Skip to main content
. 2014 Nov 15;13:8–17. doi: 10.1016/j.csbj.2014.11.005

Table 1a.

Publications relevant to ML methods used for cancer susceptibility prediction.

Publication Method Cancer type No of patients Type of data Accuracy Validation method Important features
Ayer T et al. [19] ANN Breast cancer 62,219 Mammographic, demographic AUC = 0.965 10-fold cross validation Age, mammography findings
Waddell M et al. [44] SVM Multiple myeloma 80 SNPs 71% Leave-one-out cross validation snp739514, snp521522, snp994532
Listgarten J et al. [45] SVM Breast cancer 174 SNPs 69% 20-fold cross validation snpCY11B2 (+) 4536 T/C snpCYP1B1 (+) 4328 C/G
Stajadinovic et al. [46] BN Colon carcinomatosis 53 Clinical, pathologic AUC = 0.71 Cross-validation Primary tumor histology, nodal staging, extent of peritoneal cancer