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ABSTRACT Accounting for gene–environment (G3E) interactions in complex trait association studies can facilitate our understanding of
genetic heterogeneity under different environmental exposures, improve the ability to discover susceptible genes that exhibit little
marginal effect, provide insight into the biological mechanisms of complex diseases, help to identify high-risk subgroups in the pop-
ulation, and uncover hidden heritability. However, significant G3E interactions can be difficult to find. The sample sizes required for
sufficient power to detect association are much larger than those needed for genetic main effects, and interactions are sensitive to
misspecification of the main-effects model. These issues are exacerbated when working with binary phenotypes and rare variants, which
bear less information on association. In this work, we present a similarity-based regression method for evaluating G3E interactions for
rare variants with binary traits. The proposed model aggregates the genetic and G3E information across markers, using genetic similarity,
thus increasing the ability to detect G3E signals. The model has a random effects interpretation, which leads to robustness against main-
effect misspecifications when evaluating G3E interactions. We construct score tests to examine G3E interactions and a computationally
efficient EM algorithm to estimate the nuisance variance components. Using simulations and data applications, we show that the
proposed method is a flexible and powerful tool to study the G3E effect in common or rare variant studies with binary traits.
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HUMAN complex traits have a multifactor etiology that
involves the interplay between genetic susceptibility

and environmental exposures. Studies of gene–environment
(G3E) interactions can facilitate our understanding of ge-
netic heterogeneity under different environmental expo-
sures (Kraft et al. 2007; Van Os and Rutten 2009), help to
identify high-risk subgroups in the population (Murcray
et al. 2009), provide insight into the biological mechanisms
of complex diseases (Thomas 2010), and improve the ability
to discover susceptible genes that interact with other factors
but exhibit little marginal effect (Thomas 2010). However,
finding significant G3E interactions is not an easy task.
Model misspecification, inconsistent definitions of the envi-
ronmental variable, and insufficient sample sizes are just
a few of the issues that often lead to low power and non-
reproducible findings in G3E studies (Mechanic et al. 2012;
Jiao et al. 2013; Winham and Biernacka 2013). In particular,

the sample size needed to detect a G3E effect is usually four
times larger than that needed to detect a main effect of sim-
ilar magnitude (Thomas 2011). Thus, researchers need a
robust, powerful G3E test to generate reproducible findings.

Conventionally, researchers search for significant genetic
or G3E associations, using single-SNP methods, e.g., the
Kraft 2-d.f. test (Kraft et al. 2007) or the simultaneous test
of Dai (Dai et al. 2012). More complex methods (e.g.,
Mukherjee and Chatterjee 2008; Murcray et al. 2009; Sohns
et al. 2013) aim to retain the advantages from both the case-
only test (high power but sensitive to G–E correlations) and
the standard case–control G3E test (low power but robust
to G–E correlations). Despite the many efforts to improve
single-SNP G3E tests, issues remain; e.g., a large proportion
of trait heritability remains unexplained (Manolio et al.
2009) due to false positive and/or false negative findings.

Inflated false positive rates arise when the model used to
screen for G3E interactions does not correctly reflect the
true underlying genetic (G) and environmental (E) effects
(Voorman et al. 2011; Lin et al. 2013; Wang et al. 2013). To
address this issue, Voorman et al. (2011) suggested a model-
robust estimate of the variance, and Lin et al. (2013) and
Wang et al. (2013) suggested a random-effect model to capture
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the genetic main effect. The false negative (underpower) is-
sues can be addressed by evaluating G3E effects on a set of
markers, e.g., on genes, linkage disequilibrium (LD) blocks, or
pathways (Tzeng et al. 2011; Lin et al. 2013). Marker–set
G3E analysis can improve power by aggregating effects across
markers. Such accumulation methods account for LD among
markers and reduce the total number of tests to be performed.
The improved power is particularly crucial for common var-
iants with subtle individual effects and for rare variants with
sparse occurrence (Sham and Cherny 2011). In addition, op-
erating at a gene/pathway level helps increase reproducibility
(Sohns et al. 2013).

Several G3E marker-set methods are available to study
associations with common variants, where the major task is
to avoid a large number of parameters for modeling G, E,
and G3E variables. One of the first proposed G3E marker-
set methods was Tukey’s 1-d.f. test (Chatterjee et al. 2006),
which made significant progress toward fully understanding
complex diseases. However, this method makes the often in-
correct assumption that a SNP’s interaction effect is propor-
tional to its marginal genetic effect (Winham and Biernacka
2013). Other commonly adopted G3E marker-set methods
include minimum P-value (min-P) methods and weighted
burden methods, where weights can be obtained from the
principal components (PCs) of the SNP genotypes (Winham
and Biernacka 2013) or from the G–E correlation (Jiao et al.
2013). In particular, Jiao et al. (2013) showed that the cor-
relation between G and E can serve as an informative indicator
for G3E interactions and that incorporating G–E correlations
as weights can increase the signal-to-noise ratio in a G3E
marker set while avoiding permutations. However, these
observations are valid only when the true G–E correlation is
in the same direction as the G3E interaction (Jiao et al. 2013).
Fan and Lo (2013) proposed a model-free approach based on
a summation of partitions to evaluate the interaction effects
for rare variants. However, their method evaluates only the
combined effect of G and G3E, not the separated effects. Re-
cently, Lin et al. (2013) proposed a generalized linear mixed-
effect model (GLMM) for G3E interactions for binary and
continuous traits and showed it has superior power and ro-
bustness over min-P methods. A similar method, similarity
regression (SimReg), proposed by Tzeng et al. (2011) to study
marker-set G3E for continuous traits, was shown to be con-
nected to linear mixed-effect models.

In this article, we extend the SimReg G3E framework
established in Tzeng et al. (2011) to binary traits with com-
mon or rare variants. SimReg, which is inspired by Haseman–
Elston regression for linkage analysis (Haseman and Elston
1972; Elston et al. 2000) and haplotype similarity tests for
regional association (Tzeng et al. 2003; Beckmann et al. 2005),
uses a regression model to correlate trait similarity with ge-
netic similarity across multiple loci and to account for covari-
ates. SimReg has been shown to perform well for common and
rare variants (Tzeng et al. 2011). However, unlike similarity-
based testing for the genetic main effect (Tzeng et al. 2009) or
for G3E with quantitative traits (Tzeng et al. 2011), G3E tests

with binary traits have several challenges associated with com-
putation and estimation. In particular, G3E tests require the
estimation of nuisance parameters to capture the main effects.
Estimating these parameters requires high-dimensional inte-
gration and the inversion of a high-dimensional similarity
matrix. For quantitative G3E tests, this estimation can be side-
stepped using the normality of the phenotype, but no such
useful properties exist for binary G3E tests. To overcome these
challenges, Lin et al. (2013) proposed using ridge regression to
estimate the nuisance main effects, selecting the tuning param-
eter using generalized cross validation.

In our work, we develop an EM algorithm to approximate
the integration and we alleviate the computational burden
of maximum-likelihood estimation (MLE) by performing a low-
rank approximation of the similarity matrix. We show that the
SimReg coefficient can be expressed as a variance compo-
nent of a working GLMM, which facilitates the derivation of
a test statistic and unifies SimReg with other random-effect-
based methods (e.g., Lin et al. 2013; Wang et al. 2013). The
proposed SimReg method can incorporate covariates and uses
a permutation-free procedure to evaluate G3E effects. In ad-
dition, the proposed method extends the model from linear
effects (e.g., Jiao et al. 2013; Lin et al. 2013) to other complex
effects by selecting appropriate similarity metrics, and it
avoids the need to select tuning parameters. Unlike current
robust marker-set G3E methods that focus on common var-
iant analysis, we investigate the performance of the proposed
G3E strategy with rare and common variants. We evaluate
the validity and power of the proposed method using simu-
lation studies and illustrate the utility of the proposed method
via two data applications: one studies the interactions be-
tween PLA2G7 and physical activity on obesity, using Cohorte
Lausannoise (CoLaus) sequencing data, and a second assesses
the effect modifier role of body mass index (BMI) on the as-
sociation between TCF7L2 and type 2 diabetes, using the
Wellcome Trust Case Control Consortium data.

Materials and Methods

Gene–trait similarity regression for G3E effects

Let Yi be the binary disease indicator for individual i (i ¼
1; . . . ; n); i.e., Yi ¼ 1 if individual i has the disease of interest
and Yi ¼ 0 otherwise. Let Gm

i be the minor allele count for
individual i at locus m ðm ¼ 1; . . . ;MÞ; let XEi be a 13KE

vector of environmental factors, and let XCi be the 13KC

vector of confounders. The full covariate vector is
Xi ¼ ð1;XCi;XEiÞ with dimension 13 ð1þ KC þ KEÞ: All covar-
iates are standardized to have a mean of 0 and a variance of 1.
For illustration, we consider the case where KE ¼ 1; but it is
straightforward to extend the proposed work to KE . 1:

We quantify the trait similarity for a pair of individuals i
and j, Tij; as the weighted sample covariance between their
disease statuses; i.e., Tij ¼ fviðYi 2m0

i ÞgfvjðYj 2m0
j Þg; where

m0
i ¼ EðYi

��XiÞ is the subject-specific trait mean accounting for
covariate Xi but assuming no genetic effects and vi is a weight
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accounting for the fact that the Yi’s have difference variances
(Tzeng et al. 2009). From this definition, the expected trait
similarity EðTijXÞ ¼ vivj 3 EfðYi 2m0

i ÞðYj 2m0
j Þg is the co-

variance of Yi and Yj with weights vivj: For binary traits,
we assume a logistic model, m0

i ¼ eXig=ð1þ eXigÞ; where g is
the coefficient vector of the covariate Xi and vi ¼ m0

i ð12m0
i Þ

is the optimal weight for the logistic model (Tzeng et al.
2009).

Genetic similarity is calculated as the weighted sum of
single-marker similarities; i.e., Sij ¼

PM
m¼1wmsðGm

i ;G
m
j Þ;

where sðGm
i ;G

m
j Þ is the genetic similarity at marker m and

wm is the weight. There are several choices for sðGm
i ;G

m
j Þ

(e.g., Wessel and Schork 2006; Schaid 2010a); a popular
one is the identity-by-state (IBS) metric: sIBS ¼ 22

���Gm
i 2Gm

j

���:
Weights wm are typically based on allele frequencies, the degree
of evolutionary conservation, or the functionality of the variants
(Wessel and Schork 2006; Price et al. 2010; Schaid 2010a,b).
For example, one can use the minor allele frequency (MAF) of
marker m, denoted by qm; to up-weight similarities that are
contributed by rare variants: e.g., wm ¼ ð12 qmÞ24 (Wu et al.
2011) can be used to target rare variants only, or a moderate
weight wm ¼ q23=4

m (Pongpanich et al. 2012) can be used to
promote similarities attributed to rare alleles while retaining
the contributions from common variants.

The proposed G3E gene–trait similarity regression model
is

E
�
TijjX; S

� ¼ aþ b3XEiXEj þ c3 Sij þ d3 Sij 3 XEiXEj; i 6¼ j:

(1)

Because Tij incorporates baseline covariate information,
model (1) does not contain an intercept or an XEiXEj interac-
tion covariate term (i.e., a ¼ b ¼ 0Þ (Tzeng et al. 2011).
Using model (1), one can assess the G3E interaction by test-
ing HGE

0 :d ¼ 0, or one can perform a joint test for the genetic
main effect and G3E interactions simultaneously by testing
HJoint

0 :c ¼ d ¼ 0: The joint test is recommended if either the
genetic heterogeneity or the G3E interaction mechanism is
unknown (Kraft et al. 2007; Tzeng et al. 2011).

Score test for G3E effects and joint effects

Following a similar procedure to that found in Tzeng et al.
(2009), we connect the similarity regression to a working
GLMM to derive the score test. Consider the following
GLMM,

gðmÞ ¼ Xg þ hG þ hGE; (2)

where m ¼ ðm1; . . . ;mnÞ is a vector of conditional means
mi ¼ EðYijX; hG; hGEÞ and gð:Þ is a link function. Here, we
consider a logit link gðmiÞ ¼ log fmi=ð12miÞg. Vectors
hGðn3 1Þ ¼ ðhG1; :::  ; hGnÞ and hGEðn3 1Þ ¼ ðhGE1; :::  ; hGEnÞ con-
tain the subject-specific genetic main effect and G3E interac-
tion, respectively. Assume hG and hGE are random effects; i.e.,
hG � Nð0; tGSGÞ and hGE � Nð0; tGESGEÞ with SG ¼ fSijg;
SGE ¼ DSGD; and D ¼ diagfXEig: Then, the marginal covari-
ance of Yi and Yj in this working model is

cov
�
Yi; Yj

� � ng9�m0
i
�
g9
�
m0
j

�o21
3
�
tGSij þ tGEXEiXEjSij

�
;

where g9ðmÞ ¼ @gðmÞ=@m (see Appendix A). Recall the expected
trait similarity is EðTijjXÞ ¼ vivj 3 covðYi; YjÞ: Therefore,

E
�
TijjX

� �vivj 3
n
g9
�
m0
i
�
g9
�
m0
j

�o21

3
�
tG 3 Sij þ tGE3XEiXEjSij

�
¼ tG 3 Sij þ tGE3XEiXEjSij;

where vi ¼ g9ðm0
i Þ ¼ 1=m0

i ð12m0
i Þ: In other words, we can

examine HGE
0 :d ¼ 0 and HJoint

0 :c ¼ d ¼ 0 of model (1) by
testing HGE

0 :tGE ¼ 0 and HJoint
0 :tG ¼ tGE ¼ 0 in model (2),

respectively.
To derive the score test statistics, we rewrite model (2)

as

gðmÞ ¼ Xg þ ZGbþ ZGEbGE; (3)

where b � Nð0; tGIL3 LÞ; bGE � Nð0; tGEIL3 LÞ; L is the rank of
matrix SG; and ZG is a n3 L matrix satisfying ZGZT

G ¼ SG:
Matrix ZGE is defined in the same manner as ZG; and
ZGE ¼ DZG because SGE ¼ DSGD: Following Zhang and Lin
(2003), the score statistic to examine the G3E effect (i.e.,
testing HGE

0 :tGE ¼ 0Þ can be calculated as

UGE

¼ 1
2

	
ð yW1 2 XgÞTV21

1 SGEV21
1
�
yW1 2Xg

�
2 trðP1SGEÞ


���
tG¼btG ;tGE¼0;g¼ĝ

;

where yW1 ¼ Xĝ þ ZGb̂þ DGð y2 m̂GÞ is the working vector
in model (3) under HGE

0 :tGE ¼ 0; mG ¼ EðYX; bÞ ¼ g21

ðXg þ ZGbÞ; DG ¼ diagfg9ðmG
i Þg with g9ðmiÞ ¼ 1=fmið12

miÞg; and mG
i is the ith entry of mG; btG and ĝ are the MLEs

for tG and g under HGE
0 ; respectively; V1 ¼ W21

G þ tGSG with
WG ¼ diagfmG

i ð12mG
i Þg; and P1 ¼ V21

1 2V21
1 XðXTV21

1 XÞ21

XTV21
1 : As noted in the literature (Zhang and Lin 2003;

Tzeng and Zhang 2007), the second term, trðP1SGEÞ; is the
mean of the first term and its variability is small compared to
the first term. Thus, we derive our test statistic using only the
first term; i.e.,

TGE ¼ 1
2

	
ð yW1 2 XgÞTV21

1 SGEV21
1
�
yW1 2Xg

�
���
tG¼btG; tGE¼0; g¼ĝ

:

We propose an EM algorithm in Appendix B to obtain the
MLEs for tG and g.

In a similar manner, the score statistic under HJoint
0 :tG ¼

tGE ¼ 0 can be obtained as

UJoint ¼ 1
2

	
ð yW0 2XgÞTV21

0 ðSGE þ SGÞV21
0
�
yW0 2Xg

�
2tr½P0ðSGE þ SGÞ�

oj
tG¼0; tGE¼0; g¼~g

;

and we define the test statistic of the joint effect as
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TJoint ¼ 1
2

	
ðyW0 2 XgÞTV21

0

3 ðSGE þ SGÞV21
0 ð yW0 2XgÞ


j
tG¼0; tGE¼0; g¼~g

;

where yW0 ¼ X~g þ D
�
y2cm0

�
is the working vector under

Hjoint
0 : tG ¼ tGE ¼ 0: Here, m0 ¼ EðYXÞ ¼ g21ðXgÞ; V0 ¼

W21
0 ; W0 ¼ diagfm0

i ð12m0
i Þg; P0 ¼ V21

0 2V21
0 XðXTV21

0
XÞ21XTV21

0 ; and ~g is the MLE for g under HJoint
0 :

We show in Appendix C that TGE and TJoint follow
a weighted x2-distribution asymptotically under HGE

0 and
HJoint

0 ; respectively. P-values can then be calculated numeri-
cally using moment-matching approximations (Duchesne
and Lafaye de Micheaux 2010).

Low-rank approximation of SG for computational and
statistical efficiency

The calculation of the G3E test statistic involves the inver-
sion of matrices V1 and SGE; both of dimension n3 n: When
n is large (e.g., .5k), direct inversion of these matrices can
be computationally intensive, and the inversion must be
performed at every EM iteration to obtain main-effect term
b (see Appendix B). To reduce the computational intensity
and to facilitate the inversion of these matrices, we con-
sider a low-rank approximation of SG: The low-rank ap-
proximation has been used in the literature to improve
power when the number of markers increases and when
more noise is incorporated into SG (Cai et al. 2011). Pre-
vious works (Cai et al. 2011; Tzeng and Zhang 2007;
Tzeng et al. 2011) indicate that SG is a positive semidefi-
nite matrix, for which there are a few dominant eigenval-
ues. Assume that l1 $ l2 $⋯$ l~L;

~L# L; are the leading
eigenvalues that explain the majority of the variance of SG
[i.e., SL̂

ℓ¼1lℓ=S
L
ℓ¼1lℓ $ p for some p 2 (0; 1]] and have cor-

responding eigenvectors e1; e2;⋯; e~L: Then, we approxi-
mate ZG by fZG [[ ffiffiffiffiffi

l1
p

e1; . . . ;
ffiffiffiffiffi
l~L

p
e~L] For an appropriate

choice of p (e.g., p ¼ 0:90 e 0:99Þ; fSG ¼ fZGfZGT contains
most of the information from SG: Especially with rare var-
iant data, ~L is usually ,   L; and the computation is more
straightforward.

Miao (2009) indicated that the potential bias caused by
a low-rank approximation can be minimized if a high per-
centage of the variation of SG can be retained. In our
explorations, we found that selecting too small a p did
not affect the test size but did lead to power loss because
too much genetic information is discarded. We also found
that the power loss with a large p (e.g., p = 0.99) was
negligible but could stabilize the numerical calculation
and boost computational efficiency. The improvement
when p ¼ 0:99 occurs because SG has many eigenvalues
that are near zero. Using a p slightly ,1 removes a large
number of near-zero eigenvalues, which stabilizes the nu-
merical computations, shortens the computational time,
and yields a type I error rate close to the nominal level
(Table 1).

Simulation studies

To investigate the performance of the proposed SimReg
G3E method, we conducted simulation studies. The first
simulation focuses on rare-variant (RV) analysis using se-
quence data, and the second simulation focuses on common-
variant (CV) analysis using HapMap data. The simulation
data and code are available from the Dryad Digital Reposi-
tory (http://datadryad.org/) at http://doi.org/10.5061/dryad.
742gv (i.e., Dryad data identifier:doi:10.5061/dryad.742gv).

RV simulations: We obtained 10,000 haplotypes for a 1-Mb
region simulated by COSI (Schaffner et al. 2005) according
to a coalescent model where the LD pattern and population
history mimicked those of the European population. We se-
lected the first 100 rare loci [i.e., minor allele frequency
(MAF) ,5%] for further analyses. We randomly drew 2
haplotypes with replacement from the 10,000 to form each
subject’s genotype. We generated the binary phenotype
from a Bernoulli ðpiÞ distribution, where pi ¼ ehi=ð1þ ehiÞ;
hi ¼ g0 þ XEigE þ

PR
r¼1Grig

r
G þPR

r¼1GriXEig
r
GE; R is the

number of causal loci, and Gri is the number of rare alleles
at causal locus r, 1# r#R: While we varied the value of R,
we controlled the population attributable risk (PAR) at aG and
aGE for the genetic main effect and G3E effect, respectively
(Madsen and Browning 2009). Given aG; aGE; and R, we
calculate gr

G and gr
GE using gr

G ¼ logfðaG=RÞ=ðð12 aG=RÞ3
qrÞ þ 1g and gr

GxE ¼ logfðaGE=RÞ= ðð12aGE=RÞ3 qrÞ þ 1g
(Madsen and Browning 2009), where r ¼ 1; :::  ;R; and qr
is the MAF for the rth locus based on the 10,000 haplotypes.
We considered both case–control sampling with 750 cases and
750 controls and random sampling with sample size 1500 and
prevalence rate 0.3.

In the type I error analysis, we set ðaG; aGEÞ ¼ ð0; 0Þ for
the joint test and considered ðaG; aGEÞ ¼ ð0; 0Þ and ð0:02; 0Þ
for the G3E test. Because the burden-based tests are sensi-
tive to the misspecification of the main-effect model (Voorman
et al. 2011), we set a weak main-effect PAR so that the burden-
based tests can still serve as a valid benchmark. We performed
10,000 replicates per scenario. In the power analysis, we set
ðaG; aGEÞ ¼ ð0:02; 0:1Þ for both the G3E test and the joint test
and considered R ¼ 20; 40; 60; 80; and 100:We performed
500 replicates per scenario. In all analyses, the 100 loci were
included in the association tests.

SimReg’s performance was compared to GESAT (Lin et al.
2013) and a burden-based G3E test. GESAT is a GLMM-based
G3E test that is closely connected to SimReg: from the
GLMM representation in model (2), we see that SimReg
assumes hGE � Nð0; tGESGEÞ; where SGE (calculated through
the similarity kernel) determines how the G3E effects are
modeled. In contrast, GESAT assumes a linear effect on hGE;
i.e., hGE ¼ XGEbGE with bGE � Nð0; tGEIÞ; which is equivalent
to setting SGE ¼ XGEX

T
GE (i.e., a linear kernel with wm ¼ 1).

For SimReg, we used the weighted IBS kernel with weight
wm ¼ ð12qmÞ24: For GESAT, we used R code provided by the
authors with the default settings to perform G3E tests (the
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code does not support joint tests). For the burden-based G3E
test, we first summarize the marker-set information of subject
i, using the number of rare variants in the set, referred to as
mutation burden. Then, we fit a logistic model, logit
PðYi ¼ 1

��Xi;GÞ ¼ b0 þ XEibE þ eGibG þ eGiXEibGE; where eGi is
the mutation burden for subject i. Under this model, the
G3E effect can be detected by testing H0 : bGE ¼ 0; and the
joint effect can be detected by testing H0 :bG ¼ bGE ¼ 0:

CV simulations: We obtained 234 phased haplotypes of
gene TCF7L2 from chromosome 10 of the Utah residents
with ancestry from northern and western Europe (CEU)
samples in HapMap 3. We focused our analysis on the 29
typed SNPs genotyped in the Wellcome Trust Case Control
Consortium (WTCCC) analysis (Wellcome Trust Case Con-
trol Consortium 2007). The MAFs of these 29 SNPs ranged
from 0.0085 to 0.48. We randomly drew 2 haplotypes with
replacement from the 234 phased haplotypes to form an in-
dividual genotype. We assumed that 2 of the 29 SNPs were
causal and simulated the binary phenotype of individual i
from a Bernoulli ðpiÞ distribution, where pi ¼ ehi=ð1þ ehiÞ;
hi ¼ g0 þ XEigE þ G1

i g
1
G þ G2

i g
2
G þ G1iXEig

1
GE þ G2iXEig

2
GE; and

Gr
i is the number of minor alleles at the causal locus r ¼ 1; 2:

We generated the ith individual’s environmental covariate,
XEi; from a Nð0; 6Þ distribution and set g0 ¼2 2:5; gE ¼
logð1:5Þ ¼ 0:4055: As in the RV simulations, we considered
case–control sampling (with 750 cases and 750 controls)
and random sampling (with sample size 1500 and prevalence
rate 0.3).

In the type I error analysis, we set gGE ¼ g1
G ¼ g2

G ¼ 0 for
the joint test. For the G3E test, we set gGE ¼ 0 and consid-
ered g1

G ¼ g2
G ¼ 0 and g1

G ¼ g2
G ¼ 1=23 logð1:2Þ ¼ 0:0912:

We considered five pairs of causal SNPs (i.e., gr
G . 0) with

different MAFs as shown in Table 3. We performed 1000
replicates per scenario. In the power analysis, we set g1

G ¼
g2
G ¼ 1=23 logð1:2Þ ¼ 0:0912 and g1

GE ¼ g2
GE ¼ 1=23

logð1:055Þ ¼ 0:0268 for both the G3E test and the joint test.
We considered all possible pairs of causal SNPs for a total of

�
29
2



¼ 406 scenarios. We performed 100 replicates per sce-

nario. To mimic the typical CV analysis, we excluded the
2 causal SNPs and analyzed the other 27 SNPs only in the
association tests. For SimReg, we set the locus-specific weight
wm ¼ 1: We compared the proposed SimReg method to GESAT
and the single-SNP minimum P-value method (referred to as
min-P). For the min-P method, we fitted the model logit P
ðYi ¼ 1

��Xi;GÞ ¼ d0 þ XEidE þ Gm
i dG þ Gm

i XEidGE for each SNP
m to obtain the P-values of the G3E test (i.e., testing H0 :

dGE ¼ 0) and the joint test (i.e., testing H0 : dGE ¼ dG ¼ 0).
For a given test (e.g., the G3E test), we took the minimum
of the 27 G3E P-values and calculated the adjusted P-value as
12 f12min P-valuegkeff , where keff is the effective number of
independent tests obtained using the method of Moskvina and
Schmidt (2008).

Results and Discussion

Simulation studies

Results of type I error analyses (Table 1, Table 2, and Table
3): The type I errors for the G3E test and the joint test are
shown in Table 1 and Table 2 for RV simulations and Table 3
for CV simulations. From Table 1, we see that SimReg can
have conservative type I errors when using P = 100%, which
can be alleviated by using P = 99%. Table 2 shows that
SimReg, burden-based, and GESAT methods all have type I
error rates around the nominal level in RV analyses. Table 3
shows that SimReg, min-P, and GESAT all have type I error
rates around the nominal level in the CV analyses.

Results of RV power analyses (Figure 1): The power results
for a main-effect group PAR (aGÞ of 0.02 and a G3E group
PAR (aGE) of 0.1 are shown in Figure 1. For the G3E
tests and the joint tests, SimReg has higher power than the
burden-based test and GESAT (G3E test only) across different
numbers of causal SNPs and different study designs. GESAT

Table 1 Type I error rates of SimReg tests with vs. without low-rank approximation in rare-variant (RV) simulations

% variance retained in SG (denoted by p) Case–control sampling Random sampling

Joint test ðaG; aGEÞ ¼ ð0;0Þ
p = 100% 0.052 (0.0070)a 0.025 (0.0049)
p = 99% 0.052 (0.0070) 0.052 (0.0070)

G3E test ðaG; aGEÞ ¼ ð0; 0Þ
p = 100% 0.036 (0.0059) 0.024 (0.0048)
p = 99% 0.047 (0.0067) 0.043 (0.0064)

G3E test ðaG; aGEÞ ¼ ð0:02; 0Þ
p = 99% with 20 causal G SNPs 0.064 (0.0077) 0.046 (0.0066)
p = 99% with 40 causal G SNPs 0.049 (0.0068) 0.046 (0.0066)
p = 99% with 60 causal G SNPs 0.045 (0.0066) 0.043 (0.0064)
p = 99% with 80 causal G SNPs 0.050 (0.0069) 0.042 (0.0063)
p = 99% with 100 causal G SNPs 0.041 (0.0063) 0.045 (0.0066)

The corresponding standard errors (SEs) are shown in parentheses. The values in italics are those whose 95% confidence intervals (i.e., rate 6 1:963 SE) fall below the
nominal level. The results are based on 1000 replications. aG and aGE are the group PARs of the genetic main effect and the G3E effect, respectively.
a Standard errors of the type I error rates.
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has the lowest power for the G3E test. Because we assumed
a linear G3E effect in the simulation, the power loss may be
attributable to the unweighted similarity (i.e., wm ¼ 1Þ;
which resulted in an overall similarity score dominated by
less-frequent over rare variants and led to little variations
among individual pairs.

We note that for both the SimReg and burden-based
tests, the power of the joint test is slightly less than the
power of the G3E test. It is likely that this is caused by the
weak main-effect signal in the simulation: the majority of
the simulated data sets had significant G3E effects but neg-
ligible genetic main effects. Consequently, compared to the
G3E test statistic, the joint test statistic may have incorpo-
rated additional noise from the G test statistic, which can
result in power loss. We also observe that the power loss in
the joint test appears to be larger for SimReg than for the
burden-based tests because the degrees of freedom (d.f.) of
a SimReg test spent on the G effect tend to be higher than
those of a burden-based test. However, the power of SimReg
is still higher than that of the burden-based test, and the
additional d.f. consumed by SimReg (compared to the burden-
based test) ensure robustness against between-locus etio-
logical heterogeneities (Pongpanich et al. 2012) as well as
against model misspecifications.

Results of CV power analyses (Figure 2): To present the

power results of the
�
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¼ 406 scenarios, we grouped the

scenarios into three categories based on the LD structure
between the causal SNPs and the analyzed SNPs. The three
LD groups, i.e., the lower one-third (low LD), the middle
one-third (medium LD), and the top one-third (high LD),
are defined based on the average of 54 R2 values, where
each value is the R2 between a causal SNP (2 in total) and
an analyzed SNP (27 in total). We present side-by-side box-
plots of the power of SimReg, min-P, and GESAT (for G3E
tests) as well as the mean power value in Figure 2. We
observe that when the LD is lower, the power of all methods
is lower. This is expected because under low-LD scenarios
the markers contain less information about the 2 causal loci.
For the G3E test (Figure 2, top), SimReg and GESAT have
very similar power, as expected because both methods set
wm ¼ 1: The powers of SimReg and min-P are similar when
LD is low. As the LD increases, SimReg starts to have power
improvement over min-P. The difference becomes more ob-
vious when LD is high. For the joint test (Figure 2, bottom),
the relative power of SimReg vs.min-P is similar to what was
observed for the G3E tests. Furthermore, the relative per-
formance between SimReg and min-P for binary traits is
similar to what was observed for quantitative traits (Tzeng
et al. 2011).

Data Applications

Analysis of gene-by-physical activity effect on obesity,
using CoLaus samples: We used Sanger sequence data of
the PLA2G7 gene for 1961 subjects from the CoLaus (Song

et al. 2012) and studied PLA2G7’s association with the levels
of lipoprotein-associated phospholipase A2 (Lp-PLA2). The
CoLaus study of Firmann et al. (2008) is a population-based
study to assess the risk factors of cardiovascular disease
(CVD) in Caucasian residents of Lausanne, Switzerland aged
35–75 years. PLA2G7 encodes Lp-PLA2, and the elevated
plasma levels of Lp-PLA2 activity have been shown to be
associated with increased risk of coronary heart disease
(Thompson et al. 2010). We imputed sporadic missing geno-
types, using the MaCH software package (Li et al. 2010),
and obtained a total of 100 SNPs with MAF , 0.05 (range
from 0.000255 to 0.029).

The genetic influence of PLA2G7 on the body mass af-
fected by exercise has been reported in the literature (Wootton
et al. 2007; Detopoulou et al. 2009). The potential modu-
lating effect of PLA2G7 on arachidonic acid was hypothe-
sized to be related to the association between the PLA2G7
variants and a reduced risk of coronary artery disease (Ninio
et al. 2004; Wootton et al. 2007). Using PLA2G7 as a positive
control, we investigated the potential interaction between
physical activity and genetic variants on BMI. We defined
obesity as BMI . 30 and evaluated the effects of PLA2G7
(G), physical activity (E), and G3E interactions on obesity.
We considered three methods: SimReg, GESAT, and the burden-
based test. In all analyses, we adjusted for age, sex, ethnic
background (five PCs), smoking status, and alcohol consump-
tion. For SimReg, we used weight wm ¼ ð12 qmÞ24 and a low-
rank approximation with p ¼ 0:99; the resulting P-values of the
joint test and the G3E test were 1:463 1023 and 1:05 3
1023; respectively, which suggested that PLA2G7 may affect
the influence of physical activity on obesity. GESAT, which set

Table 2 Type I error rates of the G3E test and the joint test for
rare-variant (RV) simulations

Nominal level SimRega Burden-based GESAT

Joint test ðaG; aGEÞ ¼ ð0; 0Þ
0.05 0.0504 (0.0022)b 0.0511 (0.0022) NA
0.01 0.0093 (0.0010) 0.0110 (0.0010) NA
0.005 0.0047 (0.0007) 0.0056 (0.0007) NA
0.001 0.0010 (0.0003) 0.0011 (0.0003) NA

G3E test ðaG; aGEÞ ¼ ð0;0Þ
0.05 0.0496 (0.0022) 0.0523 (0.0022) 0.05090 (0.0024)
0.01 0.0085 (0.0009) 0.0104 (0.0010) 0.0119 (0.0011)
0.005 0.0038 (0.0006) 0.0044 (0.0007) 0.0050 (0.0007)
0.001 0.0007 (0.0026) 0.0008 (0.0003) 0.0007 (0.0003)

G3E test ðaG; aGEÞ ¼ ð0:02;0Þc
0.05 0.0473 (0.0021) 0.0482 (0.0021) 0.0602 (0.0024)
0.01 0.0099 (0.0010) 0.0112 (0.0011) 0.0119 (0.0011)
0.005 0.0052 (0.0007) 0.0055 (0.0007) 0.0062 (0.0008)
0.001 0.0014 (0.0004) 0.0010 (0.0003) 0.0009 (0.0003)

Data were generated using a case–control design. The corresponding standard
errors (SEs) are shown in parentheses. The values in italics/boldface type are those
whose 95% confidence intervals (i.e., rate 6 1.96 3 SE) fall below/above the
nominal level. aG and aGE are the group PARs of the genetic main effect and the
G3E effect, respectively. The results were obtained based on 10,000 replications.
a Using p (the proportion of variation explained by the leading eigenvalues in SG) =
0:99:

b Standard errors of the type I error rates.
c Assuming 40 SNPs with causal main (G) effect.
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wm ¼ 1; yielded a G3E P-value of 0.637. These results are not
unexpected given the simulation results; i.e., the unweighted
similarity scores did not have power to detect rare variants be-
cause the contribution from rarer variants may be overwhelmed
by the less rare variants during collapsing. The P-values of the
burden-based tests were 0.013 for the joint test and 3:8431023

for the G3E test, which are larger than SimReg P-values but
give the same significant conclusions as SimReg. The results
agree with the observation from the RV simulations that the
proposed method is more powerful in detecting G3E effects.

Analysis of TCF7L2-by-BMI effect on type 2 diabetes, using
WTCCC samples: The data were obtained from the type 2
diabetes (T2D) case–control study conducted by the WTCCC
(Wellcome Trust Case Control Consortium 2007). The con-
trols were samples from the 1958 British Birth Cohort. The
case samples were collected from various sites across the
United Kingdom to be comparable to the controls. The geno-
typing was conducted on an Affymetrix 500K chip. Previous
genome-wide association studies (Timpson et al. 2009) have
indicated an interaction between TCF7L2 and BMI on T2D.
Treating this TCF7L23BMI effect on T2D as a true positive,
we evaluated the performance of the proposed SimReg test
(with weight wm ¼ 1) and compared to GESAT and the min-
P test.

We fitted a model where the response variable is the T2D
status and the explanatory variables include the 29 SNPs in
TCF7L2, BMI, TCF7L23BMI, and sex. After applying sample
and SNP quality control filters to remove substantial missing
data, the data set contained 1913 cases and 1455 controls.
We first performed the joint test and obtained a P-value of
1:813 10210 for SimReg and 1:393 1029 for min-P. The gene-
level P-value of min-P is obtained as 12 ð12 min

1# ℓ# 29
P-valℓÞKeff ;

where Keff ¼ 19:8 is the effective number of independent
tests for TCF7L2 estimated by Moskvina and Schmidt
(2008). The P-values of the G3E tests are 4:053 1025 for
SimReg, 6:743 1026 for GESAT, and 2:723 1023 for min-P
(adjusted P-value). The difference between SimReg and
GESAT P-values can be attributed to the different choices
of kernels (e.g., IBS kernel for SimReg vs. linear kernel for
GESAT) and the different algorithm to estimate the nuisance
main effects (e.g., EM algorithm vs. ridge penalization). The

relatively large P-values of min-P suggest that there may be
multiple moderate-effect loci in TCF7L2 contributing to the
T2D risk, as opposed to a few strong-effect loci. The magni-
tude of the P-value difference in the joint tests was relatively
small compared to the P-value difference in G3E tests, sug-
gesting a strong main effect of TCF7L2 on T2D as shown in
the literature (Helgason et al. 2007; Scott et al. 2007).

Conclusion

In this article we proposed a marker-set method based on
similarity regression to examine G3E effects for binary traits
and showed it is computationally feasible, powerful, and
applicable to both common and rare variants. By demon-
strating the equivalence of our gene-similarity regression
model to a GLMM framework, we showed that SimReg is ro-
bust against model misspecification, like other random-effects-
based approaches (e.g., Lin et al. 2013). However, because
the structure of SGE is atypical, one cannot apply the general
score test of GLMM as implemented in existing statistical
software because it often yields invalid estimates of tG
(e.g., negative values). We developed an EM algorithm to ad-
dress the challenges associated with estimation and compu-
tation encountered in GLMM model fitting. The C code that
implements the proposed joint and G3E tests is available at
http://www4.stat.ncsu.edu/~jytzeng/software_simreg.php.
We demonstrated the utility of SimReg in rare variant G3E
analysis. We also found that for RVs, the low-rank approxi-
mation to the main-effect similarity matrix (SG) is necessary
to avoid an overconservative type I error rate.

One possible strategy to apply the proposed SimReg tests
is to start with a joint test to detect the overall association
induced by the Gmain effect or the G3E effects. A screening
by joint tests may lead to increased flexibility and power to
detect a signal because some genes can exhibit negligible
marginal effects but strong effects among particular expo-
sure groups (Kraft et al. 2007; Thomas 2010). If the joint
test is rejected, a G3E test can then be used to identify
whether the effects of the genetic variables are modified
by the environmental variables.

One can view the SimReg framework as an implementa-
tion of a class of models for modeling hGE; which includes
GESAT as a special case. In SimReg, one can determine how

Table 3 Type I error rates of the G3E test and the joint test for common-variant (CV) simulations

Effect size considered MAFs of the causal SNPs SimReg min-P GESAT

Joint test ðg r
G ¼ gr

GE ¼ 0Þ NA 0.044 (0.0065)a 0.060 (0.0075) NA
G3E test ðgr

GE ¼ 0Þ
gr
G ¼ 0 NA 0.037 (0.0060) 0.054 (0.0072) 0.036 (0.0059)

gr
G ¼ 0:0912 0.009, 0.094 0.042 (0.0068) 0.040 (0.0062) 0.053 (0.0071)

gr
G ¼ 0:0912 0.009, 0.1966 0.040 (0.0062) 0.043 (0.0064) 0.055 (0.0072)

gr
G ¼ 0:0912 0.094, 0.1966 0.040 (0.0062) 0.045 (0.0066) 0.070 (0.0081)

gr
G ¼ 0:0912 0.1966, 0.2222 0.047 (0.0067) 0.044 (0.0065) 0.051 (0.0070)

gr
G ¼ 0:0912 0.2991, 0.4188 0.049 (0.0068) 0.050 (0.0069) 0.054 (0.0072)

The corresponding standard errors (SEs) are shown in parentheses. The values in italics/boldface type are those whose 95% confidence intervals (i.e., rate 6 1.96 3 SE) fall
below/above the nominal level. The results were obtained based on 1000 replications, and gr

G and gr
GE are the effect sizes of the causal SNPs for the main effect and the G3E

effect, respectively.
a Standard errors of the type I error rates.
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the G3E effect is modeled by specifying a certain similarity
metric, e.g., linear kernel, IBS kernel, or quadratic kernel, as
well as by imposing variant-specific weights when collapsing
the information across markers. If a linear kernel is used
with wm ¼ 1; the SimReg G3E test is equivalent to GESAT.
However, one subtle difference is that SimReg uses an EM
algorithm to estimate the nuisance main effects, whereas
GESAT uses a penalized method. Another remark concerns
the role of the variant-specific weight based on MAFs. As we
observed in the numerical studies, although the unweighted
similarity performed satisfactorily in CV analyses, it has
little power in RV analyses. This is because the sum of un-
weighted similarity scores would be dominated by informa-
tion from nonrare events. Consequently, when rare variants
are studied, the multimarker similarity scores would exhibit
little variation. The MAF-based weights in essence perform
a soft thresholding to downweight or diminish the contribu-
tion of less-frequent or common variants in the multimarker
similarity score.

The rationale of a collapsing analysis is to detect the
amplified effects of rare variants in aggregate. Experience from
main-effect testing suggests that variance component-based
tests such as SimReg would have better power than burden-
based tests if genetic effects vary radically across variants or if

many null variants exist in the set (Pongpanich et al. 2012; Lee
et al. 2014). However, the presence of many null variants can
still unfavorably affect the test performance. For main-effect
collapsing tests, efforts have been made to boost power when
the signal sparsity is low by adaptively focusing on the subsets
enriched with causal variants (e.g., Barnett 2014; Pan et al.
2014). Their extensions to G3E tests will be helpful to further
optimize the power to detect G3E effects.

In this work we focused on examining the G3E interac-
tion effect for a single environmental factor. However, a sim-
ilar model involving multiple G3E interaction effects could
be fitted. This method could be easily extended to test for
gene–gene interaction in cases where one gene is suspected
to interplay with other genes.
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Appendix A: Marginal Trait Covariance cov(Yi;Yj)
Define hi ¼ hGi þ hGEi: Under GLMM (2),

cov
�
Yi; Yj

�
¼ covh

�
EðYi

��X; hÞ; EðYj��X; hÞ�þ Eh
�
covðYi; Yj

��X; hÞ�
¼ covh

�
EðYi

��X; hÞ; EðYj��X; hÞ�
ð∵ conditional independence of Yi and YjÞ

¼ covh
�
g21ðXig þ hiÞ; g21�Xjg þ hj

��

� covh

8>>>><>>>>:

"
g21ðXig þ EhiÞ þ

"
@g21ðXig þ hiÞ

@hi

����
hi¼Ehi

#
ðhi2 EhiÞ

#
;

"
g21

�
Xjg þ Ehj

�þ "@g21
�
Xjg þ hj

�
@hj

����
hj¼Ehj

#�
hj2 EhjÞ

#
9>>>>=>>>>;

[by taking the first-order Taylor expansion of g21ðXig þ hiÞ with respect to hi around Ehi ¼ 0]

¼ covh

n"
g21ðXigÞ þ

"
@g21ðXig þ hiÞ

@hi

����
hi¼0

#
3 hi

#
;

"
g21�Xjg�þ

"
@g21

�
Xjg þ hj

�
@hj

����
hj¼0

#
3hj

#)

¼
"
@g21ðXig þ hiÞ

@hi

����
hi¼0

#
3

"
@g21

�
Xjg þ hj

�
@hj

����
hj¼0

#
3 cov

�
hi; hj

�

¼
"
@g21ðXig þ hiÞ

@hi

����
hi¼0

#
3

"
@g21

�
Xjg þ hj

�
@hj

����
hj¼0

#
3 covðhGi þ hGEi; hGj þ hGEjÞ

¼
(
@gðm0

i Þ
m0
i

)21

3

8<:@gðm0
j Þ

m0
j

9=;
21

3 fcovðhGi; hGjÞ þ covðhGEi; hGEjÞg

¼
n
g9
�
m0
i
�
g9
�
m0
j

�o21
3
�
tGSij þ tGEXEiXEjSij

�
;

Appendix B: EM Algorithm to Estimate tG and s in the SimReg G3E Test

Under the null hypothesis HGE
0 :tGE ¼ 0, model (3) becomes gðmÞ ¼ Xg þ ZGb with b � Nð0; tGIL3 L Þ: Let Y ¼ ðY1; . . . ; YnÞ be

the vector of binary traits, and let u ¼ ðg; tGÞ be the parameter vector. We consider an expectation-maximization algorithm
based on observed data Y and missing data b. Let logf ðY ; b; uÞ be the complete data log-likelihood. In the expectation step
(E-step), we compute Qðu��uðtÞÞ as

Qðu��uðtÞÞ ¼ E
n
log fðY ; b; uÞ��Y ; uðtÞo

¼ E
n
log fðY��b; uÞ��Y ; uðtÞoþ E

n
log f ðb; uÞ��Y ; uðtÞo;

because fðY ; b; uÞ ¼ f ðY jb; uÞ fðb; uÞ: For the first term, we have
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E
n
log  f ðY jb; uÞjY ; uðtÞ

o
¼
Xn
i¼1

E
n
Yi   log  mi þ ð12 YiÞlogð12miÞjY ; uðtÞ

o
: (B1)

For the second term, note that

log fðb; uÞ ¼ log f ðb; tGÞ

¼ log
	
ð2pÞ2ðL=2Þ��tGIL���2ð1=2Þ

exp
	
2

1
2
bTðtGILÞ21b





¼ 2
L
2
log 2p2

L
2
log  tG 2

bTb
2tG

;

where
��tGIL�� ¼ tLG: Therefore,

E
	
log fðb; uÞ��Y ; uðtÞ
 ¼ E

	 
2

L
2
log2p2

L
2
logtG 2

bTb
2tG

!����Y ; uðtÞ



¼ 2
L
2
log2p2

L
2
logtG 2

E
�
bTbjY ; uðtÞ

�
2tG

:

(B2)

By expressing the complete-data log-likelihood in two parts, the fixed effect g occurs only in the first term Eflog f
ðY��b; uðtÞÞg and variance component tG occurs only in the second term, Eflog f ðb; uÞ��Y ; uðtÞg. Thus, the maximization steps
for obtaining btGðtþ1Þ and ĝðtþ1Þ can be discussed separately.

Maximization step for obtaining ctG(tþ1)

To obtain btGðtþ1Þ; we can focus on Eflog fðb; uÞ��Y ; uðtÞg We take the derivative of (B2) with respect to tG and get

@E
n
log f ðb; uÞ��Y ; uðtÞo

@tG
¼ 2

L
2tG

þ
EðbTb��Y ; uðtÞÞ

2t2G
:

Setting this equal to zero, we get

ctGðtþ1Þ ¼
EðbTb��Y ; uðtÞÞ

L

¼ 1
L

h
bðtÞTbðtÞ þ trace

�
SðtÞ�i:

(B3)

Equation B3 follows because ðbjY ; uðtÞÞ � NðbðtÞ;SðtÞÞ approximately. To derive this approximation, we first reexpress fðY ; bÞ
as f ðY jbÞf ðbÞ; i.e., a product of a Gaussian kernel and some function of Y. Finally, because f ðY ; bÞ ¼ fðbjYÞ f ðYÞ; we have
f ðbjYÞ _�N: We provide the details in the next subsection.

Derivation of f (bjY) as well as its mean b(t) and variance S(t)

f ðY ; b; uðtÞÞ ¼ fðY��b; uðtÞÞf ðb; uðtÞÞ
¼
Yn
i¼1

(
mYi
i ð12miÞ12Yið2pÞ2ðL=2Þ 2 t

2ðL=2Þ
G exp

�
2

bTb
2tG


)

¼ exp

(Xn
i¼1

½Yilogmi þ ð12 YiÞlogð12miÞ�2
L
2
log 2p2

L
2
log tG 2

bTb
2tG

)

¼ expfhðbÞg;
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where

hðbÞ ¼
Xn
i¼1

½Yi   log  mi þ ð12 YiÞlogð12miÞ�2
L
2
log 2p2

L
2
log tG2

bTb
2tG

: (B4)

Let bðtÞ be the value that maximizes hðbÞ; i.e., h9ðbðtÞÞ ¼ 0: By a Taylor expansion of hðbÞ with respect to b around bðtÞ; we
have

hðbÞ � hðbðtÞÞ þ h9ðbðtÞÞðb2 bðtÞÞ þ 1
2
ðb2bðtÞÞTh$ ðbðtÞÞðb2 bðtÞÞ ¼ hðbðtÞÞ þ 1

2
ðb2bðtÞÞTh$ðbðtÞÞðb2 bðtÞÞ:

Therefore, the complete data log-likelihood can be approximated by

fðY ; b; uðtÞÞ � exp
	
hðbðtÞÞ þ 1

2
ðb2bðtÞÞTh$ ðbðtÞÞðb2 bðtÞÞ



¼ exp

	
hðbðtÞÞ



exp
	
1
2
ðb2bðtÞÞTh$ðbðtÞÞðb2 bðtÞÞ



: (B5)

In Equation B5, expf2 ð1=2Þðb2 bðtÞÞT ½2 h$ðbðtÞÞ�ðb2 bðtÞÞg is a Gaussian kernel with 2h$ðbðtÞÞ ¼ ½SðtÞ�21: Thus, the con-
ditional distribution of ðb��Y ; uðtÞÞ approximately follows a multivariate normal distribution with mean vector bðtÞ and variance–
covariance matrix S

ðtÞ ¼ ½2h$ðbðtÞÞ�21:

Next we calculate h9ðbÞ and h$ðbÞ: In Equation B4, we rewrite mi as miðbÞ to emphasize that it is a function of b; i.e.,
miðbÞ ¼ expðXig þ ZibÞ=ð1þ expðXig þ ZibÞÞ with Zið13 LÞ; the ith row of matrix ZG: Note that _miðbÞL3 1 [ @miðbÞ=@b ¼
ZT
i ðexpðXig þ ZibÞÞ=f1þ expðXig þ ZibÞg2 ¼ ZT

i miðbÞf12miðbÞg: Then

h9ðbÞ ¼ @hðbÞ
@b

¼
Xn
i¼1

(
Yi 3

_miðbÞ
miðbÞ

þ ð12 YiÞ3 2 _miðbÞ
12miðbÞ

)
2

b
tG

¼
Xn
i¼1

(
ZTi Yif12miðbÞg2 ZTi ð12 YiÞmiðbÞ

)
2

b
tG

¼
Xn
i¼1

(
ZTi Yi2 ZTi miðbÞ

)
2

b
tG

¼ ZTY 2 ZTmðbÞ2 b
tG

¼ ZTðY 2mðbÞÞ2 b
tG

;

where mðbÞ ¼ ðm1ðbÞ;m2ðbÞ; :::  ;mnðbÞÞT ; and

h$ ðbÞ ¼ @h9ðbÞ
@bT

¼
Xn
i¼1

(
ZTi Yi 2 ZTi _miðbÞ

)
2

1
tG

IL

¼ 2
Pn
i¼1

miðbÞf12miðbÞgZTi Zi2
1
tG

IL

¼ 2ZTWðbÞZ2 1
t
IL

¼ 2ðZTWðbÞZ þ 1
t
ILÞ;

where WðbÞ ¼ diag½miðbÞf12miðbÞg�:
Finally, we obtain bðtÞ; i.e., the maximizer of hðbÞ: First, we rewrite bðtÞ as bt; then we apply the Newton–Raphson method

and obtain the iterative estimator of bt as
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bðkþ1Þ
t ¼ bðkÞt 2 ½h$ðbðkÞt Þ�21 h9ðbðkÞt Þ ¼ bðkÞt þ

�
ZTW

�
bðkÞt

�
Z þ 1

tG
IL

�21
"
ZT
n
Y 2m

�
bðkÞt

�o
2

bðkÞt
tG

#
;

which depends on tG and g, and we set tG ¼ btGðtÞ and g ¼ gðtÞ: The maximizer, bðtÞ; is obtained at each iteration until it
converges, i.e., until the difference

���bðkþ1Þ
t 2 bðkÞt

��� falls below a prespecified threshold, e.g., 1027: We denote the maximizer as
bðNÞ
t and also set bðtÞ ¼ bðNÞ

t :

Maximization step for obtaining ĝ(t+1)

To obtain ĝðtþ1Þ; we focus on the first term of Qðu��uðtÞÞ; i.e.,
E
n
log  fðY jb; uÞjY ; uðtÞ

o
¼
Xn
i¼1

E
n
Yi   log  mi þ ð12 YiÞlogð12miÞjY ; uðtÞ

o
[ dðgÞ:

We rewrite mi as miðgÞ here to emphasize that it is a function of g; i.e., miðgÞ ¼ expðXig þ ZibÞ=ð1þ expðXig þ ZibÞÞ:We have
that _miðgÞ[ @miðgÞ=@g ¼ XT

i ðexpðXig þ ZibÞ=f1þ expðXig þ ZibÞg2Þ ¼ XT
i miðgÞf12miðgÞg. Then

d9ðgÞ ¼ @dðgÞ
@g

¼
@
Pn

i¼1E
n
Yilogmi þ ð12 YiÞlogð12miÞ

��Y ; uðtÞo
@g

¼
Xn
i¼1

E

(
XT
i Yi

_miðgÞ
miðgÞ

þ XT
i ð12 YiÞ 2 _miðgÞ

12miðgÞ

)

¼
Xn
i¼1

E

(
XT
i Yif12miðgÞg2XT

i ð12 YiÞmiðgÞ
)

¼
Xn
i¼1

XT
i ðYi 2miðgÞÞ

¼ XTðY 2mðgÞÞ;

where m = (m1(g), m2(g), . . . ,mn(g))T = m(b), and

d$ðgÞ ¼ @d9ðgÞ
@gT

¼
Xn
i¼1

XT
i ðYi 2 _miðgÞÞ ¼ 2

Xn
i¼1

miðgÞf12miðgÞgXT
i Xi ¼2XTWðgÞX:

Recall that WðgÞ ¼ diag
nPn

i¼1miðgÞf12miðgÞg
o
¼ diag

nPn
i¼1miðbÞf12miðbÞg

o
¼ WðbÞ: Using the first and second deriv-

atives of dðgÞ; the estimator of gðtþ1Þ; rewritten as gtþ1; at the ðkþ 1Þth iteration, is given by

g
ðkþ1Þ
tþ1 ¼ g

ðkÞ
tþ1 2 ½d$ðgðkÞtþ1Þ�21 d9ðgðkÞtþ1Þ

¼ g
ðkÞ
tþ1 þ ½XTW

�
g
ðkÞ
tþ1

�
X�21XT

�
Y 2m

�
g
ðkÞ
tþ1

��
;

which depends on tG and b. We set tG ¼ btGðtÞ and b ¼ bðtÞ: Then gðtþ1Þ ¼ g
ðNÞ
tþ1 :

Putting it all together, at iteration t þ 1 we have following estimators:

btGðtþ1Þ ¼ 2 ð1=rÞ½bðtÞTbðtÞ þ traceðSðtÞÞ�; where bðtÞ ¼ bðNÞ
t and bðkþ1Þ

t ¼ bðkÞt þ ½ZTWðbðkÞt ÞZ þ ð1=tGÞIL�21½ZTðY 2mðbðkÞt Þ
2 bðkÞt =tG�: gðtþ1Þ ¼ g

ðNÞ
tþ1 and g

ðkþ1Þ
tþ1 ¼ g

ðkÞ
tþ1 þ ½XTmðgðkÞ

tþ1ÞX�21XTðY 2mðgðkÞ
tþ1ÞÞ:

Appendix C: Asymptotic Distributions of the Score Test Statistics

Recall that TGE ¼ ð1=2Þfð yW1 2XĝÞTV21
1 SGEV21

1 ð yW1 2XĝÞgj
tG¼btG; tGE¼0

 : Because ĝ ¼ ðXTV0
21XÞ21XTV0

21Y1W ; we have

yW1 2Xĝ ¼ ½In 2XðXTV21
1 XÞ21XTV21

1 �ð yW1 2XgÞ
¼ K1ð yW1 2XgÞ;

where K1 ¼ ½In 2XðXTV21
1 XÞ21XTV21

1 �. Therefore, TGE can be rewritten as
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TGE ¼ 1
2

	
ð yW1 2XgÞTKT

1V
21
1 SGEV21

1 K1ð yW1 2XgÞ



¼ 1
2

	
ð yW1 2XgÞTV21=2

1 V1=2
1 KT

1V
21
1 SGEV21

1 K1V
1=2
1 V21=2

1 ð yW1 2XgÞ



¼ 1
2

	fyW1 T
A1

fyW1 
;
(C1)

where fyW1 ¼ V21=2
1 ðyW1 2XgÞ; and A1 ¼ V1=2

1 KT
1V

21
1 SGEV21

1 K1V
1=2
1 : In addition, the working vector yW1 has mean Xg and

variance V1 (Zhang and Lin 2003), and thus fyW1 has mean 0 and variance In3 n:

Let h1
i ; i ¼ 1; . . . ; L; denote the nonzero eigenvalues of matrix A1 and let n1i denote the corresponding eigenvectors. Then,

TGE ¼ SL
i¼1h

1
i ðn1i TfyW1 Þ2 ¼ SL

i¼1h
1
i ðZiÞ2; where Zi _�Nð0; 1Þ: Therefore, TGE can be approximated by a weighted sum of x2-dis-

tributions SL
i¼1
ch1
i x

2
ið1Þ: By a similar derivation, the distribution of Tjoint can be approximated by SL

i¼1
ch0
i x

2
ið1Þ; where the h0

i ’s are

the nonzero eigenvalues of matrix A0 ¼ V1=2
0 KT

0V
21
0 ðSG þ SGEÞV21

0 K0V
1=2
0 ; with K0 ¼ ½In 2XðXTV21

0 XÞ21XTV21
0 �:
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