62-64]. Commercial HSI systems utilizing DLP-IS include the 

OneLight Spectra and the Gooch & Housego OL 490 Agile Light Source.

Compared to hyperspectral point-scanning confocal microscopy, the datacube acquisition 

speed of TF-IS and DLP-IS is faster by a factor of Nx × Ny, because no scanning is required 

along the spatial dimensions, but loses a factor of Nλ due to the need for wavelength 

scanning. However, the drawback of these techniques is a lack of intrinsic optical 

sectioning. To achieve depth-resolved imaging, TF-IS and DLP-IS must be combined with 

auxiliary techniques, such as structured illumination [65].

3.5 Snapshot imaging spectrometry

Snapshot imaging spectrometry captures the entire datacube within a single integration 

event, without employing any scanning mechanism. The major advantage of a snapshot 

imaging spectrometer is that it allows full optical throughput, an improvement of NxNyNλ 

over that of a point-scanning imaging spectrometer [66]. Although a number of snapshot 

Gao and Smith Page 6

J Biophotonics. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



imaging spectrometry techniques have been developed, many of these have difficulties in 

adapting to high resolution imaging [67]. Only a few have been implemented in biomedical 

imaging applications: Computed Tomography Imaging Spectrometers (CTIS) [21], Coded 

Aperture Snapshot Spectral imagers (CASSI), and Image Mapping Spectrometers (IMS).

Rather than the one-dimensional linear disperser used in conventional dispersive 

spectrometers, a CTIS uses a 2D computer-generated-hologram disperser, projecting the 

mixture of the spatial and spectral data at different view angles onto the detector (Fig. 5a). 

Tomographic reconstruction algorithms are then used to estimate the object datacube. A 

state-of-the-art CTIS can measure a datacube with 203×203×55 (x, y, λ) voxels and cover 

the entire visible light range [68]. A major advantage of CTIS is its relative compactness, 

allowing it to couple onto a variety of biomedical imaging instruments, such as a microscope 

[21, 68, 69], and a fundus camera [31]. However, CTIS has been plagued by computational 

complexity, calibration difficulty, and measurement artifacts [70].

CASSI takes advantage of compressed sensing to accomplish datacube acquisition in a 

snapshot format. Analogous to CTIS, CASSI can also be considered as a generalization of 

slit spectrometer, however with the entrance slit replaced by a 2D field stop (Fig. 5b). Inside 

this field stop, CASSI inserts a random binary mask to modulate the spatial-spectral 

projection at the detector so that each wavelength of the datacube experiences a shifted 

modulation code. If this system matrix and object datacube can be made to satisfy the 

conditions of compressed sensing, the datacube can be recovered through compressed 

sensing algorithms [71]. Advantages of CASSI are its compactness and the use of a modest 

size detector array, allowing a high datacube acquisition speed. For example, a state-of-the-

art CASSI can acquire data at 30 fps for datacubes of size 248×248×33 (x, y, λ) and measure 

spectra in the visible light range [72]. The disadvantages of CASSI include its computation 

complexity, making it difficult to recover accurate datacubes in real time, and the 

requirement that the object must be sparse in the gradient domain [72]. In biomedicine, the 

integration of CASSI with microscopy has been demonstrated in high-resolution 

fluorescence imaging [73, 74].

Rather than dealing with mixed spatial and spectral data as in CTIS and CASSI, an IMS 

avoids spatial-spectral crosstalk at the detector by utilizing a field division unit, referred to 

as an image mapper [75]. An image mapper consists of hundreds of mirror facets, each with 

a 2D tilt angle. These mirror facets cut the field into slices and reflect them towards different 

locations at the detector to create void spaces between adjacent sliced images (Fig. 5c). The 

sliced images are dispersed by a field dispersion unit, such as a prism. The resulting spectra 

then occupy previously created void spaces at the detector. In this way, each camera's pixel 

is unambiguously encoded with the spatial and spectral information of the sample. The 

datacube size that a state-of-the-art IMS measures is 350×350×46 (x, y, λ) with a frame rate 

up to 7.6 fps [40]. The measured spectral range can be either visible [40] or near infrared 

[76]. Compared to CTIS and CASSI, the IMS has two advantages: First, the IMS involves 

little computational cost, allowing the real-time display of acquired datacubes; second, the 

IMS does not pose any limitations on the imaged objects, thereby maximizing its 

compatibility with different biomedical imaging modalities, such as microscopy [40], 

endoscopy [77], ophthalmoscopy [78], and macroscopy [6]. The primary drawback of the 
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IMS lies in the need for high precision fabrication of its core component, the image mapper, 

and the need for large-format cameras, which normally have a low frame rate. However, the 

potential marriage between the IMS and scientific CMOS cameras may provide a solution 

for demanding dynamic imaging applications.

3.6 Comparison of hyperspectral imaging modalities

We compare hyperspectral imaging modalities in Table. 2. Here the throughput is defined as 

the time that a voxel can be continuously seen by the instrument during datacube acquisition 

and scaled to the time seen by snapshot imaging spectrometry. In shot-noise-limited 

systems, higher throughput results in higher SNR at a given imaging speed; equivalently 

speaking, higher throughput leads to faster datacube acquisition for a given SNR. This 

advantage, referred to as the snapshot advantage [66], becomes dominated when measuring 

datacubes with a large number of voxels. It is worth nothing that although hyperspectral 

confocal microscopy and line-scanning microscopy have relatively low throughput, they 

provide an intrinsic optical sectioning capability, enabling 4D (x, y, z, λ) imaging. By 

contrast, to achieve optical sectioning with the other three modalities, one must rely on 

auxiliary techniques, such as structured illumination [44].

4. Quantitative hyperspectral imaging, from organelles to organs

4.1 Hyperspectral imaging of FRET in living cells

The expanding library of fluorescent probes available for fluorescence microscopy has led to 

an ever-increasing range of applications accessible to live cell microscopy. Advanced 

fluorescent labeling techniques allow simultaneously staining cells with up to 17 different 

fluorophores [80]. Given the limited range of visible and NIR fluorophores, experiments that 

utilize multiple probes often suffer from significant emission spectral overlap. In multicolor 

cellular imaging, HSI in combination with linear spectral unmixing becomes an 

indispensable tool because it enables mapping a variety of cells or cellular organelles with 

high sensitivity. As representative images, Fig. 6 shows hyperspectral imaging results of a 

triple-labeled HeLa cell expressing ECFP in the mitochondria, EGFP on the plasma 

membrane, and SYFP in the nucleus. In the conventional RGB color image, all three 

fluorophores appear green and thus cannot be distinguished (Fig. 6a). However, by using a 

HSI system, an image mapping spectrometer (IMS), these fluorophores can be spectrally 

unmixed, with their sub-cellular locations unambiguously revealed in separate channels 

(Fig. 6c-e).

FRET microscopy, an important application of HSI in live cell imaging, serves as a 

molecular ruler in measuring intermolecular distances or determining the formation of 

molecular complexes [81]. An efficient FRET signal requires considerable spectral overlap 

between the emission spectrum of the donor and the excitation spectrum of the acceptor, a 

requirement that generally results in a significant spectral overlap between the emission 

spectra of the donor and the acceptor. As discussed in Section 2.2, the most basic FRET 

imaging requires two spectral channels. However, the accuracy of subsequent spectral 

unmixing is sensitive to the spectral positioning of detection channels. Furthermore, two 

channel FRET imaging assumes that there are only two fluorophores within the imaging 
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FOV, a hypothesis that is problematic when the autofluorescence intensity becomes 

comparable to that of the FRET signals. HSI can overcome these limitations by continuously 

sampling the emission spectra with a fine spectral resolution. Combined with blind source 

spectral unmixing algorithms, such as non-negative matrix factorization, HSI can effectively 

remove the autofluorescence background, resulting in a significant increase in unmixing 

accuracy and image contrast [82].

However, for scanning-based HSI modalities, the cost of achieving these advantages in 

FRET-involved imaging is a reduced temporal resolution at a given SNR. The trade-off 

among the spatial, temporal, and spectral resolutions normally hinders these instruments 

from assaying dynamic cellular processes. In these cases, snapshot HSI imagers have an 

intrinsic advantage because all the voxels in the datacube are acquired simultaneously 

(Section 3.6), yielding an ideal scenario that allows one to monitor the interplay of multiple 

biosensors in real time. For example, a recent study utilizes an image mapping spectrometer 

(IMS) to study the roles of cellular second messengers [Ca2+]i and cAMP in regulating 

glucose-stimulated insulin secretion in pancreatic β-cells [40]. To monitor the temporal 

dynamics of [Ca2+]i and cAMP, the β-cells were transfected with a fluorescent protein, 

GCaMP5G, and a FRET-based cAMP sensor, T-Epac-VV, a fusion protein containing the 

donor fluorophore, mTurquoise, and the acceptor fluorophore, cpVenus-Venus. As shown in 

Fig. 7a, the excitation and emission spectra of these fluorescent sensors overlap 

significantly. By using the hyperspectral imager IMS, the spatial-temporal interaction 

between glucose-induced [Ca2+]i and cAMP oscillations was revealed with sub-micron 

spatial resolution and sub-second temporal resolution (Fig. 7b-d).

4.2. Hyperspectral imaging of tissue hemodynamics

The ability to visualize hemodynamics in vivo is important in preclinical and clinical studies 

because it aids our understanding of the way that oxygen is provided and consumed in the 

tissue, for both healthy and diseased conditions. The key measure of hemodynamics is the 

oxygen saturation of hemoglobin (sO2), which is defined as the ratio of oxy-hemoglobin 

concentration to the total hemoglobin concentration:

(4)

where CHbO2 and CHHb are the concentrations of oxy-hemoglobin and deoxy-hemoglobin, 

respectively. Since oxy-hemoglobin and deoxy-hemoglobin have different absorption 

spectra, HSI can discriminate these two chromophores and quantify their concentration in 

vivo without labeling.

Most optical in vivo sO2 measurements are carried out in reflectance mode, i.e., the sample 

is illuminated by a broadband light source and the reflected light is collected and analyzed. 

The measured spectra are a mixture of the unaffected photons which experience direct 

reflection from the sample surface, and the affected photons which have interacted with the 

sample via absorption and scattering. While the specular reflection normally carries the 

original spectrum of the light source, both absorption and scattering processes are strong 
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functions of wavelength [83]. The modified Beer-Lambert law can be used to describe the 

absorption [84, 85]:

(5)

where I is the detected light intensity, I0 is the incident light intensity, d is the mean 

pathlength traveled by light in tissue (a function of wavelength and tissue optical properties), 

G is a geometry-dependent factor, and μa is the absorption coefficient of the tissue as given 

by:

(6)

Here ξi is the wavelength-dependent molar extinction coefficient of a particular 

chromophore in the mixture, and ci is its concentration. For in vivo measurements, both I0 

and G are difficult to quantify. The common approach to circumvent this problem is to 

measure the changes in the detected signal at time t relative to that at initial time t0 or a 

reference state, using

(7)

Under the assumptions that all chromophores are known and the mean pathlength d is 

known for each wavelength, the changes in chromophores’ concentrations can be calculated 

by utilizing the supervised linear spectral unmixing model (Eq. 2) [64, 86]. Furthermore, 

given the estimated initial concentrations for oxy- and deoxy-hemoglobin, the change in 

absolute oxygen saturation can be derived by

(8)

However, the estimation of wavelength-dependent pathlength d in Eq. 7 is not trivial. In 

practice, it is normally calculated by a Monte-Carlo model of light propagation in tissue [85, 

87, 88]. However, assumptions have to be made on the reduced scattering parameter (μ′s), a 

fact which can result in crosstalk and errors in deriving ΔCHbO2 and ΔCHHb [87, 89-91].

To eliminate the need to approximate d in HSI, there are two general approaches. The first 

method is to utilize unsupervised spectral unmixing algorithms, such as non-negative matrix 

factorization (NMF) and principle component analysis (PCA), which allows the scattering-

modified components’ spectra (d(λ)ξi(λ) in Eq. 7) to vary to obtain the best fit and most 

realistic spectrum [31, 92]. Utilizing this strategy, the quantification of hemoglobin has been 

demonstrated in imaging human skin [93]. The second method is to employ diffuse optical 

imaging techniques to separate optical absorption from optical scattering effects by 

characterizing the remitted or transmitted light field either in the time or spatial domain [94]. 

A representative technique within this category is spatial frequency-domain imaging (SFDI), 
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which modulates the light source and projects different spatial frequency patterns onto 

tissue, followed by comparing the measurements to a mathematical model of light 

propagation in that tissue [94-97]. The underlying principle of SFDI is that lower spatial 

frequencies have longer optical pathlengths and tend to be more attenuated by absorption, 

while the higher spatial frequencies have shorter optical pathlengths and are more sensitive 

to scattering. Combined with HSI, the ability of SFDI to quantify sO2 has been 

demonstrated in imaging the rat cortex [69, 95], and representative images are shown in Fig. 

8.

4.3. Hyperspectral imaging of autofluorescence in ocular tissue

Hyperspectral autofluorescence imaging has been applied to a fundamental problem in the 

cell biology and biochemistry of an important ocular tissue, the retinal pigment epithelium 

(RPE). The fluorophores of the RPE, a species of vitamin A adducts known as bis-retinoids, 

have long been intensively studied in the laboratory as byproducts of the visual cycle 

[98-100]. They aggregate in granules of material known as lipofuscin. Autofluorescence 

attributable to lipofuscin was imaged in the living human eye by Delori et al. using 

spectrophotometry and by Fitzke et al. using scanning laser ophthalmoscopy [101, 102]. The 

fundamental observation that RPE lipofuscin increases with age [98] raises the possibility of 

RPE toxicity playing a role in biogenesis of age-related macular degeneration (AMD). The 

extensive literature on both sides attests to the importance of resolving this question, and 

unraveling RPE bis-retinoid biology [103, 104].

In the last decade, there has been a rapid expansion in biochemical knowledge about these 

bis-retinoid compounds [105, 106]. Clinically, a wealth of novel descriptive and diagnostic 

information has been harvested from autofluorescence imaging of AMD and inherited 

retinal degenerations. In particular, abnormal patterns of increased and decreased 

autofluorescence can be diagnostic in these disorders, and can serve as markers for disease 

progression. Multimodal imaging with autofluorescence and spectral-domain optical 

coherence tomography (SD-OCT) leverages the diagnostic and prognostic power of these 

images even further. Recently, the ability to standardize autofluorescence across patient 

populations via quantitative autofluorescence offers even better understanding of lipofuscin 

biology in the clinic [107, 108].

What has been lacking until very recently has been a merger of laboratory biochemistry and 

the identification, quantification, and localization of the important fluorophore species in 

human RPE tissue itself. Hyperspectral autofluorescence imaging is now being applied to 

this task, guided by fundamental new tissue techniques [109], using mathematical modeling 

of RPE autofluorescence with Gaussian mixture models and signal recovery with NMF. The 

analysis pipeline for extracting individual spectral components and their spatial localizations 

from hyperspectral autofluorescence emission data proceeds in three steps. Each step guides 

the next, and each provides successively more precise spectral recovery.

Step 1: Recovery of RPE autofluorescence signal from tissue flatmount—As 

an example, Fig. 9a shows an RPE autofluorescence image (exc. 436 nm) from a 49-year-

old female donor. The sample's mean spectral data were acquired in the marked regions 
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using a Nuance FX camera (Caliper Life Sciences, US) between 420-720 nm in 10 nm 

intervals. The measured BrM and the RPE and BrM combined spectra are shown in Fig. 9b. 

The isolated mean RPE signal was calculated by subtracting the measured BrM spectrum 

from the RPE and BrM combined spectrum.

Step 2: Gaussian component fitting to RPE autofluorescence signal—As shown 

in Fig. 9c, we fitted the RPE spectrum to a Gaussian model. Individual Gaussians of the 

model are centered at approximately 575, 600, 640, and 700 nm, respectively. The sum of 

the Gaussians (solid pink) closely follows the contours of the RPE signal (black dots).

Step 3: Non-negative matrix factorization (NMF)—The standard NMF algorithm is 

initialized with random spectra and then converges to an approximate solution by 

minimizing an error criterion. These solutions may or may not be physiologically 

reasonable, even though they satisfy the mathematical equations. In this case, however, we 

had already measured the Bruch's membrane (BrM) spectrum in Step 1 and had also 

recovered four reasonable Gaussian candidate spectra from each RPE sample in Step 2. We 

therefore chose to initialize the algorithm with these five explicit spectra and then let the 

algorithm converge to a solution. A typical solution by NMF factorization of a hyperspectral 

data cube with BrM and RPE Gaussian initializations is shown in Fig. 10a. In addition to the 

five major spectra recovered, the other part of the data factorization is a series of five 

chromophore concentration images (Fig. 10b-f), which display the spatial localization of 

each recovered signal. The recovered spectra themselves are interpretable as single major 

peaks, but other details are present that may represent error, noise, or more complex 

component signals.

Hyperspectral autofluorescence imaging analysis of flatmounts of pure human RPE/BrM ex 

vivo with a Gaussian mixture/NMF model thus enabled consistent recovery of candidate 

spectra for at least four individual RPE and one BrM fluorophore emission signals, with 

well-defined emission maxima and with histologically plausible localizations across age, 

gender, retinal locations, and excitation wavelengths. The biochemical sources of these 

signals have yet to be determined. However, one of the four had an emission maximum at 

600 nm, and thus could be a well-known bisretinoid, A2E. These spectra should now be 

matched to their corresponding biochemical components with techniques such as imaging 

mass spectroscopy. Determining the actual abundant source molecules that produce these 

signals will be important in understanding RPE physiology.

5. Conclusions and outlook

In summary, HSI has broad applications ranging from laboratory research to clinical studies, 

yet future endeavors are still needed to further mature this technology. In this review, both 

fundamental principles of HSI and its state-of-art biomedical implementation were detailed, 

and three biomedical applications of HSI were discussed.

We envision several trends for HSI in biomedicine. First, the integration of HSI with 

conventional bio-imaging devices, such as microscopes [40], endoscopes [77], fundus 

cameras [78], and surgical laparoscopes [110], will produce a wealth of hidden information 
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about biological samples, opening up new areas of investigation both for in vitro and in vivo 

imaging. In particular, the marriage between HSI and ophthalmoscopy will help us identify 

the distribution and spectral signature of various chromophores and fluorophores associated 

with ocular diseases, such as AMD and glaucoma. For example, drusen, the hallmark lesions 

of AMD, are biochemically heterogeneous and are key to understanding this disease [111]. 

However, their composition cannot be determined in vivo with even the current highest 

resolution imaging techniques [92, 112]. By contrast, HSI data can potentially offer a vision 

of spectral biopsy of retina by dissecting the spectral reflectance and autofluorescence 

signatures form drusen and other AMD lesions. The insights so obtained will be of high 

value in clinical diagnosis and treatment. In addition, such a system will accelerate 

translations research with sensitive and early outcome testing of prospective therapeutic 

agents, saving sight and thereby providing benefits to society. Second, although most 

biomedical HSI needs are currently fullfilled by scanning-based devices, snapshot 

hyperspectral imagers will become the mainstream. Snapshot instruments not only promise 

to improve measurement SNR for most situations but also add capabilities beyond those of 

current devices. For instance, in brain functional imaging, many questions remain about the 

neurovascular coupling [113], especially regarding the spatiotemporal features of blood 

oxygen level dependent (BOLD) signals and their relevance to neuronal activity. Scanning-

based HSI systems are not suitable for such a demanding application because the time scale 

of neuron actions can be as short as a millisecond [114]. Significant progress in elucidating 

the relation between BOLD signals and neuronal activities will be possible with the 

simultaneous monitoring provided by snapshot HSI systems. Last but not least, advances in 

developing new un-supervised spectral unmixing algorithms [37, 115, 116] will make the 

optimization tasks more accurate and more efficient, thereby facilitating a full utilization of 

the rich spatio-spectral information measured by HSI. Among these analysis techniques, 

NMF-based algorithms emerge as spotlights in biomedical applications because they 

provide the most easily interpretable results that agree with physiological reality. Interested 

readers may refer to a more specific article for the cutting-edge NMF algorithms and their 

implementation as a software package [34].
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Fig. 1. 
Datacube acquisition strategies in hyperspectral imaging. x, y, spatial coordinates; λ, 

wavelength.
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Fig. 2. 
Spectral unmixing of two fluorophores by a two-channel spectral imaging system. The entire 

fluorescence emission spectrum is separated into two channels by a dichroic filter with a 

cut-on wavelength λ0. (a) Fluorescent emission spectra of CFP and GFP. (b) The condition 

number of the spectral component matrix for the CFP/GFP fluorophore combination at 

different λ0. (c) Fluorescent emission spectra of GFP and YFP. (d) The condition number of 

the spectral component matrix for the GFP/YFP fluorophore combination at different λ0.
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Fig. 3. 
Typical optical setup of a hyperspectral confocal microscope. At the detection side, the 

photons are dispersed by a spectral dispersion unit, such as a prism, and imaged by a linear 

detector array.
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Fig. 4. 
Typical optical setup of a hyperspectral line-scanning microscope. The Powell lens 

generates a uniform excitation line. Figure adapted from [13].
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Fig. 5. 
System schematics of (a) Computed Tomography Imaging Spectrometers (CTIS), Coded 

Aperture Snapshot Spectral imagers (CASSI), and (c) Image Mapping Spectrometers (IMS).
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Fig. 6. 
Hyperspectral imaging of ECFP, EGFP, and SYFP in a triple-labeled HeLa cell. (a) 

Reference image captured by a color camera. (b) Emission spectra of ECFP, EGFP, and 

SYFP (Life Technologies). (c-e) Unmixed images showing the sub-cellular locations of 

ECFP, EGFP, and SYFP. (f) Merged image of c-e. ECFP, enhanced cyan fluorescence 

protein; EGFP, enhanced green fluorescence protein; SYFP, super yellow fluorescence 

protein.
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Fig. 7. 
Simultaneous imaging of [Ca2+]i and cAMP signaling in β-cells by a snapshot hyperspectral 

imager IMS. (a) Emission spectra of fluorophore GCaMP5G, mTurquoise, and cpVenus-

Venus. (b) Unmixed spectral component images. (c) [Ca2+]i (green) and cAMP (blue) 

oscillations after 5 minutes of stimulation with 20 mM glucose and 20 mM TEA stimulation 

collected at 2 fps. (d) Time-resolved components of T-Epac-VV (mTurquoise in blue, 

cpVenus-Venus in yellow) from the cells shown in c. Reprinted with permission from [40].
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Fig. 8. 
Chromophore maps for a mouse cortex at and surrounding the site of an inflicted injury. The 

mouse cortex was imaged using spatial frequency domain imaging (SFDI) and a computed-

tomography imaging spectrometer (CTIS). (a) Mouse cortex reflectance image at 650 nm. 

The top of the image is the anterior side of the brain. (b) Oxy-hemoglobin concentration. (c) 

Deoxy-hemoglobin concentration. (d) Water percentage. (e) Total hemoglobin 

concentration. (f) Oxygen saturation percentage. Reprinted with permission from [69].
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Fig. 9. 
Recovery of RPE auto-fluorescence from ocular tissue flatmount. (a) RGB composite 

autofluorescence image from 40× field (49-year-old female donor, exc. 436 nm). (b) 

Autofluorescence emission curves. (c) Gaussian component fitting to RPE autofluorescence 

signal.
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Fig. 10. 
Hyperspectral imaging of ocular tissue flatmount. (a) NMF solution with Gaussian initial 

conditions. (b-f) Recovered five chromophore concentration maps. Four localize adjacent to 

nuclei, where lipofuscin is expected. These four signals peak at approximately 560 nm, 600 

nm, 640 nm, and 700 nm. The signal at 600 nm, C5, appears to be the weakest. Signals C3 

and C4 have secondary shorter wavelength minor peaks, suggesting additional compounds. 

C2 localizes mostly to bare BrM, with the shortest wavelength peak. The amplitudes of the 

spectra are the mean emissions from that source over the 40× field.
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Table 1

Comparison between multispectral imaging and hyperspectral imaging

Multispectral imaging Hyperspectral imaging

Spectral resolution Low (normally > 10 nm) High (normally <10 nm)

Criterion 1: Number of spectral bands From three to tens From tens to hundreds

Criterion 2: Spectral band continuousness Normally spaced continuity
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