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ABSTRACT Understanding adaptive genetic responses to climate change is a main challenge for preserving biological diversity.
Successful predictive models for climate-driven range shifts of species depend on the integration of information on adaptation, including
that derived from genomic studies. Long-lived forest trees can experience substantial environmental change across generations, which
results in a much more prominent adaptation lag than in annual species. Here, we show that candidate-gene SNPs (single nucleotide
polymorphisms) can be used as predictors of maladaptation to climate in maritime pine (Pinus pinaster Aiton), an outcrossing long-lived
keystone tree. A set of 18 SNPs potentially associated with climate, 5 of them involving amino acid-changing variants, were retained after
performing logistic regression, latent factor mixed models, and Bayesian analyses of SNP–climate correlations. These relationships identified
temperature as an important adaptive driver in maritime pine and highlighted that selective forces are operating differentially in geo-
graphically discrete gene pools. The frequency of the locally advantageous alleles at these selected loci was strongly correlated with survival
in a common garden under extreme (hot and dry) climate conditions, which suggests that candidate-gene SNPs can be used to forecast the
likely destiny of natural forest ecosystems under climate change scenarios. Differential levels of forest decline are anticipated for distinct
maritime pine gene pools. Geographically defined molecular proxies for climate adaptation will thus critically enhance the predictive power
of range-shift models and help establish mitigation measures for long-lived keystone forest trees in the face of impending climate change.
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PAST and present climate changes are major drivers of
species displacements and range-size variation (Hughes

2000; Franks and Hoffmann 2012). Current predictions in-
dicate that the impact of climate change will intensify over
the next 20–100 years (Loarie et al. 2009; Bellard et al. 2012),
with concomitant phenotypic and genetic effects on wild pop-
ulations (Gamache and Payette 2004; Franks and Hoffmann
2012; Alberto et al. 2013a). The capability of species to re-
spond to such alterations will rely on phenotypic plasticity,

potential for in situ adaptation, and/or migration to more
suitable habitats (Aitken et al. 2008). While phenotypic plas-
ticity and migration might be insufficient to cope with these
changes (Mclachlan et al. 2005; Malcom et al. 2011; Zhu et al.
2011), successful in situ adaptation will depend on the
amount of standing genetic variation and the rate at which
new alleles arise, are maintained, and/or get to fixation
within populations (Hancock et al. 2011). Thus, our ability
to detect present adaptive polymorphisms and to integrate
them in predictive models of future maladaptation might be
decisive to ensure the persistence of natural populations un-
der climate change, particularly for keystone taxa (Franks and
Hoffmann 2012; Kremer et al. 2012).

“Maladaptation” to climate refers to a decrease of the
mean population fitness produced by a mismatch between
the optimal and realized mean genotype frequencies, which
may result from the inability to adjust to rapidly changing
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climates (Lynch and Lande 1993; Kremer et al. 2012). At the
species range scale, such adaptation lags can generate mosaics
of selected alleles and increase population differentiation at
selected loci, depending on the species’ life-history traits and
the geographic extent at which selective pressures are operat-
ing (Savolainen et al. 2007; Hancock et al. 2011). For example,
in Arabidopsis thaliana, a model annual selfing plant, new
advantageous mutations associated with fitness and local cli-
mate occur in such mosaics, together with more common and
widely distributed favorable variants (Hancock et al. 2011). On
the other hand, evidence suggests that in widespread outcross-
ing species with long generation times, such as forest trees,
local adaptations mostly develop from alleles already present
in the gene pools (i.e., from standing genetic variation), which
often results in the establishment of gene clines along environ-
mental gradients (Savolainen et al. 2007; Eckert et al. 2010a;
Chen et al. 2012; Prunier et al. 2012; Alberto et al. 2013b).
Compared to well-studied selfing annuals, forest trees have to
face highly variable selection pressures that result from environ-
mental changes over long periods of time. It follows then that
the fitness consequences of molecular maladaptation to climate
have to be explored in such long-lived outcrossing taxa.

Many characteristics of forest trees, particularly conifers,
make them ideal systems for studying climate (mal)adapta-
tion. They are distributed in recurrently shifting geographic
ranges, whose changes can be traced back in time through
paleobotanical or phylogeographic studies (Petit and Hampe
2006), they exhibit large and significant differences in adaptive
phenotypic traits in common garden experiments (Rehfeldt
et al. 1999), and they bear low levels of proximal linkage
disequilibrium (that decays within gene limits for most species;
Brown et al. 2004; Heuertz et al. 2006). This last feature facil-
itates the identification of polymorphisms associated with adap-
tive traits (Neale and Savolainen 2004; González-Martínez et al.
2007, 2008), although it also implies that a large number of
markers is needed to saturate the genome and adequately cap-
ture the genomic signals of adaptation. From this point of view,
candidate-gene approaches are particularly attractive as they
provide direct links with gene functions and allow targeting
potential adaptive traits, gene networks, and/or selection driv-
ers without the need for scanning the whole genome (Neale
and Savolainen 2004; Neale and Ingvarsson 2008).

Here, we aimed to identify genetic polymorphisms related
to climate adaptation in maritime pine (Pinus pinaster Ait.), a
long-lived outcrossing forest tree, and used a common garden
evaluated for survival under extreme (hot and dry) climatic
conditions to validate SNP–climate associations and demon-
strate the utility of these genetic markers to predict maladap-
tation to future climates. Maritime pine is an economically
important conifer that forms large populations in southwestern
Europe, inhabiting both wet-coastal and seasonally dry conti-
nental forests, and that exhibits a strong population structure
associated with past climate and demographic changes (Bucci
et al. 2007; Santos-Del-Blanco et al. 2012). Once this phylo-
geographic structure was accounted for to avoid spurious
allele-frequency clines generated by historical factors, we

observed that mean and extreme summer and winter tem-
peratures and winter rainfall were important ecological driv-
ers for adaptation in this species. The spatial distribution of
the selected alleles suggested that adaptive forces operate
on the standing genetic variation at different scales and that
they depend on the climatic heterogeneity experienced by
each gene pool. Reduced average population fitness was
observed in the common garden as the frequency of locally
advantageous alleles diminished. This suggested that con-
trasting levels of future forest decline may occur in distinct
maritime pine gene pools confronted with new (i.e., more
arid) climates.

Materials and Methods

Sampling, SNP genotyping, and scoring

Needles were collected from 772 individuals distributed
in 36 natural populations across the maritime pine range.
Total DNA was extracted with the Invisorb DNA Plant HTS
96 kit following the manufacturer’s instructions. Samples
were genotyped with two oligo pool assays (OPA) that
included 2646 and 384 SNPs by using the Illumina Infin-
ium and Illumina VeraCode platforms, respectively. The
first assay contained randomly chosen SNPs detected in
silico from transcriptome sequence data and are expected
to represent neutral variants (hereafter, control SNPs; see
Chancerel et al. 2013 for more details). Briefly, SNPs were
identified from .600,000 sequences obtained from a set
of 17 cDNA libraries of different tissues without any prior
experimental treatment and were integrated into a unigene
set previously used for linkage mapping (Chancerel et al.
2013).

The second OPA comprised 384 SNPs distributed in 221
candidate genes (Supporting Information, File S2; see also
Budde et al. 2014) that included drought-stress candidates
identified in Mediterranean (P. pinaster and P. halepensis)
and American (P. taeda) pines (Eveno et al. 2008; Eckert
et al. 2010a,b; Grivet et al. 2011) and genes overexpressed
under abiotic stress (Lorenz et al. 2011; Perdiguero et al. 2013)
and/or that have shown some evidence of adaptive value in
different conifers (e.g., González-Martínez et al. 2007, 2008;
Eveno et al. 2008; Eckert et al. 2010a,b; Grivet et al. 2011;
Lepoittevin et al. 2012; Mosca et al. 2012). SNPs were selected
after resequencing these genes in a discovery panel that
covered the entire natural range of P. pinaster (see Chancerel
et al. 2011; Budde et al. 2014).

For both OPAs, loci in Hardy–Weinberg equilibrium,
bearing minor allele frequencies (MAF) .5% and call
rates .0.8 (average of 0.97) were retained (1745 and
266 control and candidate SNPs, respectively). Scoring
was performed with BeadStudio v. 3.2 (Illumina Inc.) after
manual adjustment of genotype clusters. To ensure that gen-
otypes were correctly called, three high-quality DNAs in-
cluded as positive controls in each genotyped plate were
doubled checked for all SNPs.
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Microsatellite genotyping and phylogeographic analyses

To corroborate that historical and demographic processes
were adequately accounted for, 12 nuclear microsatellites
(SSRs) distributed in 8 of the 12 linkage groups of the species
(Chancerel et al. 2011; de-Miguel et al. 2012) were genotyped
following Santos-Del-Blanco et al. (2012) and references
therein. However, three of them (epi6, ctg275, NZPR544) were
excluded from further analyses after detecting high frequencies
of null alleles, which led to significant deviations from Hardy–
Weinberg expectations in more than half of the populations
(see Table S1). Genetic structure for these markers and for the
control SNPs was estimated independently with a principal
components analysis (PCA), performed in R v. 3.0.0 (R Devel-
opment Core Team 2013) and with the Bayesian approach
available in Structure v. 2.3.3 (Pritchard et al. 2000). Clustering
with Structure was determined with an admixture model on
correlated allele frequencies and a burn-in of 100,000 steps
followed by 1,000,000 iterations. The number of clusters (K)
was set from 1 to 15, and 10 runs were performed for each
K. Similarity across runs with the same K was calculated with
Clumpp (Jakobsson and Rosenberg 2007), and the most plau-
sible number of clusters was determined following Evanno
et al. (2005). Both the Structure membership coefficients
(Q-matrix) and the first six PC scores of each individual for
each independent data set were kept as explanatory variables
for the environmental association analyses below. The six PC
scores were retained in both cases (SSRs and control SNPs)
because they each accounted for .5% of the total genetic
variation.

Climate data

Summary climate data for the years 1950–2000 were retrieved
for 32 variables from Worldclim (Hijmans et al. 2005) and a
regional climatic model (Gonzalo 2007) for the 12 non-Spanish
and the 24 Spanish populations, respectively. Climate variables
included monthly mean, highest, and lowest temperatures and
mean precipitation (Table S2). Gonzalo’s (2007) model was
favored for climate data in Spain because it considers a much
denser network of meteorological stations than Worldclim,
which is known to underperform in this region. Two indepen-
dent PCAs, again performed in R v. 3.0.0 (R Development Core
Team 2013), were used to summarize the climate variation of
each population for the summer (June to September) and win-
ter (December to March) seasons. Population scores for the first
three PCs of each season (Table S2), which explained.95% of
the total variance, were kept for further analyses (see below).

SNP–climate associations

Significant SNP–climate associations were identified by com-
bining three different approaches. First, candidate SNP-allele
frequencies were correlated with the climate PCs with multi-
variate logistic regressions (mlr) using independently the con-
trol SNP- and the SSR-PCs as covariates to account for
historical and demographic processes that could have gener-
ated allele-frequency clines in the absence of selection (Grivet

et al. 2011; De-Mita et al. 2013). Identical associations were
obtained when using the Structure membership coefficients
(Q-matrix) as covariates (data not shown). These analyses
were performed in R v. 3.0.0 (R Development Core Team
2013) for each separate candidate SNP by using the glm func-
tion, the Akaike Information Criterion for model selection, and
the Benjamini–Hochberg procedure to control for false discov-
ery rate (FDR; Benjamini 2010).

Second, another set of SNP–climate correlations was per-
formed with the Gibbs sampler and the latent factor mixed
models available in the software LFMM (Frichot et al. 2013).
Following the population clustering results above (Structure
and PCA), the number of latent factors (k) was set to six, as
they should capture most of the underlying population
structure (see Results). Then, 10 runs of one million sweeps
were performed after discarding 100,000 iterations as burn-in.
Significance was assessed by using the same FDR procedure as
in the mlr analysis. Preliminary runs made with higher values
of k yielded identical results, and tests performed with fewer
latent factors resulted in correlations with lower statistical sup-
port and less convergence across independent runs (data not
shown). Only those significant SNP–climate correlations that
overlapped between the mlr and LFMM approaches (including
all LFMM runs) were retained.

Third, a covariance matrix was built based on the control
SNP data set (1745 SNPs) and used as a null model to
further test for candidate SNP–climate correlations with the
geographical Bayesian association analysis in Bayenv 2.0
(Coop et al. 2009; Günther and Coop 2013), a method show-
ing great promise in comparative performance evaluations
(Lotterhos and Whitlock 2014). To counterbalance the possi-
bility that any gene-derived marker can be potentially involved
in adaptation and can therefore be suboptimal to capture the
population structure in the covariance matrix, a series of anal-
yses was performed to validate its suitability. First, the covari-
ance matrices produced by three independent Bayenv 2.0 runs
were compared to each other to verify convergence to similar
results. Second, these matrices were transformed to correlation
matrices with the cov2cor function in R v. 3.0.0 and correlated
to pairwise-FST matrices generated in Arlequin v. 3.5 (Excoffier
and Lischer 2010) from this and the SSR data sets using Pear-
son’s coefficient in R v. 3.0.0. Third, the Q-matrices produced in
the Structure clustering analyses for the two putatively neutral
data sets (control SNPs and SSRs) were similarly correlated in
R v. 3.0.0.

After these validation steps (see File S1), a Bayes factor
(BF) describing the deviation between the null demographic
model (i.e., the covariance matrix) and the alternative one
(the candidate SNP–climate correlations) was estimated for
each SNP. Model convergence was assured by performing
three independent runs of 100,000 iterations and a burn-in
of 10,000 chains with random seeds. Statistical support was
assessed by Spearman’s rank correlation (r) tests for those
associations exhibiting unusually high BF (Eckert et al.
2010b; De La Torre et al. 2014). This was complemented
by comparing these unusually high BFs to those observed for
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SNPs that did not show any associations with the environ-
ment in any of the two previous methods (mlr and LFMM;
see Figure S1). Only those candidate SNP–climate associa-
tions with a BF .10 (corresponding to strong support
according to Jeffreys’ scale) and a r-value of 0.25 or higher
were conserved for validation and fitness prediction in the
common garden (see below).

All three sets of analyses were repeated at the regional
scale for the Iberian Mediterranean and Atlantic regions,
where sampling was more intensive in terms of number of
populations and individuals. The Mediterranean region of the
Iberian Peninsula is a climatically heterogeneous area charac-
terized by a high seasonality with very dry summers, in which
maritime pine forms scattered populations near the coast,
along altitudinal gradients in different mountain systems, and
in the central plateau (Alía et al. 1996). The Atlantic region of
the Iberian Peninsula is climatically more homogeneous, with
wet-temperate climate and low seasonality. In this region,
P. pinaster exhibits large continuous populations, partly due
to plantations of local origin (Alía et al. 1996).

Genetic diversity and spatial structure

Expected and observed heterozygosity (HE and HO) and
standardized genetic differentiation (G9ST) were calculated
with Smogd (Crawford 2010) for each population and gene
pool (i.e., Iberian Mediterranean and Atlantic regions) by using
separately the SSRs, the candidate SNPs associated with climate,
and the control SNPs. The existence of spatial autocorrelation
was surveyed for the last two sets of markers by using the spatial
structure analysis available in SAM v. 4.0 (Rangel et al. 2010).
Briefly, a relative Moran I index (I/Imax) was determined for
each marker by using a Gabriel connectivity matrix with sym-
metric distance classes. Significance was assessed with 999 per-
mutations and the Bonferroni criterion for multiple testing.

Fitness predictions

Survival data for 19 representative populations were obtained
from a common garden established in February 2004 in
northeastern Spain (Cálcena; see Figure 1). The climate in this
region is arid (average temperature 11.6�, annual rainfall 502
mm, summer rainfall 101 mm, for the period 1975–2008) and
characteristic of the drier extreme of maritime pine’s climatic
breadth, which provides an ideal setting in which to test for
differences in fitness due to climate maladaptation as expected
under climate change (aridification and warming) in the core
natural distribution of the species. The trial was designed as
a nested structure of families within populations. Briefly,
1-year-old seedlings from 520 families were planted at a spac-
ing of 2 m 3 3 m in an a-lattice incomplete block design with
3 replications of 65 blocks, 8 families per incomplete block, and
4 plants per family plot (total number of 3 3 65 3 8 3 4 =
6240 plants). Survival was estimated as the ratio of seedlings
alive per experimental unit when the plants were 5 years old.
The climate in the test site during these 5 years was represen-
tative of the regional average (average temperature 11.8�, an-
nual rainfall 533 mm, summer rainfall 99 mm; compare with

data for the period 1975–2008 above), with no particular
extreme events in any year that might have affected tree
survival.

Empirical best linear unbiased predictors (EBLUPs) for
survival were computed for each factor (populations and
families within population) after arcsine transformation
(adequate for percentage data) using a mixed model with
Gaussian error distribution that considered both factors as
random. Climate data for the test site were used to de-
termine the expected locally selected alleles for each of the
18 SNPs associated with climate (see Results) using the lo-
gistic regressions fitted above. The average frequency of lo-
cally advantageous alleles at each source population was
then calculated and correlated with the EBLUPs for survival
using Pearson’s (r) and (nonparametric) Kendall’s (t) coef-
ficients and associated significance tests. Then, given that
SNPs associated with climate may have heterogeneous alle-
lic effects on fitness, which would render the use of average
frequencies from different loci inadequate, single-locus regres-
sions with survival were also obtained for each of the 18 can-
didate markers to climate adaptation using standard linear
regression (lm function) in R v. 3.0.0.

To demonstrate that significant correlations were not due
to population structure, we first performed a resampling
procedure as follows. A series of 1000 random samples of
18 SNPs with frequencies matching those of the retained
candidates were obtained from the control SNP data set.
Then, correlation coefficients with survival were computed
for each 18-SNP sample as described above, and the probabil-
ity of having equal or higher correlation coefficients than the
ones obtained with the retained SNPs was estimated by
comparing this value with the distribution of random correla-
tion coefficients. Second, we computed a new PCA on the
complete set of candidate SNPs tested for adaptation to climate
(266 SNPs) and a new set of correlations with survival were
obtained for the 18 SNPs that best explained population
subdivision in this PCA.

Results

A total of 1745 control (i.e., putatively neutral) SNPs and 9
nuclear SSRs were retained and reliably genotyped for 772
individuals from 36 maritime pine populations and used to
infer background phylogeographic structure (Figure 1). The
first six principal components (PCs) accounted for .67 and
61% of the total genetic variation, for the SNP and SSR data
sets, respectively, with each individual component explain-
ing at least 5% of the total variance. The most plausible
number of genetic groups (following Evanno et al. 2005)
produced by the Bayesian clustering analyses (Pritchard et al.
2000) was equal to six and coincided with the genetic structure
identified by the PCs (Figure S2). These groups, hereafter
called “gene pools,” coincided with those previously reported
from independent chloroplast and nuclear SSR data sets for
maritime pine (Bucci et al. 2007; Santos-Del-Blanco et al.
2012). Maritime pine gene pools were centered in Morocco,
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Corsica, the Atlantic coast of France, and the Atlantic and
Mediterranean (southeastern and central) regions of the
Iberian Peninsula (Figure 1 and Figure S2); they are prob-
ably the result of the expansion of as many glacial refugia
(Bucci et al. 2007; Santos-Del-Blanco et al. 2012).

Climate records (32 variables) for each population were
reduced to three PCs for the summer (June to September)
and winter months (December to March), explaining 96.3
and 95.9% of the total climatic variation for each season,
respectively (Table S2 and Figure S3). The three winter PCs

Figure 1 (A) Geographic distribution of the six gene pools obtained from (B) nine nuclear SSRs in 36 natural populations of maritime pine. (C) Genetic
partition is also shown for 1745 control (i.e., putatively neutral) SNPs. The shading in A denotes the species natural range, and the star indicates the
location of the common garden used to evaluate fitness (Cálcena, Spain). Populations included in the common garden are in boldface italics.
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were mainly loaded by the lowest and mean temperatures
(PC-Winter1), the mean precipitation (PC-Winter2), and the
highest temperature (PC-Winter3), while the summer axes
mostly corresponded to the mean precipitation (PC-Summer1),
and the lowest (PC-Summer2) and mean (PC-Summer3) tem-
peratures, respectively. Population PC scores were tested for
correlation (after correcting for phylogeographic structure)
with the genotypes of the 266 candidate SNPs that were
retained from the second OPA. At the range-wide scale, the
mlr revealed 29 significant allele frequency–climate correla-
tions for 24 SNPs, while the LFMM produced 49 significant
correlations for 41 SNPs. In total, 21 correlations for 18 SNPs
overlapped for both methods, including those for five nonsy-
nonymous polymorphisms; all of these correlations were also
significant in the Bayesian environmental association analysis
(Coop et al. 2009) (Table 1 and Table S3).

The 18 retained SNPs were located in 17 genes involved
in growth, synthesis of secondary metabolites, membrane
transport, and abiotic stress response, among others (Table 1).
Sixteen of them were correlated with axes loaded by temper-
ature (PC-Winter1, PC-Winter3, or PC-Summer2), while only
five showed significant correlations with components associ-
ated with precipitation (e.g., PC-Winter2 or PC-Summer1;
Table 1, Table S3, and Figure 2). Interestingly, four of the
amplicons containing these SNPs (2_1014_02, 0_4032_02,
2_3919_01, and CL813; see functional annotations in Table 1)
were overexpressed in maritime pine under experimental
drought treatments (Perdiguero et al. 2013), including the two
examples given in Figure 2.

Average population differentiation (e.g., G9ST) was higher
for the candidate SNPs associated with climate than for the
control (i.e., putatively neutral) ones or the nuclear SSRs
(Tukey’s post-hoc test, P , 0.01; see Figure 3A). Likewise,
HO and HE were higher for these potentially adaptive loci
when compared to the control markers (Tukey’s post-hoc
test, P , 0.005; Figure 3B), while relative Moran’s I indices
were also consistently significant for SNPs associated with
climate (mean I/Imax = 0.51). These last values indicated
a range-wide spatial autocorrelation for the alleles of these
loci, which were more clumped, albeit widely distributed,
than those of the control SNPs (mean I/Imax = 0.19).

Analyses were repeated at the regional scale for the
Iberian Atlantic and Mediterranean regions, which represent
independent gene pools currently experiencing contrasting
climates (Bucci et al. 2007; Gonzalo 2007; Santos-Del-
Blanco et al. 2012; see also Figure 1). In the more arid
and climatically heterogeneous Iberian Mediterranean re-
gion, four SNPs (m8, m80, m657, and m1309) exhibited
significant correlations with climate (Figure S4), while no
associations were detected across the more humid and cli-
matically homogeneous Iberian Atlantic region. Moreover,
the 18 SNPs previously retained in the range-wide analyses
displayed higher population differentiation than that of the
other SNPs or SSRs within the first gene pool (Tukey’s post-hoc
test, P , 0.01), while in the second one all types of markers
showed virtually the same population differentiation (Figure 3,

E and F). Likewise, genetic diversity was higher in the Medi-
terranean region for the SNPs associated with climate (Tukey’s
post-hoc test, P , 0.02; Figure 3D), while similar genetic di-
versity levels were found across regions for the control SNPs
(HE of 0.198 and 0.224, respectively). Alleles of the SNPs
associated with climate (when variable) were also more
clumped in the Mediterranean region than in the Atlantic
one (mean I/Imax = 0.46 vs. 0.16).

Seedling survival after 5 years in a common garden test
under the extreme climatic conditions of northeastern Spain
was low and varied greatly across the 19 source populations
surveyed (Figure 1 and Figure 4). Such a low (and variable)
survival was somehow expected, as the common garden was
located at the drier extreme of maritime pine’s climatic
breadth. Climate data for the common garden were used
to determine the expected locally selected alleles for the
18 retained and potentially adaptive SNPs using the fitted
logistic regressions above. The average frequency of these
locally advantageous alleles in the source populations was
positively and significantly correlated to survival in the com-
mon garden when using both parametric (Pearson’s r =
0.58, P = 0.0093) and nonparametric (Kendall’s t = 0.44,
P = 0.0082) methods (Figure 4). Single-locus regressions
provided additional support for these predictions, with 14
candidate SNPs (out of 18) each explaining .5% of the
genetic variance for survival (Figure 4 and Table S4). Further-
more, only 0.2% (P = 0.002) of the 1000 random sets of 18
SNPs resampled from the control SNP data set (matched by
allele frequency) had equal or higher correlation coefficients
with survival than the one obtained with the SNPs that showed
environmental associations. Finally, the 18 SNPs that best
explained population subdivision for each of the four PCs
explaining .5% of the variance in a PCA (accounting for
�60% of the total variance) did not produce any significant
correlation (Table S5). Altogether, these tests suggest that the
correlation between selected markers and climate maladapta-
tion was not caused by chance or population structure.

Discussion

The utility of candidate-gene approaches in long-lived
species with large genomes

In this study, we showed that the frequency of locally
advantageous alleles at SNPs from carefully selected candidate
genes can be used as predictors of climate maladaptation. This
approach should be particularly appealing for outcrossing long-
lived species like forest trees, for which establishing common
gardens is expensive and time consuming. In addition, for taxa
with extremely large genomes, such as conifers (Birol et al.
2013; Nystedt et al. 2013; Neale et al. 2014), the use of a can-
didate gene strategy seems an interesting and feasible cost-
efficient alternative to genome-wide selection (e.g., Westbrook
et al. 2013), for which millions of markers evenly distributed
across the genomemight be necessary to have a good predictive
power (e.g., Grattapaglia and Resende 2011; Desta and Ortiz
2014). In this context, the adequate preselection of candidate
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genes becomes a fundamental step toward capturing a large
part of the adaptive/phenotypic variance that needs to be used
to perform such predictions.

Herein, we performed the preselection of genes by pinpoint-
ing candidates from previous population and functional studies.
These genes included drought-stress-response candidates de-
tected by population genetics (e.g., Eveno et al. 2008; Grivet
et al. 2011; Mosca et al. 2012; see also Budde et al. 2014) or
expression studies (Lorenz et al. 2011; Perdiguero et al. 2013),
as well as variants previously associated to wood properties,
cold hardiness, and growth in maritime pine (Pot et al. 2005;
Eveno et al. 2008; Lepoittevin et al. 2012) and other conifers
(González-Martínez et al. 2007, 2008; Eckert et al. 2010a,b).
Many of these genes belong to gene families that have been
associated with adaptive responses in other plants. For instance,
amplicons CL813 and CT2134 contain genes directly involved in
osmotic adjustments that are related to the metabolism of car-
bohydrates in both maritime pine and Arabidopsis (Seki et al.
2002; Pot et al. 2005), while contig 0_11649 encodes for a
b-tubulin, a family of genes whose expression changes under
low temperatures in different plants (Chu et al. 1993; Seki et al.
2002; Perdiguero et al. 2013).

This preselection of genes allowed us to survey many of
the potential targets of selection and climate adaptation in

maritime pine, but it may also have led to ascertainment
bias and to limiting our power to identify selection drivers in
this species (see also Morin et al. 2004; Namroud et al. 2008).
For instance, by selecting candidates from studies not only in
maritime pine but also in other conifers, we assumed that
adaptive processes mostly occur by convergent evolution in
the same set of genes, while there is evidence suggesting that
species adaptation to identical environments may involve sep-
arate genes and a certain number of possible paths (e.g.,
Tenaillon et al. 2012). For example, only 2 of the 18 genes
surveyed in latitudinal clines of two Eurasian boreal spruces
showed identical associations with bud phenology (Chen et al.
2012, 2014), while only 3 outlier genes related to climate were
shared between two sympatric Picea species in eastern Canada
(Prunier et al. 2011). Similar results have been reported for
adaptation to freshwater in sticklebacks (Deagle et al. 2012)
and to high elevation in humans (Bigham et al. 2010). Further
bias may originate from excluding noncoding regions, micro-
RNAs, or copy-number and presence-absence variants (includ-
ing transposon insertions), which have been directly associated
with adaptive responses in many taxa, including conifers
(e.g., González et al. 2008; Yakovlev et al. 2010; Fischer
et al. 2011; Hanikenne et al. 2013). While genome-wide
approaches are appropriate to capture most of this variability,

Figure 2 Examples of allele–climate associations for maritime pine populations at the range-wide scale. (A and D) Scatter plots, (B and E) box plots, and (C and
F) distribution of minor allele frequencies (MAF) are shown for 2 of the 18 potentially adaptive SNPs. Lines within the scatter plots indicate clines of allele
frequencies under a logistic regression model. Boxes denote the interquartile range and horizontal lines within boxes represent genotypic means.
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having a satisfactory representation of the whole segregating
genomic diversity is still a challenge for nonmodel species with
large genomes, such as conifers (e.g., Birol et al. 2013; Nystedt
et al. 2013; see also Tiffin and Ross-Ibarra 2014).

Identifying SNP–climate associations and potential
selection drivers

Complementary statistical analyses were used herein for de-
tecting genotype–climate associations, which should be ade-
quate to minimize the detection of false positives (De-Mita
et al. 2013). Additional support for the adaptive role of the
retained associations (involving 18 SNPs) was obtained from

a common garden experiment under extreme climate. This
strategy (i.e., environmental associations plus common gardens
to evaluate fitness) should enrich traditional association stud-
ies that provide links between genotype and phenotype
(mostly in the form of candidate genes lists), by identifying
some of the genotype–environment relationships involved in
adaptation (i.e., the selection drivers) and by estimating the
fitness effects of ecologically relevant variants (ideally under
multiple environments). It can also provide a much needed
validation step (Ioannidis et al. 2009; König 2011).

Most of the SNPs associated with climate in maritime
pine were related to PC axes loaded by temperature, during

Figure 3 (A) Range-wide and (E and F) regional population differentiation (G9ST) for nuclear SSRs, control SNPs (i.e., putatively neutral), and SNPs
associated with climate across natural populations of maritime pine. (B) Overall genetic diversity (HE) for SNPs associated with climate and control SNPs;
(D) genetic diversity (HE) by SNP type in the different regions. (C) Euclidean distances (d) on climate variability at the regional scale are also shown. Boxes
denote the interquartile range, whiskers the 95% confidence intervals, and horizontal lines within boxes represent genotypic (or climatic) means.
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both the winter and the summer months, and, to a lesser
extent, by winter precipitation. Adaptation to these ele-
ments are critical for assuring survival in plants (Condit et al.
1995), which supports the view that maladaptation to in-
creasing temperature and drought can become an important
source of vulnerability for forests under climate change
(Carnicer et al. 2011; Choat et al. 2012). The overrepresen-
tation of correlations with winter temperatures in our anal-
yses (53% of the total; Table 1) might seem counterintuitive
for a Mediterranean conifer that should be more affected by
drought stress during the summer, according to modeled
distributions (Benito-Garzón et al. 2011). However, the ge-
netic control of growth cessation and cold hardiness is cap-
ital for the survival of many plants, including forest trees
(Tanino et al. 2010; Cooke et al. 2012). Moreover, given that
both freezing and drought trigger analogous physiological
responses in conifers (Bigras and Colombo 2001; Blödner
et al. 2005), the same genes are expected to control (at least
partially) responses to both types of stress (Urano et al. 2010).
Indeed, four of the amplicons whose SNPs were related to
winter temperatures were also overexpressed under drought
conditions in maritime pine (Perdiguero et al. 2013), while
four of these SNPs were also associated with summer PCs,
including a nonsynonymous variant located on a gene coding
for a putative heat-stress transcription factor (m80; Table 1
and Figure 2). This is consistent with results from Arabidopsis
thaliana, where 30 genes were upregulated by both cold tem-
peratures and drought, including four amplicons coding for
heat-shock proteins (Seki et al. 2002). Other genes associated
with environment that are worth highlighting include the
above-mentioned CL813, CT2134, and 0_11649, which were
correlated with winter PCs (Table 1; Seki et al. 2002; Pot et al.
2005), and 4cl-Pt_c. This last gene belongs to the 4cl family,
which is involved in the phenylpropanoid metabolism and the
biosynthesis of lignin (Yun et al. 2005; González-Martínez et al.
2007; Wagner et al. 2009) and has previously exhibited envi-
ronmental associations at the haplotype level in maritime pine
and other Mediterranean pine species (Grivet et al. 2011).

It must be noted, however, that although promising, SNP–
environment correlations alone only hint at the real drivers of
selection and local adaptation. For instance, in maritime pine,
any other factor covarying with extreme temperatures and low

precipitation should exhibit similar correlations with the re-
tained candidate SNPs. Indeed, it can be argued that these
correlations might be biased if the used climate variables are
spatially structured or partially match the genetic structure of
the species. For example, two of the clusters detected for mar-
itime pine visually coincide with the regions of highest average
precipitation (northern Spain and Atlantic France), while the
southeastern Spain gene pool is mostly located in a region with
overly high winter temperatures. Indeed, when nonlinear mod-
els were fitted to explain each climatic PC with either geogra-
phy (latitude and longitude) or genetic structure (the PCs
derived from the SSR and control SNP data sets), significant
correlations were observed for PC-Winter3 (r2= 0.85 for geog-
raphy and r2 = 0.6 for the genetic PCs) and PC-Summer2 (r2=
0.39 for geography and r2 = 0.7 for the genetic PCs; Table S6),
two components loaded by extreme temperatures (Table S2).
Although these results suggest that caution should be taken
when interpreting genetic associations with these two particu-
lar PCs, most of the correlations detected herein (67%)
involved climate components that showed no evidence of be-
ing spatially structured (Table 1 and Table S6), which lends
support to the view that the selected SNPs are effectively as-
sociated with adaptation to climate.

Geographic extent of SNP–climate associations and
modes of adaptation

Alleles from potentially adaptive SNPs were both widely
distributed and locally clumped, while the control (i.e., puta-
tively neutral) ones showed a strong population structure at
the range-wide scale and a lower aggregation at the local level
(Table 1, Figure 1, and Figure 2). Such patterns, together with
the particular biological traits of forest trees, suggest that se-
lection could be acting on the standing genetic variation of
maritime pine and at relatively small geographical scales (see
Eckert et al. 2012 for a similar case in P. contorta). Forest trees
are characterized by large population sizes, extensive gene
flow, and long generation times, which favor the long-
term maintenance of ancestral polymorphisms (Bouillé and
Bousquet 2005; Petit and Hampe 2006); indeed, selection on
standing genetic variation seems to be the rule in these taxa
(Savolainen et al. 2011; Chen et al. 2012; Eckert et al. 2012;
Prunier et al. 2012; Alberto et al. 2013a,b). Such attributes

Figure 4 Scatter plot of average frequency of locally
advantageous alleles in the common garden (Cálcena,
Spain) at each source population and EBLUPs (empiri-
cal best linear unbiased predictors) for survival, a proxy
for fitness. The inset shows the distribution of allelic
effects for the 18 SNPs associated with climate.
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would also allow tree populations to better respond to hetero-
geneous local selection (Kremer et al. 2012), leading to con-
trasted regional adaptive patterns, such as observed herein for
the Atlantic and Mediterranean regions of the Iberian Penin-
sula. The genetic differentiation and diversity of the potentially
adaptive SNPs reflect the environmental variability of these
areas (Figure 3C), which supports the view that there should
be a correlation between the within-population genetic varia-
tion at adaptive traits and the environmental heterogeneity at
the regional scale (Yeaman and Jarvis 2006; Kremer et al.
2012). However, it must be noted that most of the statistical
approaches currently used to identify loci related to local ad-
aptation (including those employed herein) assume that their
alleles exhibit antagonistic pleiotropy (e.g., De Mita et al. 2013;
see review in Tiffin and Ross-Ibarra 2014), that is, that their
variants are beneficial in particular regions of the species range
and deleterious elsewhere. Nevertheless, empirical studies sug-
gest that many alleles contributing to local adaptation in par-
ticular environments are effectively neutral in other regions
(e.g., Anderson et al. 2011; Fournier-Level et al. 2011). Such
conditional neutrality could be an alternative explanation for
the differences observed herein between the Iberian Atlantic
and Mediterranean regions.

Other than the action of selection on standing genetic
variation, it can be argued that selection on newly arisen
variants could have also played a role in modeling the
patterns described above. When a new advantageous
mutation appears and hard selective forces drive it to high
frequency within a few generations, its geographic distribu-
tion is expected to be narrower than that of the alleles
already present in the species gene pool (Hancock et al.
2011). Nonetheless, given enough time and relatively stable
populations, extensive gene flow, such as the one of conifers,
can rapidly spread this variant until matching the patterns of
more ancient alleles (Kremer et al. 2012). Thus, to address
the contribution of de novo adaptive variants, the time scale
and intensity of the selective forces that are currently oper-
ating in maritime pine should be estimated. Such estima-
tions are out of the scope of this study, but taking into
account the selection intensities previously inferred for pu-
tatively adaptive SNPs in other conifers (i.e., s= 0.01 – 0.04;
Prunier et al. 2011; Eckert et al. 2012), an adaptive allele
that arose just after the last glacial maximum (some 10,000
YBP) should currently have a frequency ,0.03, assuming an
average generation time of 50 years. These rough calcula-
tions imply that, because of the use of markers with MAF
.0.05, our strategy should be adequate to account only for
far more ancient mutations or for those that have been fa-
vored by much stronger selection coefficients. Such a case
was recently reported for Norway spruce, where a new var-
iant in the PaFTL2 gene appeared and spread across most of
Fennoscandia in ,6500 years, until reaching frequencies
.0.6 in some modern populations in northern Sweden
(Chen et al. 2012). However, even in this extreme case,
the new advantageous allele did still have a local distribu-
tion (i.e., only Fennoscandia), which is something that was

not observed herein for the SNPs associated with climate in
maritime pine.

Spatially heterogeneous patterns of adaptation can also
be accounted for by demographic history (i.e., the fixation of
lineage-specific polymorphisms by drift), as proposed for
boreal black spruce (Prunier et al. 2012). However, in contrast
to this conifer, overall levels of neutral genetic diversity in
Mediterranean maritime pine were not different across regions
(Figure 3D), thus suggesting similar local demographic histo-
ries, likely modeled by past bottlenecks and local expansions
(Grivet et al. 2011). Furthermore, despite boreal and Mediter-
ranean conifers bearing equally high levels of pollen-driven
gene flow (O’connell et al. 2006; de-Lucas et al. 2008), they
have differential capacities (higher in boreal conifers) for quick
range-shifts following environmental changes (McLeod and
MacDonald 1997; Rubiales et al. 2010; Santos-Del-Blanco
et al. 2012). Thus, it would not be surprising to observe selec-
tion to play contrasting roles on adaptive alleles in these spe-
cies (Kuparinen et al. 2010). Several theoretical and empirical
works (reviewed by Kremer et al. 2012) have shown that fix-
ation of adaptive polymorphisms can be facilitated under rapid
dispersal scenarios, such as for boreal conifers (McLeod and
MacDonald 1997; Savolainen et al. 2011; Chen et al. 2012;
Prunier et al. 2012), while more local expansions, such as those
of Mediterranean taxa (Bucci et al. 2007; Rubiales et al. 2010;
Grivet et al. 2011), should result in allele-frequency divergence
for adaptive variants, particularly under contrasting environ-
ments and by assuming either an antagonistic–pleiotropic or
a conditionally neutral model (see above).

Species evolving under this local-expansion scenario
should also be more sensitive to maladaptation when facing
rapid environmental changes, as suggested herein. Indeed,
when grown in a common garden at the drier extreme of
their climatic breadth, maritime pine populations bearing
low frequency of locally advantageous alleles at potentially
adaptive SNPs showed increased mortality (i.e., lower fitness),
suggesting that different gene pools should exhibit contrasting
responses to climate change (see also Benito-Garzón et al.
2011). Strong selective regimes, such as the one observed in
our common garden, can also foster adaptation and ultimately
result in population persistence when acting concomitantly
with the high reproductive capacity and population growth
of forest trees (Lynch and Lande 1993; Kuparinen et al.
2010; Savolainen et al. 2011). However, it is uncertain whether
a species such as maritime pine, which has a fragmented dis-
tribution and is already at its ecological limit in large parts of
its southern range, can cope with environments that will
quickly become more arid in the near future (Loarie et al.
2009; Bellard et al. 2012; Alberto et al. 2013a).

Integrating molecular predictors into range-shift models

Incorporating fitness proxies to range-shift models based on
occurrence data can substantially change their predictions
(e.g., Kearney et al. 2009; Benito-Garzón et al. 2011; see also
Hoffmann and Sgrò 2011). The results of the present study
suggest that population genomic information (e.g., the frequency
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of beneficial alleles for a particular site identified through envi-
ronmental association) could be a good proxy for fitness and to
be integrated into range-shift models. Moreover, breeding pre-
dictors could be estimated from adaptive marker genotypes for
each particular population/gene pool under different climate
change scenarios, and used to guide future reforestation pro-
grams. A marker-based approach might also simplify the pre-
diction of evolutionary trajectories by considering the underlying
changes in allele frequency of locally selected alleles and their
covariance. Within this framework, new markers from genome-
wide studies could be readily incorporated, thus allowing im-
proved predictive models. The sequencing of the first conifer
reference genomes is a promising step in this direction (Birol
et al. 2013; Nystedt et al. 2013; Neale et al. 2014).

The use of haplotypes can further improve the accuracy
of predictive models that rely solely on the marginal effects
of individual loci (Calus et al. 2008; Eveno et al. 2008; Grivet
et al. 2011), as they allow incorporating epistatic interactions
of alleles (i.e., genetic context), which also affects fitness. This
is of particular interest given that beneficial allele combinations
and common large-effect variants are the first to be captured
after the establishment of new divergent selective forces, as
may be the case for impending climate change, while rarer
variants and small-effect alleles at individual loci are targeted
only after.50 generations (Kremer and Le Corre 2012). In the
absence of adequate LD estimates, genetic context might be
approximated by using allele frequency covariation, but in spe-
cies with strong population genetic structure, such as maritime
pine, the utility of this approach is limited. In such cases, look-
ing for an enrichment of coupling-phase LD among adaptive
alleles might be an alternative, although newly developed
approaches may provide the adequate framework to overcome
these issues more easily (e.g., Berg and Coop 2014). Finally, the
incorporation of epigenetic variation into these predictive mod-
els must also be considered. Epigenetic factors have been
shown to drive a substantial proportion of phenotypic variation
and climate adaptation in Norway spruce (Yakovlev et al.
2010), which seems particularly rich in gene families involved
in DNA and chromatin methylation (Nystedt et al. 2013). Thus,
their role in modulating the expression of key adaptive genes
in this and other taxa, including the candidates retained
herein, still must be surveyed.

In conclusion, we have shown that, while new technology
that allows in-depth studies of the huge conifer genomes is
developed, carefully selected candidate genes can still be
useful in identifying genetic variation underlying adaptation
to climate. Adaptive patterns are expected to vary across
geographically separate gene pools, as observed for the Iberian
Mediterranean and Atlantic ranges of maritime pine. Thus, the
success of programs to preserve biological diversity under
impending climate change will largely depend on our capacity
to identify and understand how adaptive variation in keystone
species is distributed and evolves. Fitness experiments under
extreme environmental conditions, as the one developed
herein, do not only provide much-needed validation to
association and outlier-locus studies but are also a first step

to integrate this knowledge into ecological models to foretell
the fate of modern populations and species.
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Figure S1   Bayes Factors (BFs) describing the deviation of the genotype‐environment associations of 266 putative 
candidate SNPs from a null demographic model (i.e. a co‐variance matrix built with 1,745 control SNPs) obtained from 
BAYENV 2.0. Red dots are those SNPs above the BF=10 threshold (horizontal discontinuous line), and which were assumed 
to be significantly associated with climate. 
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Figure S2   Scatterplot of the population scores for the first three principal components derived from the variation of 
nine nuclear SSRs on 36 natural stands of maritime pine. 
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Figure S3   Scatterplot of the population scores for the first three principal components derived from the (A) winter and 
(B) summer climate variation of 36 natural stands of maritime pine. 
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Figure S4   (continued in next page) 
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Figure S4   Allele‐climate associations obtained for maritime pine populations in Mediterranean Spain. (A, C, E, G, I) 
Scatterplots and (B, D, F, H, J) box‐plots are shown for all SNPs exhibiting significant associations (see main text). Lines 
within scatterplots indicate clines of allele frequencies under a logistic regression model. Boxes denote the interquartile 
range and horizontal lines within boxes represent genotypic means. 
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File S1 

Performance of the covariance matrix in null models of Bayesian environmental association using BAYENV 2.0 

 

When performing Bayesian association analyses, it is important to verify that the covariance matrix captures adequately 

the underlying population structure of the taxon of interest (Coop et al. 2009; Günther and Coop 2013). Herein, this 

matrix was built from variation at 1,745 control SNPs that were assumed to be good representatives of the whole‐

genome neutral variation of maritime pine (see Materials and Methods in the main text). Control and candidate SNP 

markers had similar allele frequency distributions, as shown by a Kolmogorov‐Smirnov test. In particular, control SNPs 

did not seem to be enriched by rare or common alleles, which could have indicated different levels of purifying selection 

(see Nielsen 2005). However, given the absence of factual information concerning their neutrality, some unnoticed non‐

stochastic bias might be present in the covariance matrix derived from these markers, as virtually any gene‐derived SNP 

is a potential target of selective processes. For instance, if some of these SNPs were involved in the same adaptive 

processes aimed to be detected, they may have modified the covariance matrix in a way that does not fully represent 

the underlying neutral population structure, and thus would have reduced the statistical power for environmental 

associations.  

To validate this covariance matrix, three different comparisons were performed. First, the matrices produced by 

each BAYENV 2.0 run were compared to each other with correlation tests, which were all highly significant (mean r2 = 

0.943; P < 0.0001), indicating that independent runs were converging to similar results. These covariance matrices were 

afterwards converted into correlation matrices using the cov2cor function in R and compared to a pairwise‐FST matrix 

derived from this same SNP dataset and to a second matrix derived from SSR markers. Again, the correlation between 

matrices was extremely high (mean r2 = 0.974; P < 0.001 for the SNP‐FST matrix; mean r2 = 0.812; P < 0.005 for the SSR 

one), implying that the covariance matrices were reflecting similar population differentiation values than the FST 

statistics. Finally, two independent STRUCTURE analyses were performed for the control‐SNP and SSR datasets and their Q‐

matrices were correlated. For both types of markers, the best partition was that of six genetic groups (Figure 1), which 

matched perfectly those previously reported in other studies of this species (Bucci et al. 2007; Santos‐del‐Blanco et al. 

2012). The correlation coefficients (Pearson’s r) between the Q‐matrices were relatively high and significant (correlation 

coefficients of 0.662; P < 0.01), although the groups obtained from the SNP dataset appeared better resolved (i.e. with 

less admixed individuals) than those determined with SSRs (see Figure 1). This is probably due to lower homoplasy and 

higher number of markers in the SNP dataset, which then should be more adequate to capture the underlying 

population structure of maritime pine than SSRs. This finding strongly supports our choice of the SNP dataset (and not 
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the SSRs) to compute the covariance matrix in null models for Bayesian association analyses. It also explains why 

correlation coefficients at the individual level are just moderately high between SNP and SSR Q‐matrices. 
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File S2 

Design file for the 384‐SNP (Single Nucleotide Polymorphism) candidate gene OPA used to genotype 36 populations of 

maritime pine (Pinus pinaster) 

 

File S2 is available for download as an Excel file at 

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.173252/‐/DC1 
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Table S1   Mean and standard errors for the number of individuals genotyped (N), the observed number of alleles (Na), the effective number of alleles (Ne), the observed (Ho) 

and expected (HE) heterozygosity, and the consanguinity index (F) estimated for 36 populations of maritime pine (Pinus pinaster) with 12 microsatellite loci. The number of 

populations deviating from Hardy‐Weinberg Equilibrium (HWE) at P < 0.01 is shown in the last column. Shaded loci were removed from further analyses. 

  N    Na Ne Ho   HE F

Locus  Mean  SE    Mean SE Mean SE Mean SE    Mean SE Mean SE HWEa

A6F03  19.436  2.092    4.667 0.189 2.854 0.115 0.568 0.021    0.622 0.019 0.075 0.028 4

3pet  10.846  1.503    5.923 0.707 3.884 0.459 0.568 0.060    0.572 0.059 0.006 0.021 5

NZPR1078  19.231  2.001    3.154 0.086 2.366 0.073 0.609 0.023    0.560 0.015 ‐0.091 0.033 1

NZPR544  19.410  2.059    2.359 0.107 1.881 0.046 0.316 0.025    0.457 0.013 0.311 0.049 12 (0.312)

ctg4363  20.487  2.125    4.154 0.174 2.701 0.082 0.650 0.024    0.617 0.011 ‐0.053 0.035 3

rptest1  19.923  2.142    3.692 0.133 2.770 0.115 0.646 0.024    0.612 0.018 ‐0.057 0.027 1

ctg275  20.385  2.142    7.949 0.380 4.090 0.229 0.649 0.027    0.721 0.018 0.097 0.033 12 (0.191)

2669  19.795  2.052    4.026 0.231 1.985 0.099 0.448 0.034    0.442 0.030 ‐0.013 0.031 5

epi5  19.077  2.090    3.128 0.192 1.605 0.071 0.274 0.026    0.333 0.027 0.133 0.047 2

epi6  15.974  1.325    3.974 0.239 2.499 0.157 0.298 0.031    0.553 0.031 0.458 0.041 19 (0.283)

gPp14  19.513  2.048    2.923 0.129 1.605 0.075 0.315 0.028    0.329 0.028 0.016 0.035 3

epi3  18.538  2.072    5.154 0.274 2.953 0.153 0.621 0.029    0.634 0.015 0.027 0.034 4

aAverage null‐allele frequency for discarded loci in populations deviating from HWE is given between parentheses, as estimated with MICRO‐CHECKER software 
(vanOosterhout et al. 2004). 
 
Literature cited: vanOosterhout, C., W. F. Hutchinson, D. P. M. Willis, and P. Shipley, 2004 Micro‐checker: software for identifying and correcting genotyping errors in 
microsatellite data. Mol. Ecol. Notes 4: 535‐538. 
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Table S2   Percentage of the variance explained (% Variance), factor loads, and population scores for the top‐three principal 

components summarizing winter (December to March) and summer (June to September) climatic variation in 36 populations of 

maritime pine (Pinus pinaster). 

    Winter   Summer

    PC1 PC2 PC3 PC1  PC2  PC3

% Variance     67.861 20.981 7.462 61.752  27.838 6.299

Factor       

Mean Temperature ‐ December    0.966 ‐0.132 ‐0.002 ‐‐‐  ‐‐‐  ‐‐‐

Mean Temperature ‐ January    0.980 ‐0.148 ‐0.087 ‐‐‐  ‐‐‐  ‐‐‐

Mean Temperature ‐ February    0.982 ‐0.175 0.015 ‐‐‐  ‐‐‐  ‐‐‐

Mean Temperature ‐ March    0.949 ‐0.235 0.020 ‐‐‐  ‐‐‐  ‐‐‐

Highest Temperature ‐ December    0.927 ‐0.063 0.291 ‐‐‐  ‐‐‐  ‐‐‐

Highest Temperature ‐ January    0.869 ‐0.090 0.468 ‐‐‐  ‐‐‐  ‐‐‐

Highest Temperature ‐ February    0.717 ‐0.198 0.580 ‐‐‐  ‐‐‐  ‐‐‐

Highest Temperature ‐ March    0.941 ‐0.089 0.209 ‐‐‐  ‐‐‐  ‐‐‐

Lowest Temperature ‐ December    0.911 ‐0.197 ‐0.352 ‐‐‐  ‐‐‐  ‐‐‐

Lowest Temperature ‐ January    0.927 ‐0.206 ‐0.306 ‐‐‐  ‐‐‐  ‐‐‐

Lowest Temperature ‐ February    0.914 ‐0.212 ‐0.314 ‐‐‐  ‐‐‐  ‐‐‐

Lowest Temperature ‐ March    0.921 ‐0.191 ‐0.325 ‐‐‐  ‐‐‐  ‐‐‐

Mean Precipitation ‐ December    0.527 0.832 ‐0.018 ‐‐‐  ‐‐‐  ‐‐‐

Mean Precipitation ‐ January    0.489 0.862 ‐0.007 ‐‐‐  ‐‐‐  ‐‐‐

Mean Precipitation ‐ February    0.428 0.843 0.004 ‐‐‐  ‐‐‐  ‐‐‐

Mean Precipitation ‐ March     0.514 0.820 ‐0.067 ‐‐‐  ‐‐‐  ‐‐‐

Mean Temperature ‐ June    ‐‐‐ ‐‐‐ ‐‐‐ 0.882  0.356 0.200

Mean Temperature ‐ July    ‐‐‐ ‐‐‐ ‐‐‐ 0.973  ‐0.050 0.138

Mean Temperature ‐ August    ‐‐‐ ‐‐‐ ‐‐‐ 0.979  0.055 0.126

Mean Temperature ‐ September    ‐‐‐ ‐‐‐ ‐‐‐ 0.816  0.511 0.104

Highest Temperature ‐ June    ‐‐‐ ‐‐‐ ‐‐‐ 0.879  ‐0.316 0.305

Highest Temperature ‐ July    ‐‐‐ ‐‐‐ ‐‐‐ 0.803  ‐0.546 0.208

Highest Temperature ‐ August    ‐‐‐ ‐‐‐ ‐‐‐ 0.842  ‐0.489 0.213

Highest Temperature ‐ September    ‐‐‐ ‐‐‐ ‐‐‐ 0.893  ‐0.238 0.292

Lowest Temperature ‐ June    ‐‐‐ ‐‐‐ ‐‐‐ 0.414  0.887 ‐0.022

Lowest Temperature ‐ July    ‐‐‐ ‐‐‐ ‐‐‐ 0.590  0.780 ‐0.069

Lowest Temperature ‐ August    ‐‐‐ ‐‐‐ ‐‐‐ 0.576  0.795 ‐0.078

Lowest Temperature ‐ September    ‐‐‐ ‐‐‐ ‐‐‐ 0.346  0.918 ‐0.112

Mean Precipitation ‐ June    ‐‐‐ ‐‐‐ ‐‐‐ ‐0.855  0.083 0.439

Mean Precipitation ‐ July    ‐‐‐ ‐‐‐ ‐‐‐ ‐0.877  0.281 0.302

Mean Precipitation ‐ August    ‐‐‐ ‐‐‐ ‐‐‐ ‐0.789  0.442 0.374
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Mean Precipitation ‐ September     ‐‐‐ ‐‐‐ ‐‐‐ ‐0.718  0.464 0.455

Population  Country    

Hourtin  France  ‐0.020 ‐0.390 ‐0.538 ‐1.760  1.482 0.943

Leverdon  France  ‐0.376 ‐0.670 ‐0.896 ‐1.447  1.593 0.488

Mimizan  France  1.440 0.315 0.108 ‐2.198  2.250 2.205

Olonne sur Mer  France  ‐0.863 ‐0.540 ‐1.626 ‐2.395  1.209 ‐0.676

Petrocq  France  1.414 0.380 0.113 ‐2.228  2.269 2.284

Pleucadec  France  ‐1.990 ‐0.300 ‐1.927 ‐3.886  0.368 ‐1.370

St‐Jean des Monts  France  ‐0.866 ‐0.471 ‐1.626 ‐2.629  1.027 ‐0.800

Alto de la Llama  Spain  0.250 1.066 ‐0.491 ‐3.580  ‐0.714 ‐0.810

Armayán  Spain  0.235 0.818 0.169 ‐3.134  ‐0.640 ‐0.383

Cadavedo  Spain  3.377 0.502 ‐0.196 ‐3.718  1.747 0.129

Sierra de Barcia  Spain  3.123 0.753 ‐0.209 ‐3.821  1.446 ‐0.100

Castropol  Spain  2.476 0.102 ‐0.184 ‐4.465  0.576 ‐0.543

Lamuño  Spain  3.643 0.342 ‐0.277 ‐3.111  2.093 ‐0.049

Puerto de Vega  Spain  3.384 0.199 0.069 ‐3.149  1.732 0.303

Rodoiros  Spain  2.126 2.486 ‐0.984 ‐5.861  0.260 ‐0.260

San Cipriano de Ribaterme  Spain  1.915 3.717 0.025 ‐2.063  ‐1.495 0.296

Leiria  Portugal  5.809 ‐1.742 0.065 1.149  1.582 ‐2.328

Pineta  France (Corsica) 3.006 ‐2.410 ‐1.465 3.803  3.400 ‐1.500

Pinia  France (Corsica) 3.188 ‐2.479 ‐0.904 3.947  3.266 ‐1.108

Tabuyo del Monte  Spain  ‐6.793 1.849 ‐1.309 ‐3.328  ‐1.461 1.535

Arenas de San Pedro  Spain  1.213 2.568 1.372 4.554  ‐1.084 2.135

Valdemaqueda  Spain  ‐2.344 ‐0.548 ‐0.126 1.681  ‐1.214 ‐0.339

Cenicientos  Spain  ‐1.699 ‐0.071 ‐1.018 1.941  ‐0.123 ‐0.996

Coca  Spain  ‐2.842 ‐1.725 1.224 2.042  ‐2.668 0.641

Cuellar  Spain  ‐2.915 ‐1.405 1.082 1.975  ‐2.861 0.590

Bayubas de Abajo  Spain  ‐5.089 ‐0.448 ‐0.127 ‐0.406  ‐3.358 0.008

San Leonardo  Spain  ‐6.337 1.121 ‐0.683 ‐2.916  ‐4.342 ‐0.540

Boniches  Spain  ‐3.909 ‐0.146 ‐0.766 0.014  ‐1.770 ‐0.092

Olba  Spain  ‐2.068 ‐2.192 0.565 0.736  ‐0.146 0.257

Sinarcas  Spain  ‐2.963 ‐1.836 0.041 1.554  0.215 ‐0.242

Sierra Calderona  Spain  ‐1.294 ‐2.118 ‐0.064 1.584  1.339 ‐0.410

Quatretonda  Spain  3.256 ‐1.819 1.889 4.210  1.295 0.944

Cazorla   Spain  ‐2.020 4.007 0.061 0.922  ‐2.711 0.002

Oria  Spain  ‐1.341 ‐2.193 1.204 3.574  ‐1.543 ‐0.429

Tamrabta  Morocco  ‐4.910 1.378 1.428 0.604  ‐3.725 ‐0.828

Tabarka  Tunisia  7.272 ‐1.045 1.043 8.234  3.671 0.930
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Table S3   Strength of genotype‐environment correlations (Akaike Information Criterion in multivariate logistic models –mlr,  

P‐values in latent factor mixed models, and Bayes Factors in Bayesian environmental associations with BAYENV 2.0) for 18 

maritime pine SNPs associated with climate. 

SNP name  

(number; see Fig. S1) 

Climate PC  mlr LFMM BAYENVa 

AIC P BF1  BF2

m783 (227)  PC‐Winter1  21.6 1.28 × 10‐19 36.81  39.64

m8 (89)  PC‐Winter1  9.3 5.95 × 10‐19 26.43  25.62

m1513 (53)  PC‐Summer2  15.4 1.29 × 10‐15 29.41  33.84

m1250 (142)  PC‐Winter2  29.7 9.09 × 10‐20 34.46  38.03

m80 (218)  PC‐Summer2  7.3 2.18 × 10‐23 22.31  21.04

m80 (218)  PC‐Winter1  12.4 8.95 × 10‐25 40.84  38.89

m1309 (176)  PC‐Winter1  10.1 5.69 × 10‐21 25.37  24.12

m100 (93)  PC‐Winter3  13.6 8.21 × 10‐11 29.13  27.48

m100 (93)  PC‐Summer2  9.6 9.96 × 10‐13 18.46  15.84

m973 (118)  PC‐Winter2  10.2 7.65 × 10‐11 12.33  12.98

m137 (46)  PC‐Summer1  7.3 8.73 × 10‐15 20.31  18.44

m607 (194)  PC‐Winter3  18.5 4.12 × 10‐15 16.78  18.44

m1156 (131)  PC‐Winter1  16.4 1.24 × 10‐11 14.16  13.96

m1211 (159)  PC‐Winter1  22.8 2.34 × 10‐24 15.26  14.01

m646 (19)  PC‐Winter1  11.6 3.93 × 10‐21 17.29  15.52

m657  (238)  PC‐Winter1  15.9 2.21 × 10‐23 20.11  18.34

m658 (47)  PC‐Summer2  32.1 5.45 × 10‐19 21.91  22.43

m685 (41)  PC‐Winter2  16.0 7.52 × 10‐11 14.32  12.97

m685 (41)  PC‐Summer3  19.8 3.78 × 10‐16 12.58  11.86

m1196  (238)  PC‐Winter2  24.3 2.33 × 10‐14 14.87  16.12

m705 (127)  PC‐Summer2  13.6 3.18 × 10‐15 14.31  15.96

aResults are shown for two independent BAYENV 2.0 runs made with a covariance matrix built using 1,745 
control SNPs (see Materials and Methods for more details). 
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Table S4   Single‐locus regressions of advantageous‐allele frequency with survival estimated under extreme climate 

conditions for each of 18 SNPs associated with climate in maritime pine (Pinus pinaster). 

 

SNP name   Advantageous 

allele  

DF F P Adj‐r2 

m783   A  17 4.037 0.061 0.144 

m8   A  17 5.773 0.028 0.210 

m1513   C  17 5.182 0.036 0.188 

m1250   A  17 0.095 0.762 ‐0.053 

m80   A  17 7.178 0.016 0.256 

m1309   G  17 7.865 0.012 0.276 

m100   A  17 3.929 0.064 0.140 

m973   G  17 1.976 0.178 0.051 

m137   G  17 0.133 0.720 ‐0.051 

m607   C  17 2.083 0.167 0.057 

m1156   G  17 0.085 0.774 ‐0.054 

m1211   C  17 8.380 0.010 0.291 

m646   G  17 0.802 0.383 ‐0.011 

m657   A  17 5.891 0.027 0.214 

m658   G  17 0.825 0.376 0.046 

m685   A  17 2.484 0.133 0.076 

m1196   C  17 2.284 0.149 0.067 

m705   A  17 5.485 0.032 0.200 
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Table S5   Correlation between the 18 SNPs that best explained each Principal Component (PC) in a PCA including all 266 

candidate‐gene SNPs and survival estimates obtained in a common garden under extreme (dry and hot) climate; ns: not 

significant. 

 

Principal Components  % variance explained Pearson’s correlation coefficient (r) 

PC1  24.30 0.28 (ns)

PC2  15.55 0.27 (ns)

PC3  10.23 ‐0.41 (ns)

PC4  9.16 0.26 (ns)
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Table S6   Correlation coefficients for the non‐linear models that best fitted the climate principal components (see Table S2) 

of maritime pine (Pinus pinaster) populations with their geographic location (latitude and longitude) and population structure 

loads (control SNP and SSR datasets). ** P < 0.01 

 

Climate PC  Geography

(latitude ‐ longitude) 

Population Structure 

PC‐Winter1  0.176 0.179

PC‐Winter2  0.140 0.153

PC‐Winter3  0.849** 0.593**

PC‐Summer1  0.196 0.181

PC‐Summer2  0.392** 0.706**

PC‐Summer3  0.110 0.114

 

 

 

 

 

 

 

 

 

 

 

 

 

   


