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ABSTRACT The ability of the site-frequency spectrum (SFS) to reflect the particularities of gene genealogies exhibiting multiple mergers
of ancestral lines as opposed to those obtained in the presence of population growth is our focus. An excess of singletons is a well-
known characteristic of both population growth and multiple mergers. Other aspects of the SFS, in particular, the weight of the right
tail, are, however, affected in specific ways by the two model classes. Using an approximate likelihood method and minimum-distance
statistics, our estimates of statistical power indicate that exponential and algebraic growth can indeed be distinguished from multiple-
merger coalescents, even for moderate sample sizes, if the number of segregating sites is high enough. A normalized version of the SFS
(nSFS) is also used as a summary statistic in an approximate Bayesian computation (ABC) approach. The results give further positive
evidence as to the general eligibility of the SFS to distinguish between the different histories.
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THE site-frequency spectrum (SFS) at a given locus is one
of the most important and popular statistics based on

genetic data sampled from a natural population. In combi-
nation with the postulation of the assumptions of the infinitely-
many-sites mutation model (Watterson, 1975) and a suitable
underlying coalescent framework, the SFS allows one to draw
inferences about evolutionary parameters, such as coalescent
parameters associated with multiple-merger coalescents or
population-growth models.

The Kingman coalescent, developed by Kingman (1982a,
b,c), Hudson (1983a,b), and Tajima (1983), describing the
random ancestral relations among DNA sequences drawn
from natural populations, is a prominent and widely used
model from which one can make predictions about genetic
diversity. Many quantities of interest, such as the expected
values and covariances of the SFS associated with the King-
man coalescent, are easily computed thanks to results by Fu

(1995). The robustness of the Kingman coalescent is quite
remarkable; indeed, a large number of genealogy models
can be shown to have the Kingman coalescent or a variant
thereof as their limit process (cf., e.g., Möhle 1998). A large
volume of work is thus devoted to inference methods based
on the Kingman coalescent [see, e.g., Donnelly and Tavaré
(1995), Hudson (1990), Nordborg (2001), Hein et al. (2005),
and Wakeley (2007) for reviews].

However, many evolutionary histories can lead to signif-
icant deviations from the Kingman coalescent model. Such
deviations can be detected using a variety of statistical tools,
such as Tajima’s D (Tajima 1989a), Fu and Li’s D (Fu and Li
1993), and Fay and Wu’s H (Fay and Wu 2000), which are
all functions of the SFS. However, they do not always allow
one to identify the actual evolutionary mechanisms leading
to such deviations. Developing statistical tools that allow
one to distinguish between different evolutionary histories
is therefore of fundamental importance.

This work focuses on properties of the (folded and
unfolded) SFS in the infinitely-many-sites model for three
population histories: (1) classical Kingman coalescent, (2)
population growth, in particular, exponential population
growth, and (3) high fecundity coupled with skewed offspring
distributions (HFSODs), resulting in gene genealogies being
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described by so-called Lambda-coalescents (Sagitov 1999;
Pitman 1999; Donnelly and Kurtz 1999). Briefly, multiple-
merger coalescents may be more appropriate for organisms
exhibiting HFSODs than the Kingman coalescent (cf., e.g.,
Beckenbach 1994; Árnason 2004; Eldon and Wakeley 2006;
Sargsyan and Wakeley 2008; Hedgecock and Pudovkin 2011)
[see also the review by Tellier and Lemaire (2014)].

Recent population growth as well as multiple-merger
coalescents may lead to an excess of singletons in the SFS
compared with the classical Kingman coalescent–based SFS,
which e.g., contributes to shifting Tajima’s D values (Tajima
1989b) to the negative. Indeed, Durrett and Schweinsberg
(2005) proved that Tajima’s Dwill be negative, at least for large
sample size, under fairly general multiple-merger coalescents.

The associated genealogical trees are, however, qualita-
tively different. While moderate fluctuations in population
size lead to a time change of the Kingman coalescent (Kaj
and Krone 2003), multiple-merger coalescents by definition
change the topology of the genealogical tree. There is thus
hope that each demographic effect leaves specific signatures
in the resulting SFS not only with respect to an excess of
singletons but also, e.g., with respect to its right tail.

Indeed, one observes that the Kingman coalescent will
not be a good match to genetic data containing a large frac-
tion of singleton polymorphisms (relative to the total number
of polymorphisms) because of a lack of free (coalescent)
parameters as opposed to multiple-merger and population-
growth models, both of which can predict an excess of
singletons. Encouragingly, multiple-merger and population-
growth models exhibit noticeable differences in the
bulk of the site-frequency spectrum, in particular, in the
lumped tail (Figure 1; see also Figures 4 and S2 in Neher
and Hallatschek 2013. (Neher and Hallatschek 2013).
In Figure 1, the normalized expected spectrum uðn;PÞ

i [see
Equation (2)] for a given coalescent P, i.e., the expected
spectrum scaled by the expected total number of segregating
sites, is compared for different multiple-merger coalescents
[B = beta-coalescents (Schweinsberg, 2003) or D = Dirac
coalescents (Eldon and Wakeley, 2006)] and exponential
(E) and algebraic (A) growth models leading to time-
changed Kingman coalescents for sample size (number of
leaves) n as shown. Details for these coalescent models
are given at the beginning of File S1. The first five classes
(representing relative length of external branches, two-leaf
branches, etc.) are shown, with classes from six onward
collected together (labeled 5+). In Figure 1, the relative
external branch lengths were matched between the different
coalescent processes. Even though the relative external
branch lengths and, by implication, the number of singletons
relative to the total number of segregating sites can be
matched between the different processes, the collapsed tail
(group 5+ in Figure 1) differs noticeably between the multiple-
merger coalescents and the growth models. One also ob-
serves that the parameters have been chosen to match
uðn;PÞ
1 for P 2 fA;D;Eg with uðn;BÞ

1 when a = 1, where a is
the coalescent parameter associated with B. Thus, uðn;BÞ

1 is

maximized for the given n (because a 2 ½1; 2�), but uðn;DÞ
1 ,

uðn;EÞ
1 , and uðn;AÞ

1 all can increase by increasing the relevant
parameters (c, b, or g).

Matching the relative external branch lengths uðn;PÞ
1 [see

Equation 2] and observing how the rest of the normalized
expected spectrum behaves, as illustrated in Figure 1, give
hope that multiple-merger processes may be distinguished
from (at least) particular population-growth models with
adequate statistical power. In the limit of large n, for the
Kingman coalescent, uðn;KÞ

1 ¼ O½1=logðnÞ�.
Inference methods for distinguishing population growth

from the usual Kingman coalescent have been studied
extensively (see, e.g., Tajima 1989a; Slatkin and Hudson
1991; Rogers and Harpending 1992; Kaj and Krone 2003;
Sano and Tachida 2005). Simulation-based work includes
Ramírez-Soriano et al. (2008), who considered the statistical
power of several tests under population size increase and de-
crease and the impact of recombination. Ramos-Onsins and
Rozas (2002) considered the statistical power of statistics
based on the site-frequency spectrum to distinguish determin-
istic population growth from the Kingman coalescent. On the
theoretical side, Myers et al. (2008), Bhaskar and Song (2014),
and Kim et al. (2014) considered principal questions of identi-
fiability of demographic histories. In particular, Bhaskar and
Song (2014) showed theoretically that complete knowledge
of the SFS for large sample sizes carries enough information
to fully recover demographic history under mild assumptions
on the possible fluctuations of the demography.

Detecting multiple-merger coalescents in populations
deviating from the Kingman coalescent assumptions is a
relatively new direction of research. Indeed, deriving in-
ference methods based on multiple-merger coalescents has
only just begun (Eldon and Wakeley 2006; Birkner and
Blath 2008; Eldon 2011; Birkner et al. 2011, 2013a, b;
Steinrücken et al. 2013; Rödelsperger et al. 2014; Koskela
et al. 2015). In particular, Birkner et al. (2013b) obtained
recursions for the expected site-frequency spectrum associ-
ated with Lambda-coalescents. In this work, we address the
issue of distinguishing multiple-merger coalescents from ex-
ponential population growth by proposing statistical tests
based on the (normalized) SFS, estimating statistical power
for interval hypotheses via simulation. Because we can only
work with approximate likelihood functions and our meth-
ods, in particular, the so-called fixed-s method, can be sen-
sitive to an (unknown) true coalescent mutation rate u/2,
we complement our analysis by an approximate Bayesian
computation approach (ABC) (Rubin 1984; Tavaré et al.
1997; Pritchard et al. 1999; Cucala and Marin 2013; Baragatti
and Pudlo 2014).

Materials and Methods

Basic properties of the site-frequency spectrum

Consider a sample of n DNA sequences taken at a given
genetic locus, and assume that we can distinguish between
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derived (new mutations) and ancestral states. For n 2 ℕ, let
n := {1,. . .,n} {1, . . ., n}. We denote by jðnÞi the total number
of sites at which the mutant base appears i 2 [n 2 1] times.
Then

jðnÞ :¼
�
j
ðnÞ
1 ; . . . ; j

ðnÞ
n21

�

is referred to as the unfolded site-frequency spectrum based
on the n DNA sequences. If mutant and wild type cannot
be distinguished, one often considers the folded spectrum
hðnÞ :¼ ðhðnÞ

1 ; . . . ;h
ðnÞ
ºn=2cÞ, where ancestral and derived states

are not distinguished and hence

h
ðnÞ
i :¼ j

ðnÞ
i þ j

ðnÞ
n2i

1þ di;n2i
; 1# i# ºn=2c

(Fu 1995), where di; j = 1 if i = j and 0 otherwise. In this
study, we will mostly be concerned with the unfolded
site-frequency spectrum. Define z

ðnÞ
i :¼ j

ðnÞ
i =
��jðnÞ��, where��jðnÞ�� :¼ j

ðnÞ
1 þ⋯þ j

ðnÞ
n21 denotes the total number of segre-

gating sites. Thus, zðnÞ ¼ ðzðnÞ1 ; . . . ; z
ðnÞ
n21Þ is the “normalized”

unfolded SFS (nSFS), with the convention that zðnÞ ¼ 0 in
the trivial case of complete absence of segregating sites
ð��jðnÞ�� ¼ 0Þ.

In order to compute expected values, variances, and
covariances of the SFS, an explicit underlying probabilistic
model is needed. In the following, we assume that the
genealogy of a sample can be described by a coalescent
process, more precisely by either (a time change of) the
Kingman coalescent or a multiple-merger coalescent. In
addition, the infinitely-many-sites mutation model (Watterson
1975) is assumed, and mutations are modeled by a Pois-
son process on the coalescent branches with rate u/2. With
this parameterization, the expected number of segregating

sites in a sample of size 2, and hence the expected number
of pairwise differences in a sample from the population,
equals u.

Closed-form expressions for the expected values and
(co-)variances of jðnÞ have been determined by Fu (1995)
when associated with the Kingman coalescent. One can rep-
resent the expected values of jðnÞ in a unified way using the
results of Griffiths and Tavaré (1998), Kaj and Krone
(2003), and Birkner et al. (2013b), which allow one to treat
the expected values (and covariances) of the SFS for all
coalescent models in question.

Let PðnÞ ¼ ðPðnÞ
t ; t$ 0Þ be a (partition-valued exchange-

able) coalescent process started from n leaves (partition
blocks) corresponding to the random genealogy of a sample
of size n. By discussing leaves rather than DNA sequences,
we are emphasizing our viewpoint of the genealogy as a ran-
dom graph, where the leaves are a particular kind of vertex.
Our interest is in the topology of the genealogy and how it is
reflected in the associated site-frequency spectrum.

If the initial number of leaves is not specified, we simply
speak of P. One may think of P as the Kingman coalescent,
but the point is that the following result will also stay true
for externally time-changed Kingman coalescents as well as
multiple-merger coalescents (a.k.a. Lambda- or Xi-coalescents
in the mathematical literature) and even externally time-
changed multiple-merger coalescents.

Given n and a coalescent model P, let ðY ðnÞ
t Þt$0 be the

block-counting process of the underlying coalescent P(n)

started from n lineages; i.e., Y ðnÞ
t gives the number of ances-

tral lines (blocks) present/active at (backward) time t. For
2# k, n , let TðnÞ

k be the random amount of time that
ðY ðnÞ

t Þt$ 0 spends in state k. Given a coalescent P(n) started
from n (unlabeled) lineages, denote by p(n),P[k, i] as the
probability that conditional on the event that Y ðnÞ

t ¼ k for

Figure 1 Matching uðn;PÞ
1 [see Equation 2] for the different coalescent processes P 2 {A, B, D, E} with number of leaves n as shown. Expected values

were computed exactly. The processes and their associated parameters are algebraic growth (A, g), beta(2 2 a, a)-coalescent (B, a), Dirac coalescent
(D, c), and exponential growth (E, b). The values with label 5+ represent the collapsed tail

P
i. 5u

ðn;PÞ
i .
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some time point t a given one of the k blocks subtends
exactly i 2 [n 2 1] leaves. A general representation of
E
P;u½jðnÞi � is then

E
P;u
h
j
ðnÞ
i

i
¼ u

2

Xn2iþ1

k¼2

pðnÞ;P½k; i� � k � EP
h
TðnÞ
k

i
; i 2 ½n2 1�

(1)

The normalized expected SFS uðn;PÞ
i for i 2 [n 2 1] is de-

fined as

uðn;PÞ
i ¼

Pn2iþ1
k¼2 pðnÞ;P½k; i� � k � EP

h
TðnÞ
k

i
Pn

ℓ¼2ℓ  E
P
h
TðnÞ
ℓ

i (2)

where the denominator in Equation 2 is the expected total
tree length when starting from n leaves. One can interpret the
quantity uðn;PÞ

i as the probability that a mutation, under the
infinitely-many-sites assumption and the coalescent model P,
with known ancestral types, appears i times in a sample of
size n. Importantly, uðn;PÞ

i is not a function of the mutation rate,
unlike E

P;u½jðnÞi �. One also can view uðn;PÞ
i as a first-order

approximation of the expected value E
P;u½zðnÞi � of the nSFS.

As examples for P, we will consider the classical Kingman
coalescent (K), exponential (E) and algebraic (A) growth
models, and the beta(2 2 a, a) (B) and Dirac (D) multiple-
merger coalescents, as shown in File S1. Simulations suggest
that uðn;BÞ

i is a good approximation of EB;u½zðnÞi � when a is not
too close to 1 and n and u are not too small (Birkner et al.
2013b). Similar conclusions hold in the case of exponential
and algebraic growth (results not shown).

One can use the recursive formulas obtained by Birkner
et al. (2013b) to compute EP;u½jðnÞi � associated with Lambda-
coalescents. To compute uðn;PÞ

i associated with growth mod-
els, we use the results of Polanski and Kimmel (2003),
whose recursions are given in File S1.

A comparison of the observed z
ðnÞ
i (instead of jðnÞi ) with

an expected value E
P;u½zðnÞi �—obtained under a particular

coalescent model P—enables one to do inference without
having to jointly estimate the mutation rate u using, e.g.,
a minimum-distance statistic. Indeed, it appears that under
any coalescent model P, E

P;u½zðnÞi � is almost constant as
a function of the mutation rate u (unless u is very small);
we provide some evidence for this in Equation S20 in File S1.
Unfortunately, there seems to be no explicit way of represent-
ing E

P;u½zðnÞi � as a simple function of the associated coalescent
parameters and sample size n. As mentioned earlier, one may
instead work with uðn;PÞ

i .

Time scales, segregating sites, and mutation rates

The choice of a multiple-merger coalescent model (i.e., demo-
graphic history) P and its underlying parameters strongly
affects classical estimates of the coalescent mutation rate
u/2 (i.e., the Poisson rate at which mutations appear on co-
alescent branches). Assume without loss of generality for all
multiple-merger coalescents in question that the underlying

coalescent measure L is always a probability measure: this
normalization fixes the coalescent time unit as the expected
time to the most recent common ancestor of two individuals
sampled uniformly from the population.

Given an observed number of segregating sites S in a sample
of size n, a common estimate û

P
of the scaled mutation rate

u associated with coalescent model P is the Watterson esti-
mate, i.e.,

û
P :¼ 2S

E
P
h
BðnÞ

i (3)

where EP½BðnÞ� is the expectation of the total tree length B(n)

of an (n-)coalescent modelP. One can, of course, also estimate
u as a (different) linear combination of the site-frequency
spectrum [cf. Achaz (2009) in the case of the Kingman
coalescent]. Using the recursions for E

P;u½jðnÞi � obtained
by Birkner et al. (2013b), one also can estimate u using
either Equation 3 or a linear combination of the expected
SFS in the case of a Lambda-coalescent.

Given an estimate û
P

and knowledge of the mutation/
substitution rate m̂ per year at the locus under consideration,
one can find a real-time embedding of the coalescent history
via the approximate identity

Coalescent time unit3
û
P

2
� year3 m̂ (4)

(see Steinrücken et al. 2013, Section 4.2), which, of course,
depends on P.

If one has additional information on the specific re-
productive mechanisms of an approximating population
model, this can even enable one to estimate the model
census population size. For example, given a Cannings
population model (Cannings, 1974, 1975) of fixed size N, let
cN be the probability that two gene copies, drawn uniformly
at random and without replacement from a population of
size N, derive from a common parental gene copy in the
previous generation. While for the usual haploid Wright-
Fisher model cN = 1/N, in a class of population models
studied by Schweinsberg (2003) leading to the beta(2 2 a,
a)-coalescent, cN is proportional to 1/Na21 for a 2 (1, 2] (but
note that the proportionality constant depends on finer
details of the particular model). By a limit theorem for Can-
nings models by Möhle and Sagitov (2001), one coalescent
time unit corresponds to approximately 1/cN generations in
the original model with population size N. Thus the mutation
rate ~m at the locus under consideration per individual per
generation must be scaled with 1/cN [as noted e.g., in Eldon
and Wakeley (2006)], and the relation between ~m, the co-
alescent mutation rate uP/2, and cN is then given by the
(approximate) identity

cN � 2~m
uP

(5)

In particular, if the Cannings model class (and thus cN as
a function of N) is known, N can be estimated via Equation 5.
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In this context, it is important to note that different
population models on very different time scales still can
have the Kingman coalescent as their ancestral limit process;
two examples are the Wright-Fisher

�
Oðc21

N Þ ¼ N
�

and
Moran

�
Oðc21

N Þ ¼ N2
�
models. This is certainly also the case

for multiple-merger coalescents. In particular, cN is a priori
not a function of the limiting coalescent model (this appears
to be a rather frequent misperception).

Distinguishing real and coalescent time scales is impor-
tant because nonlinear scaling otherwise may easily lead
to confusion: for example, the expected total tree length
E
B½BðnÞ� (measured in coalescent time units) decreases as

a function of a 2 (1, 2], while the corresponding quantity
(measured in real-time generations) EB½BðnÞ�=cN increases in
a 2 (1, 2] (cf. Figure S1 in File S1).

The time scaling applied to a classical Wright-Fisher
model with fluctuating population size [as in Kaj and Krone
(2003)] in order to obtain a (time-changed) Kingman co-
alescent is shown in particular in Equation (S10) in File S1.
Again, the estimate (Equation 3) of u depends on the growth
model and growth parameter.

Approximate likelihood-ratio tests for the SFS

Our aim is to construct a statistical test to distinguish among
the model classes E, A, D, and B (which intersect exactly in
the Kingman coalescent K). In order to distinguish, say, E
from B based on an observed site-frequency spectrum jðnÞ

with sample size n and segregating sites S ¼ ��jðnÞ��, a natural
approach is to construct a likelihood-ratio test.

Recall that we think of our observed spectrum as a re-
alization of a coalescent tree with n leaves obtained from a co-
alescent model P, with mutations distributed on the tree
according to an independent Poisson (u/2) process. For each
model P from classes {E, A, D, B}, the coalescent will be
uniquely determined by a single coalescent parameter b 2 [0,
N) (for E), g 2 [0, N) (for A), c 2 [0, 1] (for D), and a 2 [1,
2] (for B). [Note that the beta-coalescent is well defined for a 2
(0, 2], but we restrict to a smaller parameter range correspond-
ing to the population model in Schweinsberg (2003).]

Suppose that our null hypothesis H0 is the presence of
recent exponential population growth (E) with (unknown)
parameter b 2 [0, N), and we wish to test it against the
alternative H1 hypothesis of a multiple-merger coalescent,
say, the beta(22 a, a)-coalescent (B) for (unknown) a 2 [1,
2], where b = 0 and a = 2 correspond to the Kingman
coalescent. In this framework, the coalescent mutation rate
u is not directly observable but plays the role of a nuisance
parameter. In particular, it is the interplay of the coalescent
model P and the mutation-rate parameter u that governs
the law of the observed number of mutations (see the dis-
cussion in the preceding section). To take u explicitly into
account, one could test

H0 : ðP; uÞ 2 QE :¼ �ðb; uÞ : b 2 ½0;NÞ; u 2 ð0;NÞ�
(exponential growth) against

H1 : ðP; uÞ 2 QB :¼ �ða; uÞ : a 2 ½1; 2�; u 2 ð0;NÞ�
if the beta-coalescent family is the alternative [by slight
abuse of notation, we identify the coalescent model P with
the corresponding coalescent parameter b (resp. a) in each
model class when appropriate]. The underlying parame-
ter ranges are two-dimensional, and although an explicit
likelihood-ratio test based on methods described in Simonsen
et al. (1995) can be constructed, it will likely pose computa-
tional challenges.

Instead, given an observed number of segregating sites
S = s, we simplify our framework by employing the fixed-s
method discussed, e.g., in Depaulis and Veuille (1998) and
Ramos-Onsins and Rozas (2002). Here we treat the ob-
served number of segregating sites as a fixed parameter
s 2 ℕ, not as (observation of a) random variable S. We will
thus obtain the empirical distributional quantities of our test
by Monte Carlo simulations, placing uniformly at random s
mutations along the branches of the simulated tree.

The fixed-s method is different from generating samples
for a given u by conditioning on S= s, yet the fixed-smethod
usually leads to reasonable tests when the true u is close to
the Watterson estimate ûðP; sÞ based on s (Wall and Hudson
2001). However, it can lead to substantial deviations from the
conditional distribution if u is extreme [see, e.g., Markovtsova
et al. (2001), who show that for a test in a related framework,
the probability of rejection can be substantially different from
5%]. Regarding this caveat, Depaulis et al. (2001) took
a Bayesian viewpoint and showed that the values of u that lead
to unreliable tests are highly unlikely given s. We address this
issue by using rejection sampling to check the robustness of the
fixed-s method against varying u (see File S1). Our analysis is
complemented with an ABC approach using the normalized
frequency spectrum zðnÞ, which should be insensitive to the
actual value of u as long as u is not too small [cf. Equation
(S20) in File S1].

By fixing S = s and treating it as a parameter of our test,
we may consider the new pair of hypotheses

Hs
0 : P 2 QE

s :¼ �b : b 2 ½0;NÞ�
and

Hs
1 : P 2 QB

s :¼ �a : a 2 ½1; 2��

Define a likelihood function L
�
P; kðnÞ; s

�
for the observed

frequency spectrum kðnÞ ¼
�
kðnÞ1 ; . . . ; kðnÞn21

�
with fixed

��kðnÞ�� ¼ s

under the coalescent model P 2 QE
s (resp. P 2 QB

s ) by

L
�
P; kðnÞ; s

�
¼ ℙP;s

n
j
ðnÞ
i ¼ kðnÞi ; i 2 �n21

�o

¼ E
P

2
64 s!

kðnÞ1 !⋯kðnÞn21!

Yn21

i¼1

 
BðnÞi

BðnÞ

!kðnÞi

3
75 (6)
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where BðnÞ
i are the random lengths of branches subtending

i 2 [n 2 1] leaves, and B(n) is the total branch length of the
coalescent under P. The fixed-s paradigm thus leads to
a mixture of multinomial distributions where the parameters
are given by the respective relative branch lengths. The hope
is that the location of the maximum of LðP; kðnÞ; sÞ is typi-
cally not far from the location of the corresponding co-
ordinate of the maximizer in the full two-dimensional
explicit-u model, in which one can additionally maximize
over all u 2 [0, N).

Now we can construct a likelihood-ratio test based on
LðP; kðnÞ; sÞ via the likelihood-ratio function

.ðE;B;sÞ
�
jðnÞ
�
:¼

sup
(
L
�
P; kðnÞ; s

�
;P 2 QE

s

)

sup
(
L
�
P; kðnÞ; s

�
;P 2 QB

s

) (7)

Given a significance level a 2 (0, 1) (say, a = 0.05), let
.*ðE;B;sÞðaÞ be the a-quantile of .ðE;B;sÞðjðnÞÞ under E, chosen
as the largest values so that

sup
P2QE

s

ℙP;s
(
.ðE;B;sÞ

�
jðnÞ
�
# .*ðE;B;sÞðaÞ

)
# a (8)

The decision rule that constitutes the fixed-s likelihood-ratio
test, given s and sample size n, is

Reject Hs
0 ⇔ .ðE;B;sÞ

�
jðnÞ
�
# .*ðE;B;sÞðaÞ

This formulation is free of the nuisance parameter u. To
assess the justification for the fixed-s assumption, we inves-
tigate how close this is to the corresponding quantiles for
different values of u, including the Watterson estimator

û ¼ û
	
P; s


 ¼ 2s

E
P
h
BðnÞ

i (9)

[cf. (Equation 3)], for selected choices of P. The agreement
appears reasonably good and seems to increase with sample
size (see File S1).

The corresponding power function of the test, i.e., the
probability of rejecting a false null hypothesis, is given by

GðE;B;sÞ
	
P

 ¼ ℙP

(
.ðE;B;sÞ

�
jðnÞ
�
# .*ðE;B;sÞ

	
a; S

)
; P 2 QB

s

(10)

The likelihood (Equation 6) cannot be represented as
a simple formula involving the coalescent parameters;
one can approximate (Equation 6) via a Monte Carlo ap-
proach, but this is computationally expensive. An approxi-
mation is

L
�
P; kðnÞ; s

�
� s!

kðnÞ1 !⋯kðnÞn21!

Yn21

i¼1

�
uðn;PÞ
i

�kðnÞi
(11)

where we replaced the random quantities BðnÞ
i =BðnÞ in Equa-

tion 6 by uðn;PÞ
i ¼ E

P
h
BðnÞ
i

i.
E
P
h
BðnÞ
i
(Equation 2).

Interestingly, an approximate maximum likelihood method
based on Equation 11 is equivalent to the following approach:
consider a family of (approximate) likelihood functions

~L
�
P; jðnÞ; s

�
¼
Yn21

i¼1

e2
�
ûðP;sÞ=2

�
E
P
�
BðnÞ
�
uðn;PÞ

i

3

"
ûðP;sÞ

2 E
P
�
BðnÞ

�
uðn;PÞ
i

#jðnÞi

j
ðnÞ
i !

(12)

where ûðP; sÞ ¼ 2s=EP½BðnÞ� is the Watterson estimator for
the mutation rate under a P-coalescent with n leaves when
S = s segregating sites are observed [recall Equation 3]. In
Equation 12, ~L is well defined even if

��jðnÞ�� 6¼ s.
The rationale behind Equation 12 is simple: it pretends

that the classes are approximately independent and Pois-
son distributed (this is, of course, not literally true but
encouraged by the fact that the off-diagonal entries of
the covariance matrix of jðnÞ are small compared with the
diagonal terms) (see Birkner et al. 2013b). Equation 12
is indeed equal to the one obtained from the Poisson
random field (PRF) of Sawyer and Hartl (1992), which
considers unlinked sites. Within the PRF framework,
Equation 12 is an exact likelihood function. In our model
of completely linked sites at a single locus, the assump-
tion of independence is merely a convenient computa-
tional tool. An analogous approximation of likelihood
functions is considered by Bhaskar et al. (2015) in the
context of varying population sizes; these authors also
provide a detailed discussion of the intermediate situa-
tion when there is some but not too much recombination
between sites at a given locus but free recombination
between loci.

For fixed s, we can view ðP; ûðP; sÞÞ as parameterizing
a one-dimensional curve in the full two-dimensional space
H0 [ H1 defined by the requirement that EP;ûðP;sÞ½S� ¼ s. The
two approximate maximum likelihood approaches based on
Equations 11 and 12 are equivalent. Indeed,

~L
�
P; kðnÞ; s

�
¼
Yn21

i¼1

e2suP;ðnÞ
i

�
suP;ðnÞ

i

�kðnÞi

kðnÞi !
¼ e2sL

�
P; kðnÞ; s

�
(13)

because the uðn;PÞ
i sum to 1. Hence, both likelihood func-

tions differ only by the fixed prefactor e2s, so they attain
their maximum at the same position.
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Thus now we consider the statistic

~.ðE;BÞ
�
jðnÞ
�
:¼

sup
(
~L
�
P; kðnÞ;

���kðnÞ����;P 2 QE
)

sup
(
~L
�
P; kðnÞ;

���kðnÞ����;P 2 QB
) (14)

[where QE and QB refer to the projection of H0 (resp. H1) on
the coalescent parameter]. For a given value of s, we can
then (by simulations using the fixed-s approach) determine
approximate quantiles ~.*ðE;B;sÞðaÞ associated with a signifi-
cance level a as in Equation 6 and base our test on the
criterion ~.ðE;BÞðjðnÞÞ# ~.*ðE;B;sÞðaÞ. Similarly, the (approximate)
power function ~GðE;B;sÞ can be estimated using simulations.

An alternative approach to the (approximate) likelihood-
based tests would be rejection rules based on minimal-
distance statistics, i.e.,

.ðdÞðE;BÞ
�
jðnÞ
�
:¼

inf
(
d
�
uðn;PÞ; jðnÞ

�
;P 2 QE

s

)

inf
(
d
�
uðn;PÞ; jðnÞ

�
;P 2 QB

s

) (15)

for some suitable distance measure d (e.g., the ℓp distance
with p = 2) with corresponding power function GðdÞ

ðE;B;sÞ. We
will not discuss the theoretical justification for this method.
However, we will use the ℓ2 distance between normalized
expected spectra under various coalescent models to pro-
duce three-dimensional heat maps that give some intuitive
insight into how a pair of different models out of {E, B, A, D}
relates to each other depending on the underlying pair of
coalescent parameters (cf. Results).

We conclude this section with a remark on lumping. One
often observes kðnÞi ¼ 0 for most i greater than some (small)
number m in observed data, in particular, for large n. It thus
seems natural to consider (approximate) likelihood func-
tions for lumped spectra (e.g., collapsing all entries in classes
to the right of some number m into one class m+), as we
have done, e.g., in Figure 1. Another natural type of lumping
may be to collect together classes so that

P
iu

ðnÞ
i $ x for

some x 2 (0, 1/2]. This may not always be feasible, though,
if the individual uðnÞ

i quickly become quite small, and we will
refrain from going into a more detailed theoretical discus-
sion of optimal lumpings. However, we will see in our sub-
sequent ABC analysis that adequate lumping can improve
the reliability of our model-selection procedure.

Approximate Bayes factors and model selection

In view of the approach and notation of the preceding
section, an analogous method of model selection could be
based on a Bayes factor of the form

.ℬðB;EÞ
�
zðnÞ
�
:¼
R
QB

s

~L
�
P; zðnÞ; s

�
dpBðaÞ

R
QE

s

~L
�
P; zðnÞ; s

�
dpEðbÞ

(16)

(and similar for all other combinations of classes A, D, E, and B)
given a pair of priors pB, pE on QB

s ;Q
E
s . While the approach

will also work in principle for the two-dimensional prior
ranges QB and QE, we will present the (approximate) Bayes-
ian methods with one-dimensional prior ranges (where S =
s is treated as a fixed parameter, motivated from the fixed-s
approach) so that they complement our previous methods.

Our simulations will be obtained using the rationale behind
Equation 12; i.e., after simulating a tree according to a given
coalescent parameter, say, a from pB, mutations are placed on
the tree according to a Poisson process, with mutation rate
ûðP; sÞ estimated using Equation 3. However, in Equation 16,
we use the normalized site-frequency spectrum zðnÞ as ob-
served statistics because it should be more insensitive to the
true coalescent mutation rate u [potentially deviating from
ûðP; sÞ], as argued in the corresponding section in File S1,
and thus yield more robust results. ~L in Equation 16 thus
denotes the likelihood function of the observed nSFS under
the chosen coalescent model, with the mutation parameter
given by Watterson’s estimator based on s. Because we esti-
mate the mutation rate based on s, the information loss of
using the nSFS instead of the SFS should be only slight. We
also experimented with ABC based on simulations using the
fixed-s method, i.e., distributing a fixed number of mutations
uniformly on the simulated tree, and generally found higher
misclassification probabilities (results not shown).

To overcome the problem of exact computation of
~LðP; zðnÞ; sÞ, which appears infeasible in practice, we employ
approximate Bayesian methods (see, e.g., Beaumont 2010)
based on the ℓ2 distance between observed and simulated
nSFS. Bayes factors based on further (lumped) distances
d and/or the folded nSFS may, of course, also be considered.
In line with classical Bayes factor philosophy (cf., e.g., Kass
and Raftery 1995), one interprets an observed value of
.ℬðB;EÞ � 1 as evidence in favor of QB

s over QE
s .

For the ABC analyses, we consider as before on expo-
nential growth (E), algebraic growth (A), and beta- and
Dirac coalescents (B and D). Given sample size n and num-
ber of segregating sites s, again the coalescent model classes
can be parameterized by a single parameter each, which are
the exponential growth rate b 2 [0, N), algebraic growth
rate g 2 [0, N), beta-coalescent parameter a 2 [1, 2], and
mass point location c 2 (0, 1] for the Dirac coalescent.

For convenience, we employ a simple rejection-based
ABC scheme to approximate the Bayes factor for the model
(class) comparison given an observed nSFS (resp. folded
and/or lumped versions, which can be treated analogously).
First, select a number of models (out of {E, B, A, D}) that
should be compared, say, E and B, and choose the cor-
responding prior distributions on the coalescent parameter
ranges. To simulate, say, nr independent samples of the nSFS
from each model, say, from E, independently generate nr
coalescent parameters from the prior pE and a corresponding
coalescent tree P for each generated coalescent parameter.
Distribute independently Poisson mutations with parameter
ûðP; sÞ=2 on each such tree, and record the corresponding
normalized site-frequency spectra. This should be done in-
dependently for all models.
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Then fix a tolerance level x 2 (0, 1) and count the num-
ber of simulations NE, NB from each model that are among
the 100 � x% best fits with respect to the ℓ2 distance to the
observed nSFS zðnÞ (the “accepted” simulations). Here we
use an additional scaling by dividing each class (resp.
lumped class) in the nSFS by the median (if nonzero) within
this class observed in all simulations as implemented in the
R package abc (Csilléry et al. 2012). The Bayes factor for
model E vs. B then can be approximated by

.ℬðE;BÞ
�
zðnÞ
�
� NE

NB

To assess how well this ABC approach allows one to
distinguish, say, E from B (or, more generally, simulta-
neously among {E, B, A, D}), we use two approaches from
the R package abc. Both are based on leave-one-out cross-
validation. More precisely, we pick ncv simulations at ran-
dom from each model, treat them as the observed value of
the nSFS, and then run the ABC approach with the same
parameters and simulations as earlier. For each cross-
validation sample, say, zðnÞE ðiÞ; i 2 ½ncv� from model E, we re-
cord the counts of accepted simulations NA½zðnÞE ðiÞ�;NB½zðnÞE ðiÞ�;
ND½zðnÞE ðiÞ�, and NE½zðnÞE ðiÞ� from the model classes A, B, D, and
E (recall that the chosen cross-validation sample is left out).
As measures for the distinction ability of this approach, we
record for each model class, borrowing notation from Stoehr
et al. (2014):

The (estimated) mean posterior probabilities p for model B
given the observed nSFS under the true model E, say,

E
E
h
p
�
BjzðnÞ

�i
� 1

ncv

Xncv

i¼1

NB

h
z
ðnÞ
E ðiÞ

i
Na

where Na¼NA

h
zðnÞE ðiÞ

i
þNB

h
zðnÞE ðiÞ

i
þNE

h
zðnÞE ðiÞ

i
þND

h
zðnÞE ðiÞ

i
is the number of accepted simulations.
The (estimated) mean misclassification probabilities

E
E

"
p

 
min
Y 6¼B

.ℬðB;YÞ $ 1
����zðnÞ

!#

� 1
ncv

Xncv

i¼1

1�
NB

�
zðnÞ
E
ðiÞ
�
$NY

�
zðnÞ
E
ðiÞ
�
" Y 6¼B

�

for Y 2 {A, E, D}. To ease the notation, we will from now on
omit n in the formulas.

In practice, we need to efficiently generate samples of the
nSFS under the different models that can be achieved by
backward-in-time coalescent simulations. For the exponen-
tial growth models (E), we use Hudson’s ms (Hudson 2002),
as implemented in the R package (R Core Team 2012) phy-
clust (Chen 2011). For algebraic growth models (A), the beta-
coalescents (B), and the Dirac coalescents (D), we use custom
R and C scripts to generate samples of the nSFS (available

at: http://page.math.tu-berlin.de/~eldon/programs.html).
To conduct the actual ABC analysis including cross-validation
techniques, we employed the R package abc (Csilléry et al.
2012). Additionally, because we use Watterson’s estimator
to set the mutation rate within each model, we compute the
mean total length of each coalescent model as described in
File S1.

Results

Power estimates of approximate likelihood-ratio tests

To assess the sensitivity of our approximate likelihood-ratio
test associated with the likelihood-ratio function (Equation
7), we estimate its power ~GðE;B;sÞ from the analog of Equation
10 based on the approximate likelihood from Equation 12 as
a function of a (Figure 2A) with Hs

0 ¼ QE
s and Hs

1 ¼ QB
s and

estimate ~GðB;E;sÞ as a function of b with Hs
0 ¼ QB

s and
Hs

1 ¼ QE
s (Figure 2B).

As shown in Figure 2, reasonably high power is obtained
to reject QE

s for n = 500 and even for a smaller sample size
n= 100, but the power also depends, as one would expect, on
the size of the test. As a side note, we remark that the power
estimates ~GðE;B;sÞ, as a function of a, are right at the size of
each corresponding test when a = 2 (the Kingman case) as
required.

The mitochondrial DNA (mtDNA)–genome analysis of
Carr and Marshall (2008), who scanned whole mitochon-
drial genomes (15,655 bp) of the highly fecund Atlantic cod
(Gadus morhua), prompted us to briefly investigate the
power (Figures S3 and S4 in File S1) with the number of
segregating sites s = 300. This is nearly the total number of
polymorphisms (298) observed among the 32 mtDNA
genomes sampled by Carr and Marshall (2008). Our results
show that while we may not quite have enough power when
n = 30 and s = 300 (Figure S4A in File S1), we would be in
good shape for n = 100 (Figures S3 and S4B in File S1). It
would be very interesting to analyze such a sample, once
available, because it appears to be an open debate whether
beta-coalescents should be favored over classical models (in-
cluding recent population growth) in HFSOD populations
(cf., e.g., Steinrücken et al. 2013).

Another quite striking observation is that the power of
our test is apparently nonmonotone as a function of b when
Hs

0 ¼ QB
s , in particular, for a smaller type I error. We will

present a possible heuristic explanation for this in the Dis-
cussion section. A rather high power in general is obtained
when comparing QE

s and QD
s associated with the Dirac co-

alescent (Figure S2 in File S1) for (n, s) = (100, 50). For
further combinations, we refer to File S1, where QA

s , associ-
ated with algebraic growth, is compared with QB

s in Figure
S6 and with QD

s in Figure S5. The power functions ~GðA;D;sÞðcÞ
(Figure S5 in File S1) are decidedly nonmonotone, as is
~GðA;B;sÞðcÞ (Figure S6A in File S1).

We conclude with a short remark on the sensitivity of our
results on lumping of classes in the observed spectrum.
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Indeed, our power estimates suggest that keeping at least
the first five classes of the SFS intact and collecting the rest
into one other class have little effect on the power of the test
(results not shown). Keeping only the singleton ðjðnÞ1 Þ class
intact and collecting all the rest into one class, however,
significantly diminish power (results not shown). C code
(cf. Kernighan and Ritchie 1988) written for estimating
the power of our tests, where use was made of the GNU
Scientific Library (Galassi et al. 2013), is available at
http://page.math.tu-berlin.de/~eldon/programs.html.

Mean-squared distance landscapes for the normalized
expected SFS under different growth and
coalescent models

Given the potential ability to distinguish between growth
and multiple-merger coalescent models, the following ques-

tions arise: how does the distance between uðnÞ;P1
i and

uðnÞ;P2
i behave as a function of the underlying coalescent

and growth parameters? Is it possible to visibly identify
a one-dimensional curve given by coalescent parameter
pairs corresponding to (P1, P2) along which minimal dis-
tance is achieved? Figure 3 and Figure 4 are a brief effort
to understand the relation between the expected nSFS
for the models in question by graphing the ℓ2 distance

dðnÞ2 ðX;YÞ ¼
hPn21

i¼1

�
uðn;XÞ
i 2uðn;YÞ

i

�2i1=2
as a function of the

coalescent and growth parameters associated with X and Y.
In Figure 3, E is compared with B and D. In Figure 4, A is
compared with B and D. In Figure 3 and Figure 4, the upper
panels show the distance as the respective growth-parameter
ranges from 0 to 1000, while the lower panels zoom in on the
range from 0 to 10.

Figure 3 indicates the presence of a region, essentially
a curve in the two-dimensional (a, b) parameter space,
along which the lowest ℓ2 distance is reached. However,
one should be aware that this curve shifts in space when
sample size n is increased (data not shown).

Figure 3 suggests that we should have good power to
distinguish between algebraic growth and beta-coalescents.
However, this seems not to be the case for distinguishing
algebraic growth from Dirac coalescents: extreme growth
(large g) seems to produce an almost star-shaped genealogy—
consequently, the distance to a Dirac coalescent with c close to
1 becomes very small (recall that c = 1 exactly corresponds to
the star-shaped coalescent).

Mean misclassification and posterior probabilities for
the ABC approach

In this section we analyze how far an ABC approach using
the nSFS (resp. the folded nSFS, abbreviated as nfSFS) and
the lumped variants as summary statistics supports our
claim that one can distinguish between exponential growth

Figure 2 (A) Estimate of ~GðE;B;sÞ from Equa-
tion 10 based on the approximate likelihood
from Equation 12 as a function of a (no
lumping) with number of leaves n as shown
and s = 50. (B) Estimate of ~GðB;E;sÞ from
Equation 10 based on the approximate
likelihood from Equation 12 as a function
of b (no lumping) with number of leaves n
as shown and s = 50. The symbols denote-
the size of the test, as shown in the legend.
The interval hypotheses are discretized to

QE
s ¼fb :b 2 f0;1;2; . . . ;10;20; . . . ;1000gg

and. QB
s ¼fa:a2f1;1:025; . . . ;2gg. In A,

the beta(2 2 a, a)-coalescent is the alter-
native; in B, exponential growth is the
alternative.
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E and the beta(2 2 a, a)-coalescent B as well as between E,
B, and the Dirac coalescent D or between B, D, and algebraic
growth A. The distinction ability of the ABC model compar-
ison is assessed based on the simulation procedure and no-
tation described in Materials and Methods. Priors were
uniform over the full range of coalescent parameters in mod-
els B and D and uniform until a maximal cutoff for models E
(on [0, bmax]) and A (on [0, gmax]). We discretized the
parameter range for the growth models by using increments
of 1 or 10 for exponential growth (the first used in all multiple-
model comparisons, the latter in the pairwise comparisons
between E and B) and increments of 1 for algebraic growth.
If not specified otherwise, we used bmax = gmax = 1000. We
fixed a sample size n = 200. The number of replications was
set to nr = 2 3 105. See Table 1, Table 2, and Table 3 and
Tables S4–S8 in File S1 for the estimates of posterior prob-
abilities and misclassification probabilities (some with one
replication) with various degrees of lumping and various
parameter settings for n = 200. For an example with higher
sample size n = 1278, see Table S9 in File S1.

The estimated error probabilities range from moderate to
low values. Mean posterior probabilities EB�pðEj zÞ� � 30%

indicate a correct classification probability E
B�pðBj zÞ� �

70%, which shows that our method has good distinguishing
ability. As expected, lower tolerance generally leads to
smaller errors, as do larger mutation rates, while using the
folded nSFS increases them. Appropriate lumping seems to
decrease the error probabilities on many occasions; see, e.g.,
Table 1, where a positive effect for strong lumping is ob-
served for s = 15 segregating sites, whereas for s = 75 in
Table S4 in File S1, moderate lumping seems to be more
appropriate (both tables show the comparison of models B
and E). Not surprisingly, exponential growth rates closer
to zero are harder to distinguish from the beta(2 2 a,
a)-coalescent models than higher growth rates (see Tables
S4 and S6 in File S1). The ABC model comparison distin-
guishes especially well, even for s = 15, between exponen-
tial growth from Dirac coalescents and algebraic growth
from beta(2 2 a, a)-coalescents (see Table 2, Table 3,
and Tables S7 and S8 in File S1). For a relatively low num-
ber of segregating sites (s = 15), some comparisons (e.g.,
algebraic growth with Dirac coalescents and beta-coalescents
with Dirac coalescents) can lead to common misclassifi-
cation, but this effect vanishes for larger s. For s = 75,

Figure 3 The ℓ2 distance d
ðnÞ
2 ðE;XÞ

for X 2 fB;Dg of the normalized
expected spectra uðn;EÞ

i [see Equa-
tion 2] and uðn;PÞ

i as a function of
a (X = B) [resp. c (X = D)] and b (E)
for number of leaves n = 100.
Expected values were computed
exactly. The grid points are a 2
{1,1.025,. . .,2} and c 2 f0:0 1;
0:0 2; . . . ; 0:1; 0:1 5; 0:2; . . . ;
0:9 5g; for b as shown.
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Dirac coalescents can be distinguished relatively well from
beta(2 2 a, a)-coalescents (Table 2, Table 3, and Tables S7
and S8 in File S1).

Discussion

The development of methods to distinguish between differ-
ent (time-changed) coalescent scenarios for the underlying
genealogy of a population on the basis of observed data is an
important task, in particular, because the choice of an
underlying coalescent model affects the estimated coales-
cent mutation rate û via (3) and a potential real-time em-
bedding of the genealogy based on (5). Identification of an
appropriate coalescent model also may give hints about the
underlying reproductive mechanisms present in a popula-
tion. By way of example, multiple-merger coalescents may
indicate the presence of HFSODs in the population.

While inference methods for distinguishing population
growth from the usual Kingman coalescent have been studied
extensively (see, e.g., Tajima 1989a; Slatkin and Hudson 1991;
Rogers and Harpending 1992; Kaj and Krone 2003; Sano and
Tachida 2005) and sophisticated theoretical results on the
question of identifiability of demographic histories have been

obtained (cf., e.g., Myers et al. 2008; Bhaskar and Song 2014;
Kim et al. 2014), none of these studies has addressed multiple-
merger coalescents. In fact, only a few results, e.g., on the
statistical properties of the SFS in multiple-merger coalescents
(see Birkner et al. 2013b) are available.

For the particular case of distinguishing multiple-merger
coalescents from population-growth scenarios, this decision
problem is complicated by the fact that the patterns of
genetic variation produced by the two demographic effects
and summarized in the SFS are expected to be similar: both
lead to an excess of singletons compared with a classical
Kingman coalescent–based genealogy. However, while it is
usually possible to match the predicted number of singletons
with the observed number in various special cases for both
models, the bulk and tail of the spectrum typically will differ
(cf. Figure 1 for some examples).

This paper thus is aimed at exploiting and quantifying
these differences. However, for feasibility, we had to restrict
both the scope and employed methods of our analysis. The
first (restrictive) decision in the design of our analysis was
the selection of certain subfamilies of Lambda-coalescents
and demographic growth scenarios that we deemed suitable
for investigation. The reason for restricting to subclasses of

Figure 4 The ℓ2 distance dðnÞ
2 ðA;XÞ

for X 2 {B, D} of the normalized
expected spectra uðn;AÞ

i [see Equation
2] and uðn;XÞ

i as a function of a (X = B)
[resp. c (X = D)] and g (A) for number
of leaves n = 100. Expected values
were computed exactly. The grid
points are c 2 f0:01;0:02; . . . ; 0:1;
0:15;0:2; . . . ; 0:95g and a 2 {1,
1.025, . . ., 2}; for g as shown.
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Lambda-coalescents is that the full class of multiple-merger
coalescents is in one-to-one relation with the uncountable
and nonparametric set of finite measures L on [0, 1], which
drastically complicates statistical questions, while most of
these coalescents do not appear to have a clear biological
motivation in terms of a natural underlying population
model. Considering the whole Lambda-coalescent class also
would raise theoretical questions concerning the unique
identifiability of multiple-merger coalescents on the basis
of the SFS related to Myers et al. (2008) and Bhaskar and
Song (2014), and this is mathematically challenging and
outside the scope of this work.

Hence, in case of the multiple-merger coalescents, we
restricted our attention to the class of beta-coalescents (B)
and the Dirac coalescents (D). These classes appeared
particularly interesting to us because they both interpolate
in a parametric way between the boundary points of the
Kingman coalescent (K) via the Bolthausen-Sznitman co-
alescent (B at a = 1) to the star-shaped coalescent (B, a =
0; D, c = 1)—where the whole genealogy collapses to a sin-
gle line in a single large merger event—among the multiple-
merger coalescents. Beta-coalescents have been studied
frequently in the literature (see, e.g., Birkner et al. 2005;
Bertoin and Le Gall 2003; Hallatschek and Neher 2013;
Steinrücken et al. 2013; Birkner et al. 2013b) and are re-
lated to a population model with HFSODs (Schweinsberg
2003). Dirac coalescents have been chosen for their simplic-
ity from a mathematical standpoint and also have been in-
vestigated by Eldon and Wakeley (2006). The parameter of
the Dirac coalescent has a clear interpretation as the fraction
of the population that is replaced in each single HFSOD
reproductive event.

For similar reasons, we restricted demographic scenarios
to two basic parametric growth models. Exponential growth
(E) is certainly a natural model in the presence of a super-
critical branching population model without geographic
or resource restrictions. Our second choice, the algebraic
growth model (A), appears perhaps less natural but can
reflect situations in which there are spatial or resource
limitations and has been analyzed in the mathematical
literature (e.g., Schweinsberg 2010). We refrain from more
complicated scenarios, such as models with different epochs
of exponential growth and recent models including super-
exponential growth (Reppell et al. 2014), which indeed
could be investigated with similar methods.

Regarding statistical methodology, one could construct
likelihood-based tests on the full two-dimensional parame-
ter spaces for P and u given by QE and QB, as outlined in
Materials and Methods, but this likely would yield consider-
able computational challenges. Instead, we opted to employ
approximate likelihood methods based on the fixed-s method
as, e.g., done by Ramos-Onsins and Rozas (2002), reducing our
test to a one-dimensional situation, where Equation 14 does
not depend on u at all.

Based on this method, we derive an approximate likelihood-
ratio test based on a Poissonization of the SFS via Equation 12
for interval hypotheses, including large ranges of param-
eters such as the growth parameter b in model E and the
coalescent parameter a in model B. By considering the
power of our test, a key result in this setup is that even
for moderate sample sizes, B and E can be distinguished rea-
sonably well for substantial parts of the parameter space of
a and b.

A well-known criticism of this method is its sensitivity
on the true yet unknown coalescent mutation rate u (cf.
Markovtsova et al. 2001). We checked by rejection sampling
(cf. File S1), conditioning on S = s, that for various fixed
values of (P, u) the rejection probability in our proposed test
would be reasonably close to the true rejection probability as
long as the true u is close enough to the Watterson estimate
2s=EP½BðnÞ�, in line with similar observations (for different
test statistics) made by Wall and Hudson (2001).

Additional information about the exact coalescent and
growth parameters could lead one to test the point hypotheses
(e.g., B with fixed a vs. E with fixed b). Indeed, in this case,
higher power can be achieved, even for relatively small numbers
of segregating sites (s = 20), as expected (data not shown).

Distance plots (e.g., Figure 3) over two-dimensional
parameter ranges indicate a one-dimensional curve along
which the minimal distance is reached. Note that both
approaches [maximum (approximate) likelihood and mini-
mum ℓ2 distance] could be linked if asymptotic normality of
our estimators could be established—this is a theoretical
question for future work.

Finally, we consider decision rules for the normalized
spectrum zðnÞ associated with models A, B, E, and D based on
a simple rejection-based ABC analysis. More sophisticated
techniques are available [see Beaumont (2010) for an over-
view] that may improve the prediction accuracy. Empirical
misclassification probabilities show, for a reasonable sample

Table 1 Approximations of the mean posterior probabilities and misclassification probabilities for the ABC model comparison between
models E and B for tolerance x = 0.01, s = 15 segregating sites, and using either the nSFS or the nfSFS as summary statistics

Fold Lump ncv E
B�pðEj zÞ� E

E�p	Bj z
� E
B�p	.ℬðE;BÞ $1

�� z 
� E
E�p	.ℬðE;BÞ #1

�� z 
�
No 10+ 24,000 0.30 0.25 0.26 0.13
No 50+ 12,000 0.32 0.29 0.26 0.17
No 100+ 1,200 0.33 0.29 0.28 0.17
Yes 10+ 24,000 0.32 0.25 0.28 0.12
Yes 50+ 12,000 0.34 0.29 0.28 0.16
Yes No 12,000 0.34 0.29 0.29 0.16

ncv denotes the number of cross-validations; lump indicates which mutation classes are lumped into one class.
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size of n = 200, at least moderate success in distinguishing
among the four model classes even for as few as s = 15
segregating sites. Note, though, that depending on the
model class comparison to be performed, reasonable error
probabilities may be achieved only at higher mutation rates
(a higher number s). This indicates that the genealogies
produced by the different model classes (at least for suitable
sample sizes) are different enough to be distinguished but
that mutation rates have to be high enough that these differ-
ences are mirrored in the SFS.

In practice, our results could be used to design studies
that allow one to distinguish between different conjectured
scenarios with suitable power. For example, in marine
species, such as Atlantic cod (cf., e.g., Birkner et al. 2013b)
and Pacific oysters (cf. Sargsyan and Wakeley 2008), it has
been suggested that certain multiple-merger coalescents
could be more appropriate to describe underlying genealo-
gies, and a reproductive mechansism (HFSOD) for popula-
tion models has been proposed. We have put this to a test by
performing an ABC model comparison among our four
model classes for the Atlantic cod data of Árnason (2004).
The model comparison clearly rejected both Dirac coales-
cents and algebraic growth as potential models.

While our ABC analysis indicates that exponential growth is
slightly favored over the beta(22 a, a)-coalescent, evidence is
not really strong enough to rule out the latter model class. This
may indicate that the SFS information of the Árnason (2004)
data does not have enough polymorphic sites to distinguish
between E and B clearly (our posterior predictive checks
revealed that likely neither model class explains the data com-
pletely). However, rejection of the D and A model classes sug-
gests that models that predict star-shaped genealogies do not
fit the data well. Árnason (2004) used a maximum likelihood
estimation method (Kuhner et al. 1998) and standard tests of
neutrality (Tajima, 1989b; Fu, 1997) to rule out exponential
population growth.

At this point, we would like to point out that while our
methods and results are exemplified in certain special
coalescent and growth models, they could be modified to
cover different frameworks.

Before ending the discussion, we wish to comment on a
few interesting side issues that appeared during the analysis.

Nonmonotonicity of the power function: At first glance, the
observed nonmonotonicity of the power function in the

exponential growth parameter b when compared with cer-
tain multiple-merger coalescents (cf., e.g., Figure 2) may
appear strange. However, the following example may sug-
gest a heuristic way to understand such behavior in a rel-
atively simple special case. Suppose that one wants to
distinguish between an exponential growth model and a
multiple-merger coalescent with a substantial Kingman
component and a small weight on large multiple mergers
(e.g., as in the Dirac coalescent with c close to 1). This
means that most of the time the multiple-merger coalescent
will behave like a Kingman coalescent (producing frequent
binary mergers), but with a small rate, comprehensive mul-
tiple mergers may occur. Certainly, when the growth param-
eter b is small, the exponential growth model will yield
a pattern of variability close to a Kingman coalescent, and
hence the power of a test to distinguish between both will be
small if the Kingman component has a weight close to 1. As
b increases, the power to distinguish from a Kingman co-
alescent will increase, in line with intuition. However, as b
becomes very large, lineages will coalesce after a very short
time in the exponential growth model. Such a scenario is
certainly different from a Kingman coalescent but could pro-
duce patterns of variability closer to a multiple-merger co-
alescent with a drastic merger after a very short time. Seeing
such a merger in the very recent past has some cost (accord-
ing to the weight of the Dirac component near 1) but
appears more likely than observing large amounts of Kingman-
like mergers within a unnaturally short time interval, thus
leading to a relative decrease in power of associated test.
This last effect is nicely illustrated by the upper-right sce-
nario in Figure 4 in the case of a large (algebraic) growth
parameter.

Effect of lumping: It is intriguing to see that using the
complete nSFS as summary statistics in the ABC approach
can yield higher errors than using intermediate (resp.
strong) lumpings of the nSFS. A possible explanation is
as follows: consider the approximate likelihood function
(Equation 12). Assume that the distribution of the SFS is
approximately composed of independent Poisson distributions
with parameter ðu=2ÞEP½BðnÞ

i � for i 2 [n 2 1]. For a Poisson-
distributed random variable X with parameter k, we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞp
=EðXÞ ¼ 1=

ffiffiffi
k

p
, thus showing that smaller Poisson

parameters yield a higher amount of variation relative to
their expected value. Hence classes in the SFS with small

Table 2 Approximations of the mean posterior probabilities for the ABC model comparison among models E, B, and D for tolerance
x = 0.005, sample size n = 200, and s = 15 or 75

s Lump ncv E
B�p	Ej z
� E

B�p	Dj z
� E
E�p	Bj z
� E

E�p	Dj z
� E
D�p	Bj z
� E

D�p	Ej z
�
15 10+ 24,000 0.29 0.12 0.24 0.02 0.55 0.03
15 50+ 12,000 0.39 0.10 0.22 0.02 0.54 0.05
15 no 12,000 0.42 0.10 0.21 0.02 0.55 0.07
75 10+ 24,000 0.22 0.09 0.12 0.00 0.11 0.01
75 50+ 12,000 0.26 0.10 0.12 0.00 0.11 0.01

The nfSFS was used as summary statistics.
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underlying branch lengths (which tend to be in the right tail
of the SFS) and/or a low mutation rate show relatively more
variation compared with their contribution to the total num-
ber of mutations than those with longer branches or if the
mutation rate is higher. Lumping such classes together, un-
der Equation 12, yields again a Poisson-distributed lumped
class but with the Poisson parameter being the sum of
parameters from the classes lumped together. Thus, the var-
iation within this class relative to its contribution to the total
number of mutations is reduced by lumping. If different co-
alescent models show different mean behavior of (lumped)
classes, lumping reduces noise and thus increases the chance to
correctly identify the underlying model. Naturally, this effect is
weakened by higher mutation rates and/or higher sample size
n [e.g., consider the limit results for the SFS in Berestycki et al.
(2014) and Kersting and Stanciu (2015)].

Thus, using an appropriate weighing of the variables in
the nSFS (resp. SFS) should improve the power to distin-
guish between model classes. It also would be a worthwhile
future study to see whether a one-dimensional summary of
the SFS similar to Tajima’s D or Fay and Wu’s H, as de-
scribed in Achaz (2009), could yield a similar or even higher
power to distinguish between the model classes than the
complete (possibly reweighted) nSFS.
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List of equations from the main text

For ease of reference, we list below the equations from the main text used in Supporting

Information. Refer to the main text for explanation of symbols.

Equation (1) from the main text:

EΠ,θ
[
ξ

(n)
i

]
=
θ

2

n−i+1∑

k=2

p(n),Π[k, i] · k · EΠ
[
T

(n)
k

]
, i ∈ [n− 1]. (S1)

Equation (3) from the main text:

θ̂Π :=
2S

EΠ
[
B(n)

] , (S2)

Equation (5) from the main text:

cN ≈
2µ̃

θΠ
. (S3)

Equation (7) from the main text:

%(E,B;s)(ξ
(n)) :=

sup
{
L(Π, k(n), s), Π ∈ ΘE

s

}

sup
{
L(Π, k(n), s), Π ∈ ΘB

s

} . (S4)

Equation (8) from the main text:

sup
Π∈ΘE

s

PΠ,s
{
%(E,B;s)(ξ

(n)) ≤ %∗(E,B;s)(a)
}
≤ a. (S5)

Equation (9) from the main text:

θ̂ = θ̂(Π; s) =
2s

EΠ[B(n)]
(S6)

Equation (10) from the main text:

G(E,B;s)(Π) = PΠ{%(E,B;s)(ξ
(n)) ≤ %∗(E,B;s)(a, S)}, Π ∈ ΘB

s. (S7)
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Equation (12) from the main text:

L̃(Π, ξ(n), s) =
n−1∏

i=1

e−
θ̂(Π,s)

2
EΠ[B(n)]ϕ

(n,Π)
i

(
θ̂(Π,s)

2
EΠ[B(n)]ϕ

(n,Π)
i

)ξ(n)
i

ξ
(n)
i !

(S8)

Multiple merger-coalescents and the model classes K, B and D

A multiple merger- or Lambda-coalescent, formally introduced by Pitman (1999), Sagitov

(1999), and Donnelly and Kurtz (1999), is a partition-valued exchangeable coalescent

process determined by a �nite measure Λ on [0, 1] which governs the dynamics of the process:

If there are currently b blocks in the partition (i.e. b active ancestral lineages), k out of them

merge at rate

λb,k =

∫

[0,1]

xk−2(1− x)b−kΛ(dx), k = 2, .., b. (S9)

For an overview of the theory see e.g. Berestycki (2009) or, with a biological perspec-

tive, Tellier and Lemaire (2014). When Λ is associated with the beta-distribution with

parameters 2 − α and α for 1 ≤ α < 2 (Schweinsberg, 2003), these rates can be given

explicitly by

λb,k =
B(k − α, b− k + α)

B(2− α, α)
,

where B(·, ·) is the classical Beta-function. Such coalescents will be called beta-coalescents,

and constitute the model class B.

When Λ is associated with the Dirac coalescent (Eldon and Wakeley, 2006), that is,

Λ(dx) = δ{ψ}(dx), for ψ ∈ [0, 1], we are in class D. Here, for ψ ∈ (0, 1], the rates are given by

λb,k =
ψk(1− ψ)b−k

ψ2
.

Both classes intersect in the Kingman coalescent (model K), which corresponds to α = 2 and
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ψ = 0, and of course has coalescence rates

λb,k =





1 if k = 2,

0 else,

ie. only binary mergers are allowed. The Beta- and the Dirac coalescent each introduce

a coalescent parameter (α, ψ), which can be estimated from genetic data (Eldon, 2011;

Birkner et al., 2013; Birkner and Blath, 2008; Steinrücken et al., 2013).

Population models leading to coalescent classes K, B and D

It is well-known that the classical Wright-Fisher and the Moran model have scaling limits

whose genealogy is described by a Kingman coalescent. For the more general Lambda-

coalescents, Möhle and Sagitov (2001) give a full classi�cation of all Cannings models

that lead to any given Lambda-coalescent. The relevant time-scaling is determined by cN ,

the probability that in a population of size N , two distinct ancestral lineages merge in the

previous generation. It is important to keep in mind that many di�erent population models

can lead to the same limiting coalescent, and also that the timescale, determined by cN ,

may vary between di�erent models having the same limit. For the Kingman coalescent, the

classical Wright Fisher model converges on the time-scale cN = 1/N , whereas for the Moran

model, it is of order 1/N2.

A popular model that leads to the Beta(2 − α, α)-coalescent has been introduced by

Schweinsberg (2003). For this model, the relevant time-scale is of order 1/Nα−1. Here,

single individuals can produce positive fractions of the next generation in a single reproduc-

tive event (an instance of `HFSOD') that can be related to stable branching processes, cf.

Birkner et al. (2005). The size of the reproductive event is random and governed by the

Beta-distribution. For details we refer to Schweinsberg (2003), and for a discussion of its

biological relevance eg. to Steinrücken et al. (2013).

The Dirac coalescent has been investigated in Eldon and Wakeley (2006). It has

a particularly simple interpretation: Given the coalescent parameter ψ ∈ (0, 1], in each
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`substantial' reproductive event, a fraction of 100 ·ψ% of the generation die and are replaced

by the o�spring of a single parent (there can be other, `non-substantial' reproductive events

which, though potentially frequent, become invisible in the limit). This is an extreme case

of HFSOD, and biologically it seems di�cult to justify why the fraction ψ should always

be the same. However, it is mathematically simple and interpolates between the Kingman

coalescent ψ = 0 and the star-shaped coalescent ψ = 1, thus we included it in our study.

For details see Eldon and Wakeley (2006).

Population with varying population size and the classes E and A

In Kaj and Krone (2003), a time-changed n-coalescent under a general model of variable

population size is derived. More precisely, the authors consider a haploid Wright-Fisher

model with population size N at generation r = 0 and consider a population size process

MN(r), r ∈ Z of the form MN(r) = NXN(r), r ∈ Z, that is, XN(r) describes the `relative

population size' at generation r. Under the assumption that XN(bNtc), t ∈ R converges

to something non-degenerate (ie. bounded away from 0 and ∞), they get the well-known

limiting result that a time-changed Kingman coalescent describes the genealogy, where the

in�nitesimal coalescence rates are given by 1/ν(s), with

ν(s) = lim
N→∞

XN(bNsc). (S10)

Our exponential growth model E corresponds to a Kingman-coalescent with exponentially

growing coalescence rates ν(s) = eβs, for β ≥ 0, and can be obtained from a a growth rate

of β/N per generation in the pre-limiting model, ie. Nk = N(1 + β/N)k. Indeed,

ν(t) = lim
N→∞

XN(bNtc) = lim
N→∞

(
1 +

β

N

)Nt
= eβt.

Thus, the size Nt generations ago is approximately Ne−βt.

The model class A is given by Kingman coalescents with algebraically growing coalescence

rates, ie. ν(s) = sγ, for γ ≥ 0. Note that if γ = 0 or β = 0, we recover the Kingman coalescent
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and are back in class K.

A population model for algebraic growth was considered in (Schweinsberg, 2010, Sec-

tion 1.4): Fix a population size N at the present generation 0, and for notational convenience

also for generation -1 (this short period of constant population size will become irrelevant

after time-rescaling). For a �xed growth parameter γ > 0, the population size at the k-th

generation before the present (for k ∈ N) is assumed to be dNk−γe. Measuring time in units

of size N
1

1+γ yields the limiting in�nitesimal coalescence rate

ν(t) = lim
N→∞

N
1

1+γ cN(t, γ) = lim
N→∞

N
1

1+γ
(N

1
1+γ t)γ

N
= tγ,

where cN(t, γ) is the probability that two individuals in generation N
1

1+γ t choose the same

ancestor (uniformly out of the N(N
1

1+γ t)−γ individuals alive in that generation). Consider

the time-change (for the scaling limit as N →∞)

Tt :=
tγ+1

γ + 1
=

∫ t

0

sγ ds.

Then, the genealogy of the algebraic growth model at previous generation t equals in law the

state of a classical Kingman coalescent at time Tt. See Schweinsberg (2010) for details.

The expected SFS under variable population size

The e�ect of �uctuations in population size on the SFS has been investigated in various

articles, see eg. Griffiths and Tavaré (1998), who derive an analog of (S1), and Kaj and

Krone (2003) who link the Wright-Fisher approximation (with �uctuating population size)

with the limiting genealogy.

Recursions for the expected values and covariances of the site-frequency spectrum asso-

ciated with moderate �uctuations in population size will now be brie�y discussed. We will

in particular consider numerically tractable recursions for the model classes E and A, based

on work by Polanski et al. (2003) and Polanski and Kimmel (2003).

Consider a time-inhomogeneous Kingman coalescent, started in n lineages, where each
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pair of lines present at time t ≥ 0 merges at a rate ν(t). Then, the expected frequency

spectrum E[ξ
(n),ν
i ], i ∈ [n − 1], is again of the form (S1), and the time-change ν enters only

in the distribution of the T
(n)
k = T

(n),ν
k , 2 ≤ k ≤ n, that is, the distribution of the lengths

of the time intervals of the block-counting process Y
(n),ν
t during which there are exactly k

lineages.

To evaluate E[ξ
(n),ν
i ] one needs information about E[T

(n),ν
k ]. De�ne

S
(n),ν
j := T (n),ν

n + T
(n),ν
n−1 + · · ·+ T

(n),ν
j , j = n, . . . , 2 (S11)

to be the time at which the block counting process Y (n),ν jumps from j to j − 1 lineages

(with the convention S
(n),ν
n+1 := 0). Abbreviate, for t ≥ 0 and j ∈ 2, . . . , n,

F (t) :=

∫ t

0

ν(u) du and a
(ϑ)
j :=

∫ ∞

0

e−(j2)F (s) ds, (S12)

assuming that the �rst integral in (S12) is �nite. It is possible to compute the marginal

density of S
(n),ν
m using the well-known fact that the density of a convolution of exponentials

with di�erent rates can be written as a linear combination of exponential densities,

E
[
S(n),ν
m

]
=

n∑

j=m

c(j,n)
m a

(ϑ)
j , (S13)

where

c(j,n)
m :=

∏

m≤i≤n
i 6=j

(
i
2

)
(
i
2

)
−
(
j
2

) = (−1)j−m
(2j − 1)m

j(j − 1)

(
n
j

)(
j+m−2

j

)(
j
m

)
(
n+j−1

j

) , (S14)

(put c
(j,n)
m = 0 for j < m).

Polanski and Kimmel (2003) obtain numerically stable and e�cient recursions to com-

pute EΠ
[
B

(n)
ı

]
associated with any time-changed Kingman coalescent Π as follows. For ϑ
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denoting the growth parameter associated with process Π,

EΠ
[
B

(n)
i

]
=

n∑

j=2

W
(n)
i,j a

(ϑ)
j (S15)

where the constants W
(n)
ı, can be computed recursively (Polanski and Kimmel, 2003);

W
(n)
i,2 =

6

n+ 1
,

W
(n)
i,3 =

30(n− 2i)

(n+ 1)(n+ 2)
,

W
(n)
i,j+2 =

(3 + 2j)(n− 2i)

j(n+ j + 1)
W

(n)
i,j+1 −

(1 + j)(3 + 2j)(n− j)
j(2j − 1)(n+ j + 1)

W
(n)
i,j .

(S16)

We now specify the main ingredient a
(ϑ)
j (depending on F (t), t ≥ 0 and hence ν(t), t ≥ 0)

explicitly for two important special cases:

a) Exponential growth. In the case of an exponentially growing population with

growth parameter β, that is, ν(t) = eβt, we have

a
(β)
j =

1

β
exp

(
β−1
(
j
2

))
E1

(
β−1
(
j
2

))
, (S17)

where

E1(t) :=

∫ ∞

t

e−x

x
dx =

∫ ∞

1

e−tx

x
dx (S18)

is an exponential integral function, c.f. e.g. (Abramowitz and Stegun, 1964, 5.1.1). One

can use numerical integration schemes to compute E1(t) for smaller values of t (eg. t < 50).

For larger values of t, one can use the approximation

E1(t) = t−1e−t
K−1∑

k=0

k!(−t)−k

(Milgram, 1985), which has error of order O
(
K!t−K

)
.
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b) Algebraic (`power law') growth. In the case of algebraic growth of the form

ν(t) = tγ for some γ > 0, we have

a
(γ)
j =

Γ
(
1/(γ + 1)

)

(1 + γ)γ/(γ+1)

(
j

2

)−1/(γ+1)

. (S19)

Based on Equation (23) in Fu (1995), it is also possible to compute the variance and the

covariances of the SFS based on expressions for Eν [T (n),ν
k T

(n),ν
l ], 2 ≤ k, l ≤ n, which in turn

can be obtained from

Eν [T (n),ν
k T

(n),ν
l ] = Eν [S(n),ν

k S
(n),ν
l ]− Eν [S(n),ν

k−1 S
(n),ν
l ]− Eν [S(n),ν

k S
(n),ν
l−1 ] + Eν [S(n),ν

k−1 S
(n),ν
l−1 ],

noting that, in the above notation,

E
[
(S(n),ν

m )2
]

=

∫ ∞

0

s2
m

n∑

j=m

c(j,n)
m ν(sm)

(
j

2

)
e−(j2)F (sm) dsm,

and

E[S(n),ν
m S

(n),ν
k ] = E

[
E[S(n),ν

m |S(n),ν
k ]S

(n),ν
k

]
,

where E[S
(n),ν
m |S(n),ν

k = sk] can be computed (it is the expectation under a regular condi-

tional probability) as in (S13) replacing ν by ν̃(·) := ν(· + sk), c
(j,n)
m by c̃

(j)
m := c

(j,k)
m and F

by F̃ (·) = F (sk + ·)− F (sk).
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The estimate 1/EB
[
B(n)

]
as a function of α

Figure S1: Graphs of 1/EB
[
B(n)

]
, the estimated value of θ/2 per observed mutation when

using the Watterson estimator (S2) as a function of α (A), compare with (S2); and the
estimated value of µ per observed mutation (B), using (S3) together with (S2), and assuming
the timescale cN = N1−α. The number of leaves n are as shown. In B, time is converted
into generations by multiplying EB

[
B(n)

]
with Nα−1, when N = 105.
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Approximate robustness of the expected normalized SFS w.r.t. θ

In this section, we argue that for a random genealogical tree T with n leaves whose law

is governed by a given coalescent mechanism Π, the expected nSFS EΠ,θ
[(
ζ

(n)
1 , . . . , ζ

(n)
n−1

)]

when the coalescent mutation rate is θ > 0 is approximately constant as a function of θ. This

is useful because it in a sense allows to �factor out� (i.e, ignore) the mutation rate parameter

from a test problem when comparing di�erent Π's. This also means that � at least when

the observed number |ξ(n)| of segregating sites is reasonably large � the exact observed value

|ξ(n)| does not add much additional information for tests based on the SFS.

Indeed, we can compute

EΠ,θ
[
ζ

(n)
i

]
= EΠ,θ

[
ζ

(n)
i 1{|ξ(n)|>0}

]
= EΠ,θ

[
EΠ,θ

[
ζ

(n)
i 1{|ξ(n)|>0}

∣∣∣ T
]]

= EΠ,θ


PΠ,θ(|ξ(n)| > 0 | T )

EΠ,θ
[
ζ

(n)
i 1{|ξ(n)|>0}

∣∣∣ T
]

PΠ,θ(|ξ(n)| > 0 | T )




= EΠ

[
(
1− e− θ2

∑n−1
i=1 B

(n)
i
) θ

2
·B(n)

i

θ
2

∑n
i=1B

(n)
i

]

= EΠ

[
B

(n)
i∑n

i=1 B
(n)
i

]
− EΠ

[
e−

θ
2

∑n−1
i=1 B

(n)
i

B
(n)
i∑n

i=1B
(n)
i

]
. (S20)

Here, B
(n)
i denotes the total length of all branches in T which subtend i leaves for i =

1, . . . , n − 1 and in the third line we used Lemma S1.1 below together with the fact that

given T and θ, ξ
(n)
i , i = 1, . . . , n − 1 are independent and each ξ

(n)
i is Poisson distributed

with mean θ
2
B

(n)
i . Note that the �rst term in (S20) is independent of θ and the �correction�

term is small unless θ is very small or Ln :=
∑n−1

i=1 B
(n)
i , the total length of T , is small under

Π with substantial probability. Note that for each of the coalescent processes we consider in

this investigation, it does hold that Ln →∞ as n→∞. Simulations also indicate that the

distribution (not only the mean) of ζ
(n)
i does not depend much on θ (data not shown).

Lemma S1.1. Let X1, X2 be independent Poisson-distributed variables with parameters a
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and b. Then,

E
[

X1

X1 +X2

∣∣∣∣ (X1 +X2) > 0

]
=

a

a+ b
.

Proof. X1+X2 as a sum of independent Poisson distributed random variables is again Poisson

distributed with parameter a+ b. We have

P (X1 = k,X2 = m−k|(X1+X2) > 0) =
P (X1 = k)P (X2 = m− k)

P (X1 +X2 > 0)
=

akbm−k

k!(m− k)!

e−(a+b)

1− e−(a+b)

for k ∈ N0, m ∈ N with k ≤ m. We compute

E
[

X1

X1 +X2

∣∣∣∣ (X1 +X2) > 0

]
=

∞∑

m=1

m∑

k=0

k

m

akbm−k

k!(m− k)!

e−(a+b)

1− e−(a+b)

=
e−(a+b)

1− e−(a+b)

∞∑

m=1

a

m(m− 1)!

m∑

k=1

(m− 1)!

(k − 1)!((m− 1)− (k − 1))!
ak−1b(m−1)−(k−1)

=
e−(a+b)

1− e−(a+b)

a

a+ b

∞∑

m=1

(a+ b)m

m!
=

e−(a+b)

1− e−(a+b)
(e(a+b) − 1)

a

a+ b
=

a

a+ b
.
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Robustness of the �xed-s-method w.r.t. θ

To check the the robustness of our �xed-s-method against varying θ under rejection sampling

(cf. e.g. Markovtsova et al. (2001), Wall and Hudson (2001)), we applied the following

exact rejection sampling approach to simulate a coalescent tree conditional on a given number

of observed segregating sites s. As input, the algorithm takes sample size n, number of

segregating sites s, a coalescent model Π, and mutation rate θ, and returns a realisation of

ξ(n) with |ξ(n)| = s.

Rejection sampling algorithm :

(i) generate a coalescent tree according to Π, read o� branch lengths B
(n)
i ,

(ii) draw a total number of mutations S as realization of a Poisson random variable with

parameter (θ/2)
∑

iB
(n)
i ,

(iii) if S = s the required �xed number of segregating sites, keep the B
(n)
i , otherwise discard

and draw again,

(iv) throw uniformly s mutations on the tree with branch lengths B
(n)
i , so that the proba-

bility of a mutation falling into class i is B
(n)
i /(

∑
iB

(n)
i ).

We then computed (approximately via rejection-sampling) the size of a conditional dis-

tribution based test if one employs quantiles of the �xed-s-method derived from (S5). Of

course, the hope is that both are reasonably close to each other, and this seems to hold

relatively well if θ is close to the Watterson estimate θ̂(Π, s) (S6). In particular, the results

(Tables (S1)�(S3)) show that the method is particularly robust against varying θ when

exponential growth is taken as null model.

SI 14 B. Eldon et al.



Table S1: Checking size of test given �xed-s quantiles associated with size x% and α ∈
{1, 1.5} with Beta(2−α, α)-coalescent as null model, and exponential growth as alternative,
using rejection sampling with mutation rate θ as shown. Sample size n = 100, segregating
sites s = 50. The estimate (θW (α)) is obtained from (S6). All estimates from 105 iterates.

α x% θ (θW (α)) size of test
1.0 10% 3.082453 (θW (1)) 0.10

2.0 0.13
3.0 0.10
5.0 0.07
7.0 0.06

5% 3.082453 (θW (1)) 0.05
2.0 0.07
5.0 0.03
7.0 0.02

1% 3.082453 (θW (1)) 0.01
2.0 0.02
5.0 0.01
7.0 0.002

1.5 10% 5.7638 (θW (1.5)) 0.11
3.0 0.03
5.0 0.09
7.0 0.11
10.0 0.13

5% 5.7638 (θW (1.5)) 0.05
3.0 0.01
5.0 0.04
7.0 0.06
10.0 0.07

1% 5.7638 (θW (1.5)) 0.01
3.0 0.001
5.0 0.01
7.0 0.01
10.0 0.02
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Table S2: Checking size of test given �xed-s quantiles associated with size x% as shown
using rejection sampling with mutation rate θ as shown for exponential growth as null model,
and Beta(2 − α, α)-coalescent as alternative. Sample size n = 50, segregating sites s = 25.
The estimate (θW (β)) is obtained from (S6). All estimates from 105 iterates.

β x% θ (θW (β)) test size
1 10% 7.895425 θW (1) 0.10

5.0 0.10
7.0 0.10
9.0 0.10
11.0 0.10

5% 7.895425 θW (1) 0.05
5.0 0.05
7.0 0.05
9.0 0.05
11.0 0.05

1% 7.895425 θW (1) 0.01
5.0 0.01
7.0 0.01
9.0 0.01
11.0 0.01

10 10% 16.33632 θW (10) 0.10
12.0 0.13
14.0 0.12
18.0 0.10
20.0 0.10

5% 16.33632 θW (10) 0.05
12.0 0.05
14.0 0.05
18.0 0.05
20.0 0.05

1% 16.33632 θW (10) 0.01
12.0 0.01
14.0 0.01
18.0 0.01
20.0 0.01
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Table S3: Checking size of test given �xed-s quantiles associated with size x% as shown
using rejection sampling with mutation rate θ as shown for exponential growth as null model
(β = 1000), and Beta(2− α, α)-coalescent as alternative. The estimate (θW (β)) is obtained
from (S6). Sample size n = 50, segregating sites s = 25. All estimates from 105 iterates.

β x% θ (θW (β)) test size
1000 10% 263.1798 θW (103) 0.10

259 0.10
261 0.10
265 0.10
267 0.10

5% 263.1798 θW (103) 0.05
259 0.05
261 0.05
265 0.05
267 0.05

1% 263.1798 θW (103) 0.01
259 0.01
261 0.01
265 0.01
267 0.01
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Estimation of power for Θ0 = ΘD
s, Θ1 = ΘE

s

Figure S2: Estimate of G̃(D,E;s) from (S7) based on the approximate likelihood (S8)
as a function of ψ (no lumping) with number of leaves n = 100 and s = 50. The
line types denote the size of the test as shown in the legend. The interval hypotheses
are discretized to ΘE

s = {β : β ∈ {0, 1, 2, . . . , 10, 20, . . . , 1000}} and ΘD
s = {ψ : ψ ∈

{0, 0.01, 0.02, . . . , 0.1, 0.15, 0.2, . . . , 0.95}}. Reverting the hypotheses yield very similar re-
sults (not shown).
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Estimation of power for s = 300

Figure S3: Estimate G̃(B,E;s)(β) of power as a function of β for (A) β ∈ {0, 10, . . . , 1000}; (B)
β ∈ {0, 1, 2, . . . , 9, 10, 20, . . . , 1000} when the Beta(2−α, α)-coalescent is the null hypothesis,
and the test statistic is sup{˜̀(Π, ξ(n), s),Π ∈ ΘB

s} − sup{˜̀(Π, ξ(n), s),Π ∈ ΘE
s} (S4) , with

˜̀(Π, ξ(n), s) the log of the Poisson likelihood function (S8) (no lumping). Values at β = 0
correspond to the Kingman coalescent. A total of 106 replicates for both quantiles and power
estimates.
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Figure S4: Estimate G̃(E,B;s)(α) of power as a function of α for α ∈ [1, 2] when exponential
growth (E) is the null hypothesis, Beta(2 − α, α)-coalescent (B) is the alternative, and the
test statistic is sup{˜̀(Π, ξ(n), s),Π ∈ ΘE

s} − sup{˜̀(Π, ξ(n), s),Π ∈ ΘB
s} (S4), with ˜̀(Π, ξ(n), s)

the log of the Poisson likelihood function (S8) (no lumping). Values at α = 2 correspond
to the Kingman coalescent; number of segregating sites s = 300; 106 replicates for quantiles
and power estimates.
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Estimate of power comparing ΘA
s and ΘD

s

Figure S5: Estimate G̃(D,A;s)(γ) of power (S7) between algebraic growth and the Dirac

Lambda-coalescent when the test statistic is sup{˜̀(Π, ξ(n), s), ϑ ∈ ΘD
s}−sup{˜̀(Π, ξ(n), s),Π ∈

ΘA
s} (S4), with ˜̀(Π, ξ(n), s) the log of the Poisson likelihood function (S8) (no lumping); with

n = 100 and number of segregating sites s = 50. The test sizes are as shown in the
legend. The interval hypotheses are ΘA

s ≡ {γ : γ ∈ {0, 1, 2, . . . , 10, 20, 30, . . . , 1000}} and
ΘD
s ≡ {ψ : ψ ∈ {0.01, 0.02, . . . , 0.1, 0.15, 0.2, . . . , 0.95}}. Values at γ = 0 correspond to

the Kingman coalescent. Expected values were computed exactly, and quantiles and power
estimated from 105 replicates. Reverting the hypotheses shows a very similar pattern (results
not shown). In B, we `zoom in' on the range 0 ≤ γ ≤ 50.
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Estimate of power comparing ΘA
s and ΘB

s

Figure S6: Estimate G̃(A,B;s)(α) (A) and G̃(B,A;s)(γ) (B) of power (S7) between algebraic

growth and the Beta(2 − α, α)-coalescent when the test statistic is sup{˜̀(Π, ξ(n), s),Π ∈
ΘΠ0
s } − sup{˜̀(Π, ξ(n), s),Π ∈ ΘΠ1

s } (S4), with ˜̀(Π, ξ(n), s) the log of the Poisson likelihood
function (S8) (no lumping); with number of leaves n as shown and number of segregating
sites s = 50. The test sizes are as shown in the legend. The interval hypotheses are ΘA

s ≡ {γ :
γ ∈ {0, 1, 2, . . . , 10, 20, 30, . . . , 1000}} and ΘB

s ≡ {α : α ∈ {1, 1.025, . . . , 2}}. Values at γ = 0
and α = 2 correspond to the Kingman coalescent. Expected values were computed exactly,
and quantiles and power estimated from 105 replicates. In A, the Beta(2− α, α)-coalescent
is the alternative hypothesis; in B, algebraic growth is the alternative.
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Mean misclassi�cation probabilities and posterior probabilities for

ABC approach - alternative parameter choices

Table S4: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison between E and B for di�erent growth parameter ranges or
tolerance rates. The nSFS is used as summary statistics. βmax denotes the maximal growth
rate used in the growth model, ncv denotes the number of cross-validations; `lump' indicates
which mutation classes are lumped into one class. An expected number s = 75 of mutations
are assumed.

βmax lump ncv tolerance EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB

[
π(%B

(E,B)
≥ 1|ζ)

]
EE

[
π(%B

(E,B)
≤ 1|ζ)

]
103 10+ 24000 0.01 0.24 0.11 0.18 0.04
" " " " 0.24 0.11 0.18 0.04

103 50+ 12000 0.01 0.22 0.09 0.18 0.03
" " " " 0.23 0.09 0.19 0.03

103 100+ 1200 0.01 0.22 0.09 0.19 0.03
" " 12000 " 0.22 0.08 0.20 0.02

103 no 12000 0.01 0.30 0.14 0.23 0.04
" " " " 0.30 0.14 0.23 0.04
500 10+ 24000 0.01 0.26 0.13 0.20 0.05
500 50+ 12000 0.01 0.24 0.10 0.20 0.04
500 100+ 1200 0.01 0.26 0.09 0.22 0.03
100 10+ 24000 0.01 0.31 0.21 0.23 0.12
100 50+ 12000 0.01 0.27 0.18 0.20 0.10
103 10+ 24000 0.0025 0.20 0.11 0.15 0.05
103 50+ 12000 0.0025 0.19 0.08 0.15 0.03
103 100+ 1200 0.0025 0.18 0.08 0.16 0.03
103 no 1200 0.0025 0.25 0.13 0.20 0.05
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Table S5: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison between E and B for tolerance x = 0.0025 and sample size
n = 200 and assumed expected number s = 15 of mutations. The nSFS is used as summary
statistics. ncv denotes the number of cross-validations `lumped' indicates which mutation
classes are lumped into one class.

lump ncv EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB
[
π(%B(E,B) ≥ 1|ζ)

]
EE
[
π(%B(E,B) ≤ 1|ζ)

]

10 24000 0.28 0.24 0.23 0.14
50 12000 0.31 0.26 0.25 0.14
100 12000 0.33 0.27 0.28 0.15
no 12000 0.34 0.26 0.29 0.15

Table S6: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison between E and B for tolerance x = 0.001 and sample size
n = 200, assumed expected number s = 15 of mutations and alternative prior ranges and
distributions. The nSFS is used as summary statistics. ncv denotes the number of cross-
validations `lumped' indicates which mutation classes are lumped into one class. For growth
rate β, the prior is uniformly distributed on {βmin, βmin + 10, . . . , βmax}. For coalescent
parameter α, the prior is uniformly distributed on [αmin, αmax]

lump ncv βmin, βmax αmin, αmax EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB

[
π(%B

(E,B)
≥ 1|ζ)

]
EE

[
π(%B

(E,B)
≤ 1|ζ)

]
10 24000 0,100 1.5,2 0.39 0.34 0.30 0.23
50 12000 0,100 1.5,2 0.38 0.31 0.31 0.18
10 24000 100,1000 1,1.5 0.33 0.28 0.29 0.14
50 12000 100,1000 1,1.5 0.36 0.32 0.31 0.18

Table S7: Approximations of the misclassi�cation probabilities for the ABC model com-
parison between models E, B, D for tolerance x = 0.005, sample size n = 200 and
s ∈ {15, 75}. The folded nSFS was used as summary statistics. We use the abbreviation

mc(Π1|Π2) := EΠ2

[
π(minΠ 6=Π1 %

B
(Π1,Π) ≥ 1|ζ(n))

]
, Π1,Π2 ∈ {E, B, D}.

s lump ncv mc(E|B) mc(D|B) mc(B|E) mc(D|E) mc(B|D) mc(E|D)

15 10+ 24000 0.27 0.07 0.12 0.01 0.62 0.01
15 50+ 12000 0.39 0.06 0.08 0.01 0.60 0.03
15 no 12000 0.42 0.07 0.08 0.01 0.64 0.04
75 10+ 24000 0.19 0.04 0.05 0.00 0.09 0.00
75 50+ 12000 0.24 0.04 0.04 0.00 0.09 0.00
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Table S8: Approximations of the misclassi�cation probabilities for the ABC model com-
parison between models A, B, D for tolerance x = 0.005, sample size n = 200 and
s ∈ {15, 75}. The folded nSFS was used as summary statistics. We use the abbreviation

mc(Π1|Π2) := EΠ2

[
π(minΠ 6=Π1 %

B
(Π1,Π) ≥ 1|ζ(n))

]
, Π1,Π2 ∈ {A, B, D}.

s lump ncv mc(A|B) mc(D|B) mc(B|A) mc(D|A) mc(B|D) mc(A|D)

15 10+ 24000 0.01 0.06 0.01 0.04 0.15 0.53
15 50+ 12000 0.01 0.06 0.01 0.04 0.18 0.52
75 10+ 24000 0.00 0.03 0.01 0.06 0.09 0.25
75 50+ 12000 0.00 0.03 0.01 0.05 0.14 0.27
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ABC analysis of the cytochrome b mtDNA data of Árnason (2004)

To investigate which model class (exponential growth E, algebraic growth A, Beta(2− α, α)-

coalescents B, Dirac coalescents D) �ts better to the data, we use the ABC model com-

parison approach given the (lumped) nfSFS of the observed mitochondrial locus. The ex-

ponential growth model class is speci�ed by an uniform prior for growth parameter β on

{0, 1, 2, . . . , 1000}, the algebraic growth class by an uniform prior for growth parameter γ

on {0, 1, 2, . . . , 1000}. The class of Beta n-coalescents is speci�ed by an uniform prior on

{1, 1.01, . . . , 2} for the coalescent parameter α, the class of Dirac coalescents by an uniform

prior on {0.01, 0.02, . . . 0.99} for the coalescent parameter ψ (we omit the star-shaped coales-

cent ψ = 1 because the observed SFS has not only singleton mutations, thus directly violating

this model). We used two tolerance levels of 0.005 and 0.00125 and perform nr = 200, 000

simulations for each model class. See Table S9 for the approximated Bayes factors %B(E,B) for

the model comparison of the growth model and the Beta n-coalescent model using di�erent

lumps of the nfSFS as summary statistics. The Bayes factors %B(A,Π), %
B
(D,Π) for Π ∈ {E, B} have

maximal values of ≈ 0.01, 0.001 under all lumpings and both tolerances. The observed data

�ts slightly better to the growth model than to the Beta coalescent class, but not so much

better that we could discard the Beta n-coalescents as possible genealogy models for this

locus. The latter point is also highlighted by results for an ABC model comparison between

only model classes E and B where all lumpings but 100+ again (slightly) favour the growth

model, but for 100+ lumping this is reversed (%B(E,B) = 0.69 for tolerance 0.005). The Dirac

coalescents and the algebraic growth model show neglectible support for all lumpings and

thus we discard them as potential models.

Table S9: Approximated Bayes factor %B(E,B) given the Atlantic cod mtDNA data

lumping number 10+ 50+ 100+ 200+ no
tolerance 0.005 7.79 2.23 2.09 2.97 2.98
tolerance 0.00125 10.35 2.97 2.23 6.87 7.13

Jeffreys (1961) suggested interpreting Bayes factors according to the log10 scale. Lump-

ing at 10 (Table S9) then gives at least `substantial' (1/2 < log10(%B(E,B)) ≤ 1) evidence
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against the Beta(2 − α, α)-coalescent in favor of exponential growth. Using Kass and

Raftery (1995) suggestion of considering Bayes factors on 2 loge scale gives `positive'

(2 < 2 loge(%
B
(E,B)) < 6) evidence in favor of exponential growth, based on lumping at 10.

Additionally to the ABC model comparison, we also evaluate which parameters �t best

to the observed nfSFS at the mitochondrial locus. We omit the class of Dirac coalescents

and algebraic growth models from further analysis since the observed frequency spectrum

clearly does not �t to this model class. For each other model class used, we record the

prior parameters from the 0.5% of the nr = 200, 000 simulations that have the smallest `2

distance to the observed nfSFS (summary statistics). This gives an approximate sample of

the posterior distribution of π(α| observed ζ(n)) resp. π(β| observed ζ(n)). Again, we used

the lumped nSFS as summary statistics. Figure S7 shows the posterior distributions for

di�erent lumping numbers.
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Figure S7: Approximate posterior density of the coalescent parameter from ABC �tting
of the (A) growth, and (B) Beta n-coalescent model classes to the observed nfSFS in the
Atlantic cod data. Denote by α the Beta n-coalescent parameter, β the growth rate. Priors
were uniform on both sets.

�

�coalescent parameter α

growth parameter β

A exponential growth

B Beta(2− α, α)-coalescent
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ABC quality control for the Árnason (2004) data

We follow the recommendation from the R package abc (Csilléry et al., 2012) and perform

three checks of quality for the presented ABC approach. We focus on the lumping which

gives the clearest distinction, namely the lumping of all classes with mutation counts 10 or

higher (class 10+). All checks are performed using the R package abc

To assess the general ability to distinguish between the two model classes in the setting (i.e.,

number of observed mutations and sample size) given by the Atlantic cod mtDNA data from

Árnason (2004), we again employ a leave-one-out cross-validation as described in Methods.

See Table S10 for the results.

Table S10: Approximations of the mean posterior probabilities and misclassi�cation
probabilities (based on ncv = 12, 000 cross-validations) for the ABC model compari-
son between models E, A, B, D for tolerance x = 0.005, sample size n = 1278 and
mutation rate estimated via Watterson's estimator from s = 39 observed mutations.
The lumped nfSFS (10+) was used as summary statistics. The entries are listed as

EΠrow

[
π(Πcol|ζ)

]
/EΠrow

[
π(minΠ 6=Πcol

%BΠcol,Π
≥ 1|ζ(n))

]
.

E A B D

E 0.79/0.88 0.00/0.00 0.21/0.12 0.00/0.00
A 0.00/0.00 0.24/0.25 0.06/0.01 0.70/0.74
B 0.24/0.18 0.01/0.00 0.71/0.79 0.03/0.02
D 0.00/0.00 0.03/0.03 0.08/0.03 0.90/0.94

To assess the quality to distinguish the parameters within one model class, we again use

leave-one-out cross-validations (ncv = 12, 000). The parameter of each simulation chosen

for cross-validation is estimated as the median of the 0.5% of simulations with the smallest

`2 distance to the chosen simulation. Figure S8 shows the resulting scatter plots of the

parameters of the chosen simulations and the corresponding estimations.
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Figure S8: Scatter plots of estimated vs. true parameters of ncv = 12000 cross-validated
simulations in the (A) Beta coalescent; (B) exponential growth.

A Beta(2− α, α)-coalescent B exponential growth
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To see whether the posterior distributions given the cod mtDNA data from Árnason

(2004) de�ne models under which the observed data is reproducible, we perfomed posterior

predictive checks by simulating the 10+ lumped nfSFS under the posterior distribution (i.e.,

simulating once from each parameter set of each of the 1,000 accepted simulations) for each

model class and compare these with the nfSFS observed. See Figure S9 for the results within

each nfSFS class. To assess the minimal l2 distance of the simulations using the posterior

parameter distributions from the observed nfSFS, we simulated 5 replications under the

posteriors. The minimal l2 distance was 0.04 under the posterior growth model and 0.06

under the posterior Beta coalescent model.

Figure S9: Posterior predictive checks with 1,000 simulations of the nfSFS under the
approximate posterior distributions given the cod data from Árnason (2004) for the (A)
Beta coalescent model class; (B) growth model class. Asterisks denote the observed values
in the data.

A B

The quality checks reveal that we can not distinguish well within the model classes of

exponential growth and of Beta coalescents, but moderately between them. Additionally,

the ABC approach distinguishes well between these two classes on one hand and the (non-

�tting) other two classes A, D. The posterior predictive checks reveal that both model classes

can produce the observed values in each class of the nfSFS, but do not match well in l2 to
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the actual observed nfSFS. Neither model class thus captures the observed nfSFS well.
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