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Mycobacterium tuberculosis (MTB) is a highly successful pathogen because of its ability to persist in
human lungs for long periods of time. MTB modulates several aspects of the host immune response.
Lymphocyte-activation gene 3 (LAG3) is a protein with a high affinity for the CD4 receptor and is
expressed mainly by regulatory T cells with immunomodulatory functions. To understand the function of
LAG3 during MTB infection, a nonhuman primate model of tuberculosis, which recapitulates key aspects
of natural human infection in rhesus macaques (Macaca mulatta), was used. We show that the
expression of LAG3 is highly induced in the lungs and particularly in the granulomatous lesions of
macaques experimentally infected with MTB. Furthermore, we show that LAG3 expression is not induced
in the lungs and lung granulomas of animals exhibiting latent tuberculosis infection. However, simian
immunodeficiency virus—induced reactivation of latent tuberculosis infection results in an increased
expression of LAG3 in the lungs. This response is not observed in nonhuman primates infected with non-
MTB bacterial pathogens, nor with simian immunodeficiency virus alone. Our data show that LAG3 was
expressed primarily on CD4" T cells, presumably by regulatory T cells but also by natural killer cells. The
expression of LAG3 coincides with high bacterial burdens and changes in the host type 1 helper T-cell

response. (Am J Pathol 2015, 185: 820—833; http://dx.doi.org/10.1016/j.ajpath.2014.11.003)

Mycobacterium tuberculosis (MTB), the causative agent of
tuberculosis (TB), is thought to have infected more than one
third of the world’s current population." MTB is responsible
for approximately 1.3 million deaths a year, meaning that this
pathogen results in greater mortality than any other infectious
bacterium.””’ Each year, approximately 9 million people
become newly infected with MTB." Of those individuals
infected with MTB, approximately 90% remain latently
infected, with an asymptomatic infection that is not cleared
by the immune response.” Only 5% to 10% of MTB-infected
individuals progress to active disease, where a breakdown of
MTB containment and clinical symptoms of TB take place.’
During active TB, the release of MTB bacilli occurs, result-
ing in individuals who are highly infectious, leading to the
spread of MTB.

The granuloma is crucial to determining the progression or
control of MTB infection.” In human pulmonary TB, the
structure of the lung granuloma within the host is well
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organized and composed mainly of immune cells. A classic-
type MTB-induced lung granuloma consists of a necrotic
central region encircled by monocyte-derived cells, including
infected macrophages, epithelioid macrophages, multinu-
cleated giant cells, and foamy macrophages, which is then
surrounded by an outer ring of mostly T and B lymphoid-type
cells and fibroblasts.’”” The most accepted view is that the
formation of this lung granuloma is the host’s attempt to
contain and control the growth of MTB bacilli, yet it has been
suggested that granuloma formation might inadvertently
assist in the persistence of infection.®” These two views hint
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at the constant struggle that occurs between host and path-
ogen to gain advantage during infection.

Immunomodulation within the host is critical for suc-
cessful containment of the bacilli within the lung granuloma.
A suppressed immune response will prevent granuloma
formation and maintenance, and an overactive response will
result in excessive inflammation, causing immunopatho-
genesis and allowing for the proliferation and spread of
MTB.'""" MTB has previously been shown to use certain
immunomodulatory proteins of the host to regulate the
immune response in its favor; this has been observed with the
up-regulation of IL-10, as well as potentially with the
increased presence of indoleamine 2,3-dioxygenase.'” '
Moreover, previous studies have illustrated that infected
macrophages produce the immunosuppressive cytokine
IL-10 that can inhibit the production of IL-12, thus control-
ling T-cell differentiation.'*'> Expression of IL-10 in regu-
latory T cells (Tregs) during early MTB infection has been
observed in virulent MTB strains, resulting in the dampening
of the type 1 helper T-cell (Th1) response.'? Another method
through which MTB is able to control the host response to
infection is through the suppression of dendritic cell-specific
intercellular adhesion molecule-3-grabbing non-integrin
(DC-SIGN) within dendritic cells, which causes decreased
dendritic cell function and maturation.'®

Lymphocyte-activation gene 3 (LAG3) protein is
expressed on populations of activated T cells, such as Tregs
and natural killer (NK) cells, and some monocyte-derived
cell populations.'”'® LAG3 is a negative costimulatory re-
ceptor that is homologous to CD4, yet has a 2-log higher
affinity for major histocompatibility complex IL'" This
molecule dampens the immune response through the acti-
vation and resulting proliferation of Tregs, as well as via the
inhibition of monocyte differentiation, both of which have
deleterious downstream effects on Thl effector T-cell pro-
liferation and function, and are essential for an adequate
host response to control MTB infection."” >’ LAG3 up-
regulation has already been shown to be detrimental to the
host response in certain chronic infections, such as hepatitis
B virus and Plasmodium falciparum.”'** The blockade of
LAG3 with monoclonal antibodies has resulted in an
enhanced ability of antigen-presenting cells to generate a
Thl response, with increased levels of interferon (IFN)-y
being present.”” Building on these facts, it appears as though
LAG3 and IL-10 could play similar roles during an MTB
infection in both the inhibition of the Th1 immune response,
as well as with presentation of antigen.

Our group has previously shown that the granuloma-rich
lung tissue from actively MTB-infected rhesus macaques
has a 25-fold higher expression of LAG3 RNA than that of
naive and latently infected animals.”* We propose that LAG3
plays a role in modulating the local lung immune response to
MTB to attempt to contain infection through dampening the
immune response to reduce host-mediated immunopatho-
genesis. We believe that LAG3 up-regulation correlates with
active TB due to a diminished immune response and may be
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functionally linked to IL-10."* As part of the current study,
we have tested this hypothesis in the rhesus macaque
(Macaca mulatta) model. This system was used because of
its ability to reproducibly emulate the progression of MTB
infection, where the clinical signs experienced by nonhuman
primates (NHPs) during active infection and MTB-induced
lung granuloma structure closely mirror what is experi-
enced in humans.”’ Furthermore, NHPs are able to recapit-
ulate latency, as well as reactivation when infected with
simian immunodeficiency virus (SIV).”*° Our findings show
that LAG3 expression is localized to the lungs of animals
experiencing active TB. Furthermore, we show that LAG3 is
expressed within the outer periphery of MTB-induced lung
granulomas. The cells expressing LAG3 are believed to be
regulatory T cells and NK cells.

Materials and Methods

Human Tissue Samples

Archived paraffinized lung tissue biopsy samples from
humans diagnosed with TB were collected in accordance
with a protocol approved by the Ethics Committee of the
National Institute of Respiratory Diseases (Mexico City,
Mexico), as previously described.”’

Animals

Adult male Indian origin rhesus macaques acquired from the
Tulane National Primate Research Center (Covington, LA)
breeding colony were used for our studies. These animals
were quarantined for 90 days and were tested for previous
exposure to MTB with the tuberculin skin test (TST) and an
NHP IFN-y release assay (Primagam; Life Technologies-
Thermo Fisher Scientific, Waltham, MA).28 MTB-infected
animals were housed in Biosafety Level 3 conditions.
Blood draws, bronchoalveolar lavage (BAL), and all other
physical data collection were performed as previously
described.”®*’ Samples were collected for this study from
animals with active TB as well as latent TB infection (L'TBI)
and reactivation, which had been described in detail
earlier.'"** The Tulane National Primate Research Center
Institutional Animal Care and Use Committee and
the Institutional Biosafety Committee approved all
procedures.

Infections

The experimental design for MTB infection via inhalation and
SIV coinfection has been previously illustrated.”* Herein, we
used 32 Indian rhesus macaques (Table 1). For the study of
active TB, 1000 colony-forming units (CFUs) of MTB
CDCI1551 was deposited into the lungs of 10 animals via the
head-only aerosol method, as previously described.”* For the
study of LTBI, 22 remaining animals were infected through the
same method to deposit 50 CFUs of MTB CDC1551.** MTB
infection was confirmed by conversion to positive TST and
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Table 1  Classification of TB Status in MTB-Infected Rhesus Macaques
Age at

Identification Infection/ infection Mamu TST TST TST Eor Time to
code treatment  Classification (years)  subtype (—2 weeks) (3 weeks) (7 weeks) EN  necropsy (days)
HD0001 MTB Active TB 9.5 NA NNN PPP ND E 21
HD0002 MTB Active TB 10.3 NA NNN PPP ND E 25
HD0003 MTB Active TB 2.4 A-11 and DR2011 NNN PPP ND E 25
HD0004 MTB Active TB 3.5 A-02, A-11, and B-01 NNN PPP ND E 34
HD0005 MTB Active TB 6.6 A-11 and B-17 NNN PPP ND E 34
HD0006 MTB Active TB 3.7 A-08 and B-01 NNN PPP ND E 35
HD0007 MTB Active TB 7.8 A-02 NNN PPP ND E 38
HD0008 MTB Active TB 13.8 A-02 and B-01 NNN PPP ND E 51
HD0009 MTB Active TB 13.4 A-02 and B-01 NNN PPP ND E 52
HD0010 MTB Active TB 9.4 A-02, A-08, BO1, NNN PPP ND E 61

and DR2011
LD0001 MTB Active TB 9.3 A-02 and DR2011 NNN ND PPP E 105
LD0002 MTB Active TB 6.5 NA NNN ND PPP E 133
LDo003 MTB Active TB 3.5 NA NNN PPP ND E 46
LD0004 MTB Active TB 3.7 A08 NNN PPP ND E 43
LD0005 MTB LTBI 9.4 A-02 and B-17 NNN ND PPP EN 126
LD0006 MTB LTBI 9.4 A-08 NNN ND PPP EN 136
LD0007 MTB LTBI 11.6 NA NNN ND PPP EN 53
LD0008 MTB LTBI 12.5 A-01 and DR2011 NNN ND PPP EN 52
LD0009 MTB LTBI 4.5 DR2011 NNN ND PPP EN 127
LD0010 MTB LTBI 3.4 A-01 and A-08 NNN ND PPP EN 120
LD0011 MTB LTBI 6.4 NA NNN PPP PPP EN 190
LDo012 MTB or SIV Reactivation 3.1 A08 NNN ND PPP E 147
LD0013 MTB or SIV Reactivation 3.5 A-01, A-02, NNN ND PPP E 114

and DR2011
LD0014 MTB or SIV Reactivation 3.5 B-01 NNN ND PPP E 112
LD0015 MTB or SIV Reactivation 3.3 A-01 and B-01 NNN ND PPP E 127
LD0016 MTB or SIV Reactivation 3.4 A-01 and B-01 NNN ND PPP E 167
LD0017 MTB or SIV  Reactivation 8.5 A-11 NNN ND PPP E 153
LD0018 MTB or SIV Reactivation 3.4 A-02 and B-01 NNN ND PPP E 104
LD0019 MTB or SIV Reactivation 2.2 NA NNN ND PPP E 167
LD0020 MTB or SIV LTBI 4.5 A-01 and B-17 NNN ND PPP EN 154
LD0021 MTB or SIV LTBI 8.2 A-11 NNN ND PPP EN 126
LD0022 MTB or SIV LTBI 3.1 A-01 and A-08 NNN ND PPP EN 137

Animals were divided into two subsets on the basis of high- and low-dose MTB infection. TST data were obtained 24, 48, and 72 hours after mammalian
tuberculin injection. Negative results for the TST were represented with an N, and a P showed positive results. SIV coinfection was performed 63 days after MTB

infection.

E, euthanasia; EN, experimental necropsy; HD, animals that received high-dose MTB infection when included in animal identification code; LD, animals that
received low-dose MTB infection when included in identification code; LTBI, latent tuberculosis infection; MTB, Mycobacterium tuberculosis; N, a single
negative; NA, data not available; ND, not done; P, a single positive test result at each time of reading; SIV, simian immunodeficiency virus; TB, tuberculosis;

TST, tuberculin skin test.

PRIMAGAM. Over a period of 9 weeks, the animals were bled
weekly for complete blood cell count, serum chemistry anal-
ysis, and serum C-reactive protein (CRP) assays. BAL
collection was also performed at weeks 3 and 7 to determine
MTB levels. In a subset of animals infected with the lower dose
of MTB and with no signs of disease, SIV infections were
performed with 300 samples of 50% tissue culture—infective
dose of SIV 14¢230 virus diluted in RPMI 1640 medium (Sigma-
Aldrich, St. Louis, MO) and injected i.v. at week 9 after MTB
infection. The criteria to determine the onset of active TB,
LTBI, and reactivation of LTBI included the following: TST
and PRIMAGAM-IFN-v release assay positivity, serum CRP

822

levels, and bacterial CFUs in the BAL of these animals over the
course of infection. All procedures had been described in detail
in our prior publications.'****?* Plasma SIV levels were
measured using an SI'V assay developed by the Tulane National
Primate Research Center Pathogen Quantification and Detec-
tion Core.'> Animals with acute brucellosis were infected with
Brucella melitensis via aerosol with between 8.5 x 10> and
1.3 x 10° CFUs, as previously described.” Animals infected
with SIV alone were administered the virus i.v. with 100 animal
infectious dose.”’ Humane end points were predefined in
this protocol and applied as a measure of reduction of
discomfort.
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RNA Extraction and Quantitative RT-PCR

RNA was extracted from lung tissue and BAL that had been
stored at —80°C. Lung, spleen, bronchial lymph node, and
BAL were placed in TRIzol (Life Technologies, Grand Island,
NY) before RNA extraction. Tissue was then homogenized in
M tubes (Miltenyi Biotec, Auburn, CA) with a GentleMACS
Dissociator (Miltenyi Biotec) using the RNA_02 setting. All
samples were run through QIAshredders (Qiagen, Valencia,
CA) to ensure cell lysis. RNA was then extracted with a TR1zol/
RNeasy Kit (Qiagen) hybrid protocol. DNA was removed from
the RNA samples using a TURBO DNA-free Kit (Life Tech-
nologies). RNA was quantified with the NanoDrop 2000
(Thermo Scientific, Wilmington, DE). Because of low RNA
yield, BAL samples were amplified with MessageAmp aRNA
Amplification Kit (Life Technologies) and concentrated with a
Vacufuge (Eppendorf, Hauppauge, NY). cDNA synthesis was
performed with the High Capacity RNA-to-cDNA Kit (Life
Technologies). Primers were as follows: LAG3, 5'-TCT-
TTCCTTACTGCCAAGTGGGCT-3' (forward) and 5'-AAT-
GTGACAGTGGCATTGAGCTGC-3’ (reverse); IL-10,
5'-TGAGAACCACGACCCAGACATCAA-3" (forward)
and 5-AAAGGCATTCTTCACCTGCTCCAC-3' (reverse);
and B-actin, 5’-TCGTCCACCGCAAATGC-3' (forward) and
5'-TCAAGAAAGGGTGTAACGCAACT-3 (reverse). These
primers were designed and optimized (Integrated DNA
Technologies, Coralville, IA). The reactions were performed
on an ABI 7900 RT-PCR machine (Applied Biosystems,
Carlsbad, CA) with SYBR Green (Life Technologies) as a
detector. Samples were performed in duplicate, and both
positive and negative controls (nontemplate controls) were
used. The expression levels were calculated using the
2E22€T method, where samples were normalized against
[-actin expression and uninfected controls.

Transforming Growth Factor B Cytokine Assay

Lung tissue was homogenized in M tubes with a GentleMACS
Dissociator using the Protien_01 setting with Tissue Extrac-
tion Reagent I (Invitrogen, Life Technologies, Grand Island,
NY) supplemented with Protease Inhibitor Cocktail (Sigma-
Aldrich). Supernatant was filtered with a 0.2-pm sterile
polyethersulfone filter (VWR, Radnor, PA). Samples were
then acid treated (the pH was <3.0 and then neutralized).
Milliplex TGFB Magnetic Bead 3 Plex Kit (Millipore,
Billerica, MA) was used to detect presence of cytokine
using the Bio-Plex 200 array reader (Bio-Rad, Hercules,
CA) and analyzed with Bio-Plex Manager software version
6.1 (Bio-Rad).

Flow Cytometry

Flow cytometry staining was performed on blood and BAL, as
described earlier,”* as well as granuloma-rich lung tissue. Lung
was processed into a single-cell suspension by digestion with
collagenase type IV (Sigma-Aldrich) and DNase I (Sigma-
Aldrich), followed by filtration through sterile 40-um cell
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strainers (BD Biosciences, San Jose, CA).32 BAL was pelleted
before flow cytometry staining. All samples were stained with
the extracellular antibodies and were then treated with BD
FACS Lysing Solution (BD Biosciences) to remove erythro-
cytes. After staining, all samples were treated with BD Stabi-
lizing Fixative (BD Biosciences). The cell samples were labeled
in stain buffer (phosphate-buffered saline, 1% bovine serum
albumin, and 0.5% sodium azide) with the following
fluorochrome-conjugated antibodies: CD3 (PacBlue; BD Bio-
sciences), CD4 (APC-H7; BD Biosciences), CD8 (R-phyco-
erythrin-TxR; Invitrogen), and LAG3 (R-phycoerythrin; R&D
Systems, Minneapolis, MN). Samples were read using a BD
LSR II flow cytometer (BD Biosciences). Flow cytometric
analysis was performed with FlowJo software version 8
(Treestar, Ashland, OR). Before gating for cell populations
fluorescing positive for antibodies, lymphocytes were gated on
the basis of their forward and side scatter characteristics, and
doublets were excluded by plotting forward scatter area versus
forward scatter height (Supplemental Figure S1).

Fluorescent Immunohistochemistry and Confocal
Microscopy

Lung tissue sections were placed in a stimulation solution con-
taining phytohaemagglutinin (Invitrogen), 43-phorbol 12-
myristate 13-acetate (Sigma-Aldrich), calcium ionophore
(Sigma-Aldrich), lipopolysaccharide (Sigma-Aldrich), and
brefeldin A (Sigma-Aldrich) before being frozen within optimal
cutting temperature embedding matrix. Tissues were then cut
into sections (15 pm thick). To retrieve antigen, the slides were
boiled in Antigen Unmasking Solution (Vector, Olean, NY);
human paraffin sections were deparaffinized before the antigen
retrieval process. Primary antibodies against the following pro-
teins were used: CD3 [1:20, mouse IgG1 (Dako, Carpinteria,
CA), or neat, rabbit (Dako)], forkhead box P3 (FOXP3) [1:200,
rabbit (Abcam, Cambridge, MA)], granzyme B [1:200, mouse
IgG2a (BD Pharmingen, San Jose, CA)], Ham56 [1:50, mouse
IgM (Dako)], IL-10 [1:25, mouse IgG2b (R&D)], LAG3 fluo-
rescein isothiocyanate conjugated [1:50, mouse IgG1 (Lifespan
Bioscience, Seattle, WA)], and TO-PRO-3 nuclear stain [1:2000
(Molecular Probes, Life Technologies)]. The above primary
antibodies were conjugated with the following secondary anti-
bodies from Molecular Probes at a 1:1000 concentration derived
from goat: Alexa Fluor 488 anti-rabbit, Alexa Fluor 568 anti-
mouse IgG1, Alexa Fluor 568 anti-mouse IgG2a, Alexa Fluor
568 anti-mouse IgG2b, Alexa Fluor 568 anti-mouse IgM, Alexa
Fluor 568 anti-rabbit, Alexa Fluor 647 anti-mouse IgG1, and
Alexa Fluor 647 anti-rabbit. Imaging was performed with a
Leica True Confocal Laser Scanning Microscope SP2 laser
scanning confocal microscope (Leica, Buffalo Grove, IL), and
the images were analyzed with Volocity 3D image analysis
software version 6.3 (Perkin Elmore, Waltham, MA).

Statistical Analysis

Statistical analyses were performed with GraphPad Prism 6
(San Diego, CA). For comparison between two groups, the
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Figure 1  Serum C-reactive protein (CRP) levels discriminate between

various infection outcomes in nonhuman primates infected with Mycobacte-
rium tuberculosis (MTB). A: Peak serum CRP levels after MTB infection up to
week 9 in a group of 10 animals that received a high dose of MTB CDC1551
(circles) and a group of 22 animals that received a low dose of the same strain
(triangles). Statistical significance was determined using a two-tailed Stu-
dent’s t-test in GraphPad Prism 6. B: Of the 22 animals, which exhibited latent
tuberculosis infection (LTBI), 11 were followed up long-term, whereas the
other 11 were coinfected with simian immunodeficiency virus (SIV) at week 9.
Peak serum CRP levels between weeks 9 and 24 are shown for animals that
reactivated spontaneously (squares), due to SIV (circles), or exhibited LTBI
despite SIV coinfection (diamonds). Animals that exhibited long-term LTBI are
shown in triangles. Statistical significance was derived by using a one-way
analysis of variance in Prism, with Sidak’s multiple-comparison test. Each
point represents one data point, and the means £ SD are represented by
horizontal bars. *P < 0.05, **P < 0.01, and ****P < 0.0001.

unpaired, two-tailed, Student’s #-test was used to show
statistical significance. For greater numbers of variables,
significance was calculated using analysis of variance, fol-
lowed by the post hoc Bonferroni test for significance
between experimental groups. P < 0.05 was considered
significant, and P < 0.01 and P < 0.001 are indicated.

Results

Progression of MTB Infection

We monitored the progression of MTB infection in animals
infected with the following: i) high-dose MTB (10 Indian
rhesus macaques), ii) low dose of MTB (22 Indian rhesus
macaques), or iii) low-dose of MTB followed by i.v. coin-
fection with SIV (a subset of 11 Indian rhesus macaques from
ii) (Table 1). Although all animals infected with MTB
developed TST positivity, all 10 animals infected with a high
dose of MTB developed acute pulmonary TB, requiring
humane euthanasia. We previously showed that serum CRP
levels accurately predict the advent of active (or reactivation)
TB in macaques.”® Thus, animals exposed to a high dose of
MTB exhibited high peak serum CRP values after infection,
between weeks 0 and 9 (Figure 1A). These values were
significantly higher than those for the animals exposed to a
low dose of MTB, because many of these animals did not
exhibit serum CRP values above baseline in a comparable
time period (Figure 1A). In fact, repeated serum CRP levels
remained undetectable for 20 of 22 animals in this group.
After SIV coinfection, 8 of 11 animals exhibited signs of
clinical reactivation, whereas 3 remained recalcitrant to
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reactivation, where no clinical signs of TB were observed
(Table 1). Similarly, of the 11 animals that were not SIV
coinfected, 7 continued to exhibit LTBI, whereas 4 gradu-
ally developed active TB. We, therefore, compared the peak
serum CRP values in animals infected with a low dose of
MTB with and without SIV coinfection 9 weeks after MTB
infection (the time at which SIV was administered) through
the end of the experiment (Figure 1B). Again, the levels of
serum CRP were significantly higher in the animals with
reactivation of LTBI, whether spontaneous or SIV induced,
relative to animals that maintained a latent MTB infection.

To verify that serum CRP values could accurately predict
the outcome of mycobacterial disease in the 32 animals, we
also studied the total bacterial burden in BAL of these ani-
mals. BAL bacillary burden is somewhat comparable to
sputum MTB levels in clinical patients.”” Absence of MTB in
the BAL accurately predicts LTBI, whereas detectable bac-
terial levels in BAL highly correlate with active TB disease.
BAL CFUs mirrored serum CRP levels (Figure 2A). In high-
dose MTB infections, 6 of 10 animals exhibited detectable
BAL bacterial burdens, whereas the lavage of almost every
low-dose animal was devoid of culturable MTB between
weeks 0 and 9. Of the animals that had previously established
LTBI and were followed up long-term, four with elevated
CRP levels exhibited a spike in BAL MTB levels at different
time points, thus illustrating reactivation of LTBI
(Figure 2B). Other long-term animals remained free of
detectable MTB in BAL, except for eight animals that
received SIV i.v. (Figure 2B). Hence, from this point onward,
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Figure 2  Bacillary load in bronchoalveolar lavage (BAL) distinguishes

between different infection outcomes in Mycobacterium tuberculosis (MTB)—
infected animals. A: Peak BAL colony-forming units (CFUs) after MTB
infection up to week 9 in a group of 10 animals that received a high dose of
MTB CDC1551 (circles) and a group of 22 animals that received a low dose of
the same strain of MTB (triangles). Statistical significance was determined
using a two-tailed Student’s t-test. B: Of the 22 animals that exhibited latent
tuberculosis infection (LTBI), 11 were followed up long-term, whereas the
other 11 were coinfected with simian immunodeficiency virus (SIV) at week
9. Peak BAL CFUs between weeks 9 and 24 are shown for animals that
reactivated spontaneously (squares), due to SIV (circles), or exhibited LTBI
despite SIV coinfection (diamonds). Animals that exhibited long-term LTBI
are shown in triangles. Statistical significance was derived by using a one-
way analysis of variance in GraphPad Prism 6, with Sidak's multiple-
comparison test. Each point represents one data point, and the means +
SD are represented by horizontal bars. *P < 0.05, **P < 0.01, and
***P < 0.001.
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Figure 3  Lymphocyte-activation gene 3 (LAG3) transcription levels in

Mycobacterium tuberculosis (MTB)—infected nonhuman primates undergo-
ing activation of tuberculosis (TB). The fold change of LAG3 mRNA
expression was measured using quantitative RT-PCR through the calculation
of the 27220, where normalization was calculated with B-actin and cor-
responding uninfected tissue. LAG3 transcription levels were compared
between lung tissue of active (n = 10), reactivated (n = 7), and latent
tuberculosis infection (n = 8) MTB infections (A); active MTB (n = 10)
and Brucella infections (n = 6) (B); and reactivated MTB infections (n =
7) and simian immunodeficiency virus (SIV) infections (n = 4) (C); BAL of
active (n = 4), reactivated (n = 7), and LTBI (n = 4) MTB infections (D);
spleen of active (n = 4), reactivated (n = 5), and LTBI (n = 5) MTB
infections (E); and bronchial lymph node (BrLN) of active (n = 4), reac-
tivated (n = 4), and LTBI (n = 4) MTB infections (F). Data points are
categorized by infection type, where circles indicate active TB; squares,
reactivated TB; triangles, LTBI; clear circles, SIV alone; and upside-down
triangles, Brucella infections. Each point represents one data point, and
the means + SD are represented by horizontal bars. Statistical significance
was determined by either a one-way analysis of variance (A and D—F) or a
two-tailed Student's t-test (B and C) in GraphPad Prism 6. *P < 0.05.

we studied three groups of animals: i) active TB (10
high-dose animals and 4 low-dose animals), ii) LTBI (7 low-
dose animals and 3 low-dose animals with SIV coinfection),
and iii) reactivation (8 low-dose animals with SIV coinfec-
tion). The combination of both an immunological marker
(serum CRP) and direct microbiological detection (BAL Mtb
levels) allowed us to distinctly classify animals into these
wanted groups.

The American Journal of Pathology m ajp.amjpathol.org

LAG3 Transcript Levels in the BAL and Lungs of
Macaques Infected with MTB

We next confirmed the results from our previous tran-
scriptomics screen, which had revealed that the LAG3 tran-
script was one of the most abundant in macaque
granulomatous lung during active TB disease.”" Although the
relationship between LAG3 and MTB infections has not been
previously explored in detail, LAG3 is a key immunosup-
pressive molecule present on subsets of Tregs with the aim of
modulating excessive proinflammatory immune responses.
Granuloma samples were retrieved from the lungs of MTB-
infected (or MTB/SIV coinfected) animals at euthanasia
due to either active TB or SIV-induced reactivation or at
experimental necropsy of animals with LTBI. RNA was
isolated from granuloma-rich lung tissue, and LAG3
expression was determined by quantitative RT-PCR. As ex-
pected, the expression of LAG3 was strongly induced in
animals with active TB (with a fold change of 6.59 relative to
normal lung) (Figure 3A). These values were significantly
higher than those observed in lung granulomas from LTBI
animals (a fold change of 1.15 relative to normal lung). Next,
we assessed the lung granuloma lesions from animals expe-
riencing reactivation of LTBI due to SIV coinfection. The
expression of the LAG3 transcript was induced in these
reactivation samples to an extent comparable to animals with
active TB (a fold change of 4.18 relative to normal lung)
(Figure 3A). However, these levels were not statistically
different from LAG3 expression levels derived from LTBI
granulomas (Figure 3A). Thus, our results suggest that the
expression of LAG3 in the lungs of primates exposed to MTB
correlates with the extent of TB disease and bacterial burden.
To determine whether the expression of LAG3 was specif-
ically linked to MTB infection, we performed two additional
investigations. First, we studied the expression of LAG3 in the
lungs of macaques infected with SIV ,,..230 alone during acute
to chronic disease at 12 to 20 weeks after infection. These lung
samples were obtained at comparable times to the MTB/SIV
coinfected lung samples in relation to the time period between
SIV infection and euthanasia. SIV infection alone failed to
result in the induction of LAG3 levels in the lungs of macaques
(Figure 3B). These expression levels were significantly lower
than those in samples derived from MTB/SIV coinfected
animals. Second, we studied the expression of LAG3 tran-
script in the lungs of macaques acutely infected with
B. melitensis via aerosol exposure. Brucella infection resulted
in virtually no change in lung LAG3 expression, and these
values were significantly lower than those for active MTB
infection (Figure 3C). This shows that the induction of LAG3
in the lungs of primates is most likely specific to TB and not
just a generalized response to SIV infection or infection of
aerosolized intracellular bacteria. Furthermore, the expression
of LAG3 was not found to be induced in the lungs of animals
infected with MTB:A-sigH mutant, which causes a
nonpathogenic infection,”® and in animals infected with
various mutants in the dormancy survival regulon pathway.
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Having established that LAG3 up-regulation in the lungs
of infected macaques was specific to MTB infection, we
next assessed LAG3 levels in the BAL. LAG3 levels were
examined by RT-PCR in samples that were collected from
animals immediately before euthanasia. There was no sta-
tistical difference between the three groups of animals, with
the active animals having a mean of 48.98-fold elevation of
the LAG3 transcript, relative to BAL from uninfected
macaques (Figure 3D). MTB/SIV coinfected animals showed
an increase of 35.15-fold, when compared to BAL from naive
animals. Although the differences were not statistically sig-
nificant, in both groups of animals that succumbed to MTB
infection (MTB and MTB/SIV coinfection), a >35-fold
increase in LAG3 expression took place compared to
normal BAL (the baseline).

Finally, to ensure that significant LAG3 up-regulation was
specific to the lung of active and reactivated TB animals,
LAG3 expression was examined in both the spleen and
bronchial lymph node. Up-regulation did not occur in either
active or reactivated animals when compared to latent ani-
mals (Figure 3, E and F). This suggests that not only is the
up-regulation of LAG3 levels specific for active rather than
latent infection, it is also highly specific to MTB infection
within the lung.

IL-10 Transcript Levels in the BAL and Lungs of
Macaques Infected with MTB

IL-10 is a key anti-inflammatory cytokine, and its expression
is known to correlate with loss of effective Thl responses
during MTB infection.'>'” It is increasingly being discov-
ered that LAG3 is highly expressed on specific populations
of Tregs that are primary producers of IL-10, thus mediating
key anti-inflammatory functions.”**? Consequently, we
decided to study the expression of IL-10 in macaques in
parallel with LAG3.

The expression of IL-10 mirrored that of LAG3 in the
three groups of NHPs. Thus, animals with active TB
exhibited an average fold change of 6.80 in lung granu-
lomas, which was higher than the observed value for ani-
mals with LTBI (a fold change of 2.55) (Figure 4A).
Similarly, SIV-induced reactivation also exhibited higher
levels of IL-10 expression, and these values (an average fold
change of 5.0) were higher than those for the LTBI cohort,
but they were not statistically different when compared to
the active TB data (Figure 4A).

We then analyzed the expression of IL-10 in the BAL of the
different groups of macaques (Figure 4B). These findings were
similar to what was observed in the LAG3 expression data
above. Hence, animals with LTBI expressed the lowest levels
of IL-10 when compared to the active and reactivation TB
groups. Although no statistical difference was observed be-
tween the three groups, there was greater expression of IL-10
in both the active group, with a 12.06-fold increase, and the
MTB/LTBI group, with a 13.24-fold increase, when compared
to normal lung tissue. The LTBI animals only experienced a
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Figure 4 1110 transcription levels in Mycobacterium tuberculosis

(MTB)—infected nonhuman primates undergoing activation of tuberculosis
(TB). Quantitative RT-PCR was used to measure the fold change of IL-10
mRNA expression through the calculation of the 2724, where normali-
zation was calculated with B-actin and uninfected tissue. IL10 transcription
levels were compared between lung tissue of active (n = 10), reactivated
(n = 7), and latent tuberculosis infection (n = 8) MTB infections (A); BAL
of active (n = 4), reactivated (n = 7), and LTBI (n = 4) MTB infections
(B); spleen of active (n = 4), reactivated (n = 5), and LTBI (n = 5) MTB
infections (C); and bronchial lymph node of active (n = 4), reactivated (n
= 4), and LTBI (n = 4) MTB infections (D). Data points are categorized by
infection type, where circles indicate active TB; squares, reactivated TB;
and triangles, LTBI. Each point represents one data point, and the means +
SD are represented by horizontal bars. Statistical significance was deter-
mined by a one-way analysis of variance in Prism version 6.

3.16-fold increase in IL-10. One interesting observation in the
active animal group was that there appeared to be a division in
IL-10 expression; half of the animals had IL-10 levels similar
to what was present in the latent animals. Also, IL-10 levels
did not appear to be significantly increased in the spleen and
bronchial lymph node of active MTB-infected animals
(Figure 4, C and D), respectively.

Detection of LAG3 Protein in Peripheral Blood and
Lungs of Animals with Active TB, LTBI, and
SIV-Induced Reactivation

To study the frequency of cells expressing LAG3 in the
peripheral blood, lung, and BAL at the protein level, we used
an anti-LAG3 antibody in combination with flow cytometry.
The LAG3" populations were gated for as previously
described in Supplemental Figure S1. Virtually no cells
expressed LAG3 in the peripheral blood (Figure 5). How-
ever, an average of 27% of T cells derived from the lung
granuloma expressed LAG3 (Figure 5A). Similarly, 11% of
all BAL T cells were positive for LAG3 expression. Thus, the
expression of the LAG3 protein, like its cognate transcript,
was limited to the lung during MTB infection in macaques.
We then studied if the expression of LAG3 on T cells differed
depending on the status of the MTB infection. Reactivation
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Figure 5 Lymphocyte-activation gene 3 (LAG3) protein expression

levels in lymphocytes from peripheral blood, bronchoalveolar lavage (BAL),
and lung of Mycobacterium tuberculosis (MTB)—infected nonhuman pri-
mates. LAG3™ cells were compared between CD3* T cells in blood (n = 53),
BAL (n = 24), and lung (n = 22) (A); CD3™ T cells in lung tissue of active
(n = 6), reactivated (n = 14), and latent tuberculosis infection (LTBI) (n
= 6) infections (B); CD37CD4™ T cells in blood (n = 53), BAL (n = 53),
and lung (n = 22) (C); and CD3CD4™ T cells in blood (n = 53), BAL (n =
53), and lung (n = 22) (D). Data points are categorized by infection type,
where circles indicate active TB; squares, reactivated TB; and triangles,
LTBI. The mean for each infection category is represented by a dotted line
for active TB, a dashed line for reactivated TB, and a solid line for LTBI (A,
C, and D). Each point represents one data point, and the means are rep-
resented by horizontal bars. Statistical significance was determined by a
one-way analysis of variance in GraphPad Prism. *P < 0.05, **P < 0.01,
***P < 0.001, and ****P < 0.0001.

TB animals exhibited a significantly greater frequency of T
cells expressing LAG3 (Figure 5B).

Furthermore, LAG3 expression in CD37CD4" and
CD3*CD8™" populations (Figure 5, C and D), respectively,
was significantly higher in both the lung granuloma and
BAL samples of MTB-infected animals relative to the pe-
ripheral blood. The frequency of LAG3-expressing CD8" T
cells was 0.5% in blood, whereas in BAL and lung, the
frequency was significantly greater at 4.7% and 3.8%,
respectively. CD4™" T cells expressing LAG3 occurred at an
increased rate, with a mean of 18.7% T cells expressing
LAG3 in BAL and 17.1% in the lung. However, in these
populations, there was no significant difference between the
frequencies of LAG3-expressing cells of the TB infection
groups. We believe that the lack of significance can be
explained by the up-regulation of LAG3 in certain pop-
ulations of cells, yet not necessarily through an increase in
the number of cells expressing LAG3.

Identification of LAG3-Expressing Cells Using
Immunofluorescence

Having conclusively shown that LAG3 transcript and pro-
tein are highly induced during active TB and SIV-induced
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reactivation TB within the lung, we sought to determine the
cell phenotypes that express LAG3 within the granuloma-
rich lung samples that were obtained at euthanasia in NHPs
that succumbed to active TB.

To achieve this, we used multicolor confocal immuno-
fluorescence. We studied if as shown in the flow data, T
cells were the source for LAG3 expression in lung lesions.
The outer periphery of the lung granuloma was the location
where most LAG3 expression was shown to be occurring
(Figure 6A); a significant number of LAG3-expressing cells
were also CD3 surface positive (Figure 6B), thus confirm-
ing T cells as a major source of lung-derived LAG3.
However, approximately 50% of all strongly LAG3™ cells
in the lung were not CD3™. In size and morphology, these
cells were similar to lymphocytes. We, therefore, hypoth-
esized that these cells could potentially be NK cells.
Because we were unable to optimize an antibody that could
definitively identify NK cells in rhesus macaques, we used a
negative selection strategy instead. Sections were stained
for CD3, LAG3, and granzyme B. We surmised that
CD3 granzyme B cells are highly likely to be NK cells.
Our results clearly showed that LAG3 is highly expressed in
this subset after the onset of active MTB infection
(Figure 6C). Because of the imperative role of lung mac-
rophages during an MTB infection, we also wanted to verify
if such cells in the lung compartment expressed this
immunosuppressive protein. We accomplished this by
using the pan—macrophage-specific marker HAMS56.%°
Although there were LAG3-expressing cells in close vi-
cinity, it was apparent that none of the macrophages were
expressing LAG3 (Figure 6D).

Because previous research had confirmed that Tregs are a
subpopulation of T cells that express LAG3,"® we investigated
whether these LAG3" Tregs are present within the MTB-
infected lung granuloma. We first used IL-10, a well-
documented cytokine produced by Tregs, in combination
with CD3 as markers to define Tregs. We observed that within
the lung granuloma, there were cells that expressed both CD3
and IL-10 in addition to LAG3 (Figure 7, A and B). It has been
recently suggested that LAG3 expression on CD4" T cells
marks a subpopulation of CD4"CD25 LAG3™" Tregs, which
express the FOXP3 transcription factor. Therefore, we next
examined if the LAG3 signal on macaque lung granulomas
colocalized with the FOXP3 signal. FOXP3 was present
within certain CD3" T cells in combination with LAG3, thus
showing increased evidence that LAG3-expressing Tregs are
located within the MTB-infected lung granuloma (Figure 7C).
Interestingly, although LAG3-expressing Tregs were found
within the lungs of these actively infected animals, the same
animals did not possess elevated levels of transforming growth
factor B when compared to the lungs of uninfected and latently
infected animals (Supplemental Figure S2). This might sug-
gest that expansion and maintenance of Tregs between infec-
tion groups may not actually differ significantly.

To verify the significance of LAG3 expression in NHP TB
lesions, and to demonstrate that a similar expression pattern is

827


http://ajp.amjpathol.org

Phillips et al

’ AGS

D

.- ) ... i

observed in humans with active TB, we stained human lung
tissue sections containing MTB-induced granulomas using
fluorescent immunohistochemistry. We observed that LAG3
expression mainly occurs within the outer periphery of the
lung granuloma (Figure 8A), similar to what was shown to
occur in actively infected rhesus macaques. In addition, many
of the LAG3-expressing cells within the periphery of the
granuloma were coexpressing CD3, thus enforcing the fact
that many of the LAG3-expressing cells are within lung
granulomas and are T cells (Figure 8, B and C). These images
illustrate that the similarities observed between LAG3
expression in MTB-induced lung granulomas in humans and
NHPs are great, and imply that our previous findings in NHPs
can be applied to active TB cases involving humans (Figures 6
and 8).

Discussion

MTB is one of the most successful pathogens of human-
kind; emerging data indicate that this remarkable pathogen
coevolved with humanity as it emerged from Africa 50,000
years ago.”’ MTB has infected humans for such a long time
with a high degree of penetration; it causes chronic, rather
than acute, infections, illustrating that MTB infections are
able to be extremely well managed.”® Thus, numerous
examples exist in the literature, which point to the fact that
MTB successfully engages with and modulates the protec-
tive response mounted by the host.””*” The IFN-y network
is central to immunity against TB."' Thus, MTB interferes
with IFN-y signaling pathways at multiple levels, by
repressing the expression of proinflammatory chemokines
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Figure 6 Identification of cellular subsets
expressing lymphocyte-activation gene 3 (LAG3)
in the lung granulomas of macaques with active
tuberculosis. Optimal cutting temperature—frozen
and stimulated lung tissue sections were assessed
using immunofluorescence staining and confocal
microscopy imaging. A and B: Images were
stained for T cells with LAG3 (green), CD3 (red),
and TO-PRO (blue) nuclear stain at low and high
magnification. C: Natural killer cells were stained
using a negative selection strategy with LAG3
(green), granzyme B (red), and CD3 (blue). D:
Alveolar macrophages do not express LAG3 [using
markers for LAG3 (green), Ham56 (red), and TO-
PRO (blue)].

and by down-regulating the expression of the IFN-y
receptor.”**~** In addition, MTB is able to alter the effects
of other host immune pathways aimed at its eradication.
Thus, mutants in sigH and sigE, two related inducible tran-
scription factors of MTB that allow the pathogen to respond
to and survive against a battery of stress conditions such as
phagocytosis,”” oxidation reduction stress,’® enduring hyp-
oxia,*” and in vivo infection,”®***° allow for the generation
of host chemokine responses that were suppressed by the
parental wild-type MTB strains.”””" Furthermore, MTB is
reported to use matrix metalloproteases””* and cAMP** to
modulate the host response to infection. It may be the result
of these interventions that the effective, antigen-specific,
CD4" T-cell response to MTB is delayed relative to other
infections.”> Moreover, although MTB has the ability to
actively subvert and delay the host response mounted to clear
the infection, the effectiveness of this initial immune response
itself is questionable. Thus, it is established that the response
is only able to plateau or control, rather than sterilize, the
infection, both in experimental models and in humans.

Korf et al®® first reported that mycolic acid components
from MTB result in an increased expression of Treg markers
in the lung, causing an increased tolerance to experimental
asthma. As to how the immunosuppression is regulated dur-
ing an ongoing mycobacterial infection is not totally under-
stood. Although the activity of Treg cells appears to be
diminished in certain diseases,”’ whether directly or indi-
rectly, MTB appears to manipulate Treg activity in a manner
that assists in its own persistence. Thus, Tregs were shown to
suppress anti-MTB immune function in patients.”®”’ In a
mouse model of vaccination, ablation of Treg responses
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Figure 7  Regulatory T cells (Tregs) express lymphocyte-activation gene
3 (LAG3). Optimal cutting temperature—frozen and stimulated lung tissue
sections were assessed using immunofluorescence staining and confocal
microscopy imaging. A and B: Low- and high-magnification images showing
colocalization of LAG3 and IL-10 in T cells with the following markers: LAG3

(green), IL-10 (red), and CD3 (blue). C: Tregs expressing LAG3 were stained
for with LAG3 (green), FOXP3 (red), and TO-PRO (blue).
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resulted in more potent IFN-y activation, which, in turn,
resulted in significantly reduced bacterial burdens.”” Such
FOXP37CD25~ T cells have been shown to deplete
pathogen-specific IFN-y, CD4, and CDS8 degranulation
responses.”’ In the macaque model, active TB is characterized
by greater recruitment of these immunosuppressive cells.”

Herein, we characterized the role of LAG3 and the cells
expressing it during active, latent, and reactivated MTB
infections using the highly tractable and faithful rhesus
macaque model. The animals progressed to active TB
because of either a high-burden infection with MTB or a
low-dose infection over a prolonged period. Reactivation
was modeled by coinfection with SIV,..230. Expectedly,
significantly more animals exhibited SIV-mediated, rather
than spontaneous, reactivation.

Our results show that LAG3 expression was highly
induced in the lungs of primates with active, but not latent,
TB infections (Figures 3 and 5). Furthermore, LAG3
expression was elevated in animals in which LTBI was
reactivated because of coinfection with SIV, modeling
MTB/HIV coinfection in humans (Figures 3 and 5). Our
results substantiate that LAG3 levels are elevated in the
lungs of animals with active TB at both the transcript and
the protein level. Interestingly, levels of LAG3 were not
increased in the peripheral blood. These results, taken with
the fact that other pulmonary infections do not appear to
generate comparable LAG3 induction (Figure 3, B and C),
indicate that LAG3 may be a potential suitable host-derived
biomarker for active TB. Thus, assays may be optimized in
the future on the basis of LAG3 levels to predict the pro-
gression of active TB or HIV-induced reactivation TB in a
population of LTBI patients. The fact that LAG3 induction
is not detected in peripheral blood means that such future
assays will need to sample cells from the lung. However, the
fact that LAG3 is readily detected in BAL, which pre-
dominantly samples cells from the alveolus, means that
noninvasive assays using patient sputum may someday be
developed. In a field with few leads on effective biomarkers,
whether pathogen or host derived, our results represent a
substantial growth of the field. More interesting are the
results obtained when LAG3 transcripts were sampled in the
BAL of MTB/SIV coinfected animals. Although most
animals in this group exhibited reactivation of LTBI, char-
acterized by high serum CRP levels (Figure 1) and high
BAL-MTB burdens (Figure 2), a few of these animals
remained recalcitrant to reactivation, at least until the time
(13 to 17 weeks after infection) when they were sent to
experimental necropsy. Although LAG3 levels remained
low in the lungs of these animals, consistent with the low
serum CRP and MTB levels, the BAL of these animals,
performed just before necropsy, exhibited higher levels of
LAGS3. This was the only instance in which RNA levels of
LAG3 in the lung lesions did not correlate tightly with those
from BAL. On the other hand, BAL from LTBI animals
infected with a low dose of MTB continued to exhibit low
LAG3 RNA levels, as late as 24 weeks after infection.
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Figure 8 A: Paraffinized Mycobacterium tuberculosis (MTB)—infected
human lung tissue shows a similar presence and distribution of lymphocyte-
activation gene 3 (LAG3) within the MTB containing lung granuloma with
LAG3 (green) and TO-PRO (blue). B and C: Low and high magnification of LAG3
within T cells with markers for LAG3 (green), CD3 (red), and TO-PRO (blue).

Although the results are not significant because of the
smaller sample size of the group, which remained recalci-
trant to reactivation after SIV coinfection, they indicate that
these coinfected animals may have been in the process of
reactivating and that LAG3 levels in BAL may provide
early indication of the potential to reactivate.
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Another key finding of this report is that the elevation in
LAGS3 levels observed in both BAL and lung granuloma pri-
marily occurred in T cells (Figure 5, A and B). In fact, the
frequency of both CD3"CD4 " (Figure 5C) and CD3"CD8*
(Figure 5D) T cells expressing LAG3 was slightly higher in
BAL samples than in lungs. One unexpected result was a
significantly greater percentage of LAG3™ T cells from the
reactivated animals expressing LAG3 when compared to the
latent animal group, yet the same was not observed in the
active infection group (Figure 5B). It is possible that this
increased frequency of LAG3 in the reactivated animals could
be partially due to CD4 T-cell depletion from the SIV infec-
tion. In addition, although the presence of LAG3-expressing
cells is no different between the active and latent infection
groups, the transcription levels on individual cells could
actually be significantly up-regulated, thus explaining the
variation in LAG3 presence observed (Figures 3A and 5B).
These results underlie our contention that LAG3™ Tregs are
recruited to the lungs of infected animals with TB, perhaps to
contain inflammation, and eventually home into lung lesions,
and that increased transcription of LAG3 is indicative of
conversion to active infection.

Our confocal microscopy studies (Figure 6) shed light on
the type of cells that express LAG3 in response to MTB
infection and their potential function. Colocalization of the
CD3 and the LAG3 signal in the lung granulomas of ani-
mals with active TB adds further evidence, along with the
flow cytometry data, that most of the LAG3 signal can be
attributed to Tregs (Figure 6, A and B). However, we also
observed that in addition to CD3™ cells, LAG3 signal was
associated with other small cells in the granulomas
(Figure 6B). We suspected that these could be NK cells,
because LAG3 is known to be expressed on this cell type.®”
However, despite trying several clones, we were unable to
optimize any human NK cell antibody in rhesus macaques.
We, therefore, devised a strategy to identify NK cells on the
basis of negative selection (Figure 6C) and showed that NK
cells express a portion of the lung LAG3 signal present in
the lung granuloma. This strategy was on the basis of
identifying small cells that were CD3~ and expressing
granzyme B.

Finally, we showed that LAG3™ Tregs are recruited to the
lungs of macaques with active TB (Figure 7) and that these
cells express high levels of IL-10 (Figure 7, A and B). This
is a critical observation in light of several recent publica-
tions, which show that different subsets of Tregs may exist,
with LAG3 marking the more activated, functional type.®*
Because of similar antibody isotypes, we were unable to
perform fluorescent immunohistochemistry showing one
image containing CD3, FOXP3, and LAG3 expression.
However, we were able to show in two images that Tregs
expressing FOXP3 are found within the lung granuloma
(Figure 7C), and that most LAG3™ T cells in the lung
samples expressed high levels of IL-10 (Figure 7, A and B),
indicating that these cells were phenotypically functional
Tregs. We studied IL-10 levels at both the transcriptional
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and protein level in peripheral blood, BAL, and end-point
lung samples of the infected animals and found that IL-10
expression levels mirrored those of LAG3.

In addition, we examined LAG3 expression in lung tissue
containing MTB-induced granulomas from a human with
active TB (Figure 8). We found that the presence and location
of LAG3 within these structures (Figure 8A) are similar to
what we observed within the rhesus macaque samples
(Figure 6A). Furthermore, many of these LAG3-positive
cells were also shown to be CD3*. The similarities
observed between the human and NHP lung granuloma
samples point to the fact that the NHP data are highly
translatable to humans. These strong similarities confirm an
important role for LAG3 in the modulation of intra-
granulomatous immune responses in human lungs. Thus,
LAG3 expression was not only enhanced in NHP lesions
with experimental MTB infection over a few weeks to
months, but is also potentially induced in humans with active
TB, in whom infection occurred several months to years ago.
This suggests that MTB potentially survives in TB granu-
lomas characterized by high LAG3 expression, which, in
turn, suggests that the human TB granuloma environment is
immunosuppressed in the months after initial infection, an
observation recapitulated in our NHP model.”®

Hence, our results indicate that LAG3 marks a subpopu-
lation of Tregs that are highly active and produce high levels
of the cytokine IL-10, which are recruited to the lungs of
primates with uncontrolled MTB replication. Although it is
likely that this response is able to mitigate uncontrolled
inflammation, it may also assist the pathogen in its persis-
tence. These results illustrate crucial implications for host-
directed therapies against TB. Furthermore, a high level of
LAGS3 induction in response to MTB replication (in active and
reactivation TB) and not expressed during latent or initial
infection strongly suggests that this molecule can serve as a
biomarker to differentiate between vaccinated and latently
infected individuals on one end of the spectrum and people
with a high potential for loss of immune control at the other.
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