
Perceptual Learning In The Developing Auditory Cortex

Shaowen Bao
Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.

Abstract

A hallmark of the developing auditory cortex is the heightened plasticity in the critical period, 

during which acoustic inputs can indelibly alter cortical function. However, not all sounds in the 

natural acoustic environment are ethologically relevant. How does the auditory system resolve 

relevant sounds from the acoustic environment in such an early developmental stage when most 

associative learning mechanisms are not yet fully functional? What can the auditory system learn 

from one of the most important classes of sounds—animal vocalizations? How does naturalistic 

acoustic experience shape cortical sound representation and perception? To answer these 

questions, we need to consider an unusual strategy—statistical learning—where what the system 

needs to learn is embedded in the sensory input. Here, I will review recent findings on how certain 

statistical structure of natural animal vocalizations shapes auditory cortical acoustic 

representations, and how cortical plasticity may underlie learned categorical sound perception. 

These results will be discussed in the context of human speech perception.
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Learning has been defined as an enduring change in the mechanisms of behavior that results 

from experience with the environmental events (Domjan, 2010). Perceptual learning is the 

specific and relatively permanent modification of perception and behavior following sensory 

experience (Fahle & Poggio, 2002). Exposure to specific acoustic experience in the critical 

period of early sensory development alters cortical sound representations (Zhang et al., 

2001) and perceptual behavior (Han et al., 2007; Kover et al., 2013), and therefore is a 

process of perceptual learning. However, the type of perceptual learning through sensory 

exposure is unique in that it does not involve an explicit training process (Keuroghlian & 

Knudsen, 2007)—there is no instruction of the desired response or feedback on the actual 

response. In the absence of instructions or feedbacks, how does the auditory system know 

what and how to learn in order to adapt to its specific acoustic environment?

Perceptual learning may be classified into three categories: unsupervised, supervised and 

reinforcement learning. In reinforcement learning, feedback is provided on whether the 

response is correct (e.g., tell me what sound you are hearing; no, that is not correct.). In 
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supervised learning, the desired response is provided (e.g., now I am going to play the sound 

of /la/; learn it.). Reinforcement learning is sometimes regarded as a form of supervised 

learning. In unsupervised learning, however, the subject is left alone to discover the 

structures of a stimulus ensemble without instructions or feedback (e.g., I am going to play a 

long sound stream; tell me all the structures in it that you can find.). This is achieved 

through statistical learning, a process of reshaping perception according to the statistical 

structures of a stimulus ensemble (e.g., an acoustic environment). Although statistical 

learning per se does not need feedback, it can be performed in a reinforcement context (Toro 

& Trobalon, 2005).

Both humans and rodents are sensitive to statistical structure of acoustic input such as 

stimulus probability and conditional probability distributions. For example, exposure to 

sounds distributed along a phonetic continuum affects the subsequent discrimination of 

those phonemes in rats and humans (Maye et al., 2002; Pons, 2006). Human infants and 

adults are sensitive to stimulus transitional probability, and can use it to identify speech 

sound sequences or tone sequences that are repeating in a continuous acoustic stream 

(Saffran et al., 1996; Saffran et al., 1999). Rats are also sensitive to conditional probability 

such as co-occurrence of sounds in a sequence (Toro & Trobalon, 2005). The neural 

mechanisms underlying this type of statistical learning are unknown.

The auditory cortex is remarkably adaptive to sensory input. During an epoch of early 

development, exposure to the acoustic environment can change sound representations 

without external instructions or feedback (Zhang et al., 2001). Early studies indicate that 

cortical sound representations are sensitive to simple statistics of the sensory input such as 

frequency of occurrences—more frequently experienced sounds gain larger cortical 

representations (Zhang et al., 2001). More recently studies suggest that auditory cortex is 

also sensitive to conditional probabilities (e.g., co-occurrence of sounds in a sequence) 

(Kover et al., 2013). Most importantly, early experience-dependent reorganization of 

cortical acoustic representations is correlated with altered perception and perceptual 

behavior (Han et al., 2007; Kover et al., 2013). Here I will discuss recent findings on the 

cortical mechanisms underlying developmental perceptual learning. For more 

comprehensive reviews on cortical plasticity and its perceptual consequences, please see 

(Sanes & Bao, 2009; Schreiner & Polley, 2014).

The developing auditory cortex selectively represents animal vocalizations

Nature sounds typically comprise environmental sounds (e.g., wind, water …), animal 

vocalizations (including human speech) and non-vocalization animal sounds (e.g., from 

footsteps, wing flaps …). These sounds carry different behavioral significances. Animal 

vocalizations of the same and different species are likely to be crucial for reproduction and 

survival of the animal. By contrast, environmental sounds are likely to be less important. 

Human infants preferentially attend to speech over non-speech sounds (Vouloumanos & 

Werker, 2007), suggesting an intrinsic preference for behaviorally important sounds. At the 

level of sensory neural processing, it would be advantageous to preferentially allocate more 

neurons to process behaviorally important sounds such as animal vocalizations (Wang & 

Kadia, 2001; Garcia-Lazaro et al., 2006; Kim & Bao, 2013).

Bao Page 2

Eur J Neurosci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Among the different types of natural sounds, animal vocalizations are arguably the most 

structured (Singh & Theunissen, 2003). They are complex and diverse, but also have some 

common characteristics that distinguish them from non-vocalization sounds. For example, 

most vocalizations of mammals are repeated at an ethological range of 4–10 Hz (Liu et al., 

2003; Schnupp et al., 2006). Human speech is also temporally modulated (Rosen, 1992), 

and the temporal modulation in the same ethological range is critical for human speech 

perception (Elliott & Theunissen, 2009). By contrast, non-vocalization sounds are often 

random in nature and are not repeated in the ethological modulation range. Studies have 

indicated that sounds that are repeatedly encountered in the ethological rate range become 

over-represented in the auditory cortex –i.e., more neurons become tuned to the sounds 

(Zhang et al., 2001; Chang & Merzenich, 2003; de Villers-Sidani et al., 2008; Zhou et al., 

2008; Insanally et al., 2009). Sounds that are repeated at higher or lower rates are not over-

represented (Figure 1 and (Kim & Bao, 2009)). Indeed, unmodulated sounds, similar to a 

constant environmental sound, can retard cortical development (Chang & Merzenich, 2003; 

de Villers-Sidani et al., 2008; Zhou et al., 2008). Unmodulated sounds may even be under-

represented in the developing auditory cortex (de Villers-Sidani et al., 2008; Zhou et al., 

2008). This type of temporal repetition rate-dependent cortical plasticity likely contributes to 

over-representation of conspecific vocalizations in rat auditory cortex(Figure 1 and (Kim & 

Bao, 2013)).

Statistics of the acoustic input shape cortical sound representations

Humans and rodents are sensitive to stimulus statistics such as simple stimulus probability 

distributions and more complex transitional/conditional probability distributions (Saffran et 

al., 1996; Saffran et al., 1999; Maye et al., 2002; Toro & Trobalon, 2005; Pons, 2006). 

Electrophysiological studies suggest that developing auditory cortex can utilize these 

statistics to shape acoustic representations. Early studies indicate that more neurons become 

tuned to repeatedly presented (i.e., high probability) sounds(Zhang et al., 2001; Chang & 

Merzenich, 2003; de Villers-Sidani et al., 2008; Zhou et al., 2008; Insanally et al., 2009). It 

may be hypothesized that the size of cortical representation encodes stimulus probability 

(Simoncelli, 2009; Fischer, 2010; Kover & Bao, 2010). A recent study indicated that 

developing auditory cortex can also encode higher-order conditional stimulus probability—

the probability of sounds occurring in a sequence played at the ethological rate (Kover et al., 

2013). Sounds that are presented in a sequence tend to be represented by the same 

population of neurons, whereas sounds that are never presented in a sequence tend to be 

represented by separate populations of neurons (Figure 2 and (Kover et al., 2013)). Rodent 

vocalizations occur in bouts with similar temporal rates (Liu et al., 2003; Holy & Guo, 

2005; Kim & Bao, 2009; 2013). Early experience of those vocalizations could thus 

theoretically lead to similar cortical representations, and reduced perceptual contrast, of the 

individual calls despite their substantial trial-by-trial variability. By contrast, functionally 

different call types (e.g., pup vs. adult encounter calls) that do not occur in the same bout 

may be represented by distinct populations of neurons, resulting in perceptual boundaries 

and categorical perception of the calls (Ehret & Haack, 1981).
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Experience-dependent cortical plasticity can account for altered perceptual 

behaviors

How does statistical learning in the developing auditory cortex impact perception and 

perceptual behavior? Early acoustic experience has a profound impact on auditory 

perception and perceptual behaviors. Human fetuses gradually become sensitive to mother’s 

voice and native speech during late gestation (Kisilevsky et al., 2009; Kisilevsky & Hains, 

2011), presumably due to acoustic experience in utero. Prenatal experience shapes 

perception and neural responses to speech in neonatal infants (Nazzi et al., 1998; Partanen et 

al., 2013). Language-specific perception and neural representation of speech sounds 

continue to refine and consolidate during the first year of life and beyond (Kuhl et al., 1992; 

Kuhl et al., 2006). A profound consequence of early experience of speech sound is the 

sharpening of categorical perception of native speech sounds—within-category perceptual 

contrast is reduced and between-category contrast is enhanced—resulting in more efficient 

recognition of native speech sounds and often loss of sensitivity to some foreign phonemic 

contrasts (Kuhl et al., 1992; Iverson et al., 2003; Kuhl et al., 2006). Can cortical statistical 

learning as shown in electrophysiological studies result in categorical perception of 

conspecific vocalizations (Ehret & Haack, 1981)?

An early study examined perceptual consequences of early acoustic experience in rats (Han 

et al., 2007). Rats were exposure to a 7.1-kHz tone repeated at the ethological rate during 

the critical period of auditory cortical development. The animals were then placed in a 

normal animal room for one month before being tested in a tonal frequency difference 

detection task. The difficulty of the task was carefully chosen to allow measurement of both 

improvement and impairment of the performance. The results indicate that discrimination 

performance was impaired at the exposure frequency, and improved at the flanking 

frequencies (Figure 3 and (Han et al., 2007)). Subsequent electrophysiological examination 

of the primary auditory cortex confirmed that the exposure frequency was over-represented 

(Figure 3). Although the impaired discrimination performance for over-represented stimuli 

is somewhat counter-intuitive, it is consistent with findings that discrimination between 

prototypical exemplars of the same speech sounds is more difficult than discrimination 

between non-prototypical exemplars (Kuhl et al., 1992; Iverson et al., 2003; Kuhl et al., 

2006). This phenomenon, also known as the “perceptual magnet effect”, depends on speech 

sound experience and is specific to the native language (Kuhl, 1991). Thus, it appears that 

early experience of speech sounds reduces the perceptual sensitivity to subtle differences 

between prototypical exemplars of the same speech sounds (Kuhl, 1991; Iverson et al., 

2003). A computational analysis indicates that the difference detection performance in the 

sound-exposed animals can be quantitatively accounted for by their cortical frequency 

representation (Figure 3 and (Han et al., 2007)).

Recent probabilistic models of sensory perception suggest that the percept of a stimulus may 

be shifted towards the stimuli with larger representations (Simoncelli, 2009; Fischer, 2010; 

Kover & Bao, 2010). In one of the models, all neurons vote for their preferred stimuli, and 

their votes are weighed by their firing rates(Fischer, 2010). The model percept is shifted 

towards the stimulus with larger representation because more neurons vote for it (Fischer, 

Bao Page 4

Eur J Neurosci. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2010). Empirical observations supported the probabilistic models (Fischer & Pena, 2011; 

Girshick et al., 2011; Ganguli & Simoncelli, 2014). For example, owls accurately localize 

sound sources near the center of gaze, but systematically underestimate peripheral source 

directions (Fischer & Pena, 2011). This behavior is correlated with over-representation of 

the space near the center of gaze and under-representation of lateral space (Fischer & Pena, 

2011).

Higher-order stimulus probability can also shape perception and perceptual behavior. For 

example, the transitional probability boundary shown in Figure 2 has been shown to result in 

a perceptual boundary where difference detection performance is improved (Kover et al., 

2013). The altered behavior is correlated with segregated representation of the two 

frequency bands divided by the probability boundary, and steepened tuning curve slopes at 

the probability boundary (Kover et al., 2013).

Early experience of natural sounds shapes categorical sensory 

representation

Above studies suggest that early experience shapes categorical representation and perception 

of sounds. However, they used simple tone pips. Natural sounds are complex and highly 

structured. To investigate whether natural sounds shape categorical auditory representation 

and perception, in a recently published study, a group of juvenile rats were exposed to a set 

of natural animal vocal sounds, referred to as “jungle sounds” (Bao et al., 2013). The jungle 

sounds CD loop was an hour of spectrotemporally complex sounds, in which there were at 

least 40 distinctive repeating motifs of bird songs, mammalian vocalizations and insect 

sounds (for examples, see Figure 4A). Cortical neurons became more selective to 

spectrotemporal features in the experienced sounds (Bao et al., 2013). At the neuronal 

population level, more neurons were involved in representing the whole set of complex 

sounds, but fewer neurons actually responded to each individual sound, and with greater 

firing rates (Bao et al., 2013). A comparison of population-temporal responses to the 

experienced complex sounds revealed that cortical responses to different renderings of the 

same song motif were more similar, indicating that the cortical neurons became less 

sensitive to natural acoustic variations associated with stimulus context and sound 

renderings (Figure 4B). By contrast, cortical responses to sounds of different motifs became 

more distinctive, suggesting that cortical neurons were tuned to the defining features of the 

experienced sounds. These effects lead to emergent categorical representations of the 

experienced sounds (Figure 4C). Further behavioral studies are needed to determine whether 

the jungle sound-exposure result in behavioral categorical perception of the experienced 

sounds.

Cortical plasticity is a mechanism for warped and categorical sound 

perception

Sensory representation and perception have two modes, continuous and categorical, and they 

serve different purposes (Harnad, 1987). For example, precise localization of sound in space 

would require continuous and faithful representation of the auditory space. By contrast, 
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recognition of vocalizations or speech sounds would be facilitated by categorical 

representation. Categorical perception is a result of warped perceptual space, as the 

perceived difference between stimuli is no longer proportional to their physical difference—

stimuli in a categorical center are perceived as being more similar, and stimuli across 

categorical boundaries are perceived as being more different, than they are (Harnad, 1987). 

The distortion may allow the system to tune out of irrelevant stimulus variability and noises 

that otherwise would interfere with the perception. Although categorical readout neurons, 

those that response selectively or exclusively to a category of stimuli, are often found in 

prefrontal cortex (Russ et al., 2007), the underlying neural computation and sensory 

transformation may happen in the sensory cortex (Ohl et al., 2001; Steinschneider et al., 

2003; Chang et al., 2010; Tsunada et al., 2011; Bathellier et al., 2012).

Early sensory exposure results in selective cortical representations of experienced 

behaviorally important sounds (Zhang et al., 2001; Chang & Merzenich, 2003; de Villers-

Sidani et al., 2008; Zhou et al., 2008; Insanally et al., 2009), and representational boundaries 

that separate different categories of sounds (Kover et al., 2013). These cortical 

reorganizations may lead to reduced perceptual sensitivity near the over-represented 

sounds(Han et al., 2007), shift of percept towards over-represented sounds(Fischer & Pena, 

2011), and enhance perceptual sensitivity at the boundaries of sound categories (Kover et 

al., 2013). These perceptual distortions are hallmarks of categorical perception. Thus, 

sensory exposure-induced auditory cortical plasticity during early develop may be a 

mechanism for learning perceptual categories.

Unsupervised learning solves the chicken-and-egg problem in the sensory 

development

Mammalian sensory systems are remarkably adaptive to the ever changing environment. 

This is achieved through different types of learning mechanisms. Supervised and 

reinforcement learning allow for rapid improvement in sensory processing for stimuli that 

are behaviorally relevant for the current and specific context. However, these types of 

learning often require a certain level of sensory processing in order to understand 

instructions or feedback. In addition, the development of the supervised and reinforcement 

learning mechanisms may also be experience-dependent, and requires some level of sensory 

processing. For example, it is impossible to teach newborns speech in the more traditional 

and associative form, because they cannot understand verbal instructions, and their brain 

learning systems are still developing.

The sensory system solves this “chicken-and-egg” problem by unsupervised, statistical 

learning. Neural circuits in the auditor system organize themselves according to the 

statistical structures of the sensory input, so that the sounds that are likely to be behaviorally 

relevant, such as animal vocalizations, are preferentially and categorically represented.

Cortical plasticity underlies perceptual learning

A central question in the field of auditory research is the role of cortical plasticity in 

perceptual learning. Some studies have found correlations between altered cortical stimulus 
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representations and perceptual learning (Recanzone et al., 1993; Ohl & Scheich, 1996; Bao 

et al., 2004; Polley et al., 2004; Polley et al., 2006; Schnupp et al., 2006; Han et al., 2007; 

Froemke et al., 2013), but others have failed to observe those correlations(Talwar & 

Gerstein, 2001; Brown et al., 2004; Reed et al., 2011; Ranasinghe et al., 2012). As evidence 

supporting both views accumulates, it is increasingly evident that the conclusion depends on 

the specifics of the tasks used to measure behavioral performances as well as the types of 

plasticity effects that are considered (Berlau & Weinberger, 2008). Some auditory tasks 

preferentially measures procedure or motor learning, and involve corresponding brain 

substrates of learning. For example, classical conditioning of simple movement to auditory 

stimuli appears to be mediated by brainstem and the cerebellum (Thompson et al., 1997; 

Bao et al., 2002), and can be retained even without the forebrain (Mauk & Thompson, 

1987). To avoid the confound of non-perceptual influences, tasks that require more sensory 

processing and less procedure/motor learning are preferred for measuring perceptual 

learning. Some perceptual tasks measure discrimination of subtle differences between 

stimuli, while others examine how animals classify very different stimuli. Theoretical and 

experimental research indicates that fine stimulus discrimination is better achieved by 

steeper tuning curve slopes, whereas stimulus classification along a large stimulus 

continuum may be better served by strong responses at the peaks of tuning curves (Butts & 

Goldman, 2006; Kim & Bao, 2008; Simoncelli, 2009; Kover & Bao, 2010). The multi-

dimensional cortical plasticity (e.g., in characteristic frequency, tuning bandwidth, tuning 

curve slopes, response magnitude, response timing…) could have dramatically different 

effects on different behavioral tasks. Appropriate behavior tests and quantitative models 

integrating different aspects of cortical plasticity will help elucidate whether and how 

cortical plasticity influences perception.

Summary

Based on the reviewed evidence, the following hypothetical model emerges. During the 

critical period of auditory cortical development, sounds with certain properties of natural 

vocalizations, such as temporal repetition at an ethological rate, profoundly shape acoustic 

representation in the auditory cortex. Vocalizations that are repeated at the ethological rate 

in a bout, such as rat pup calls, are represented similarly by a population of neurons. By 

contrast, different classes of vocalizations that are not produced at the ethological rates in a 

bout, such as pup and adult rat calls, are represented by separate populations of neurons. The 

segregated representations of vocalizations lead to perceptual shifts towards prototypical 

vocalizations and elevated perceptual contrasts between different classes of vocalizations, 

resulting in categorical perception of the experienced vocalizations. This model (1) 

considers categorical perception as a functional outcome of experience-dependent sensory 

plasticity; (2) emphasizes the history of sensory experience in understanding how the 

auditory system represents vocalizations and other ethologically relevant natural sounds; and 

(3) hypothesizes a causal relationship between sensory representations and perception. 

Further research that integrates neurophysiological and neuroethological approaches under a 

quantitative theoretical framework of categorical perception is required to evaluate this 

model of developmental perceptual learning.
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Figure 1. Over-representation of sounds repeated at the ethological rates
A, A schematic of “mix-rate” rearing stimuli. A train of 15-kHz tone consisted of six tone 

pips presented at the Ethological rate (6 Hz), and a train of 5-kHz tone consisted of six tone 

pips presented at the Fast rate (15 Hz). Trains of the two repetition rates were interleaved 

such that one train was heard every 1.5 seconds. B. CF map reorganization resulted from the 

mixed-rate rearing. Bi. Example maps of control and mixed-rate animals. Control animal is 

the same as seen in Figure 2A. Area represented 5 kHz ± 0.2 octaves are outlined in gray 

while area representing 15 kHz ± 0.2 octaves are outlined in black. Bii. Distributions of CFs 

along the tonotopic axis. Biii. Sizes of cortical areas representing different frequency bands. 

There was a significant increase in representation at 15 kHz and a significant decrease at 20 

kHz. C. Cortical representation of ultrasonic frequencies. Ci. An example CF map from a 

control animal mapped up to 74 kHz. Areas representing 25–50 kHz are outlined in blue 

while areas representing 3.13–6.25 kHz are outlined in black. Cii. Distribution of CFs along 

the tonotopic axis. Ciii. Sizes of cortical areas representing one-octave frequency bands. The 

representation of the 25–50 kHz band was significantly larger than those of the other. Error 

bars depict standard error of the mean. * indicates p < 0.05, ** indicates p < 0.001. This 

figure was originally published in (Kim & Bao, 2009).
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Figure 2. Influences of higher-order stimulus statistics on spectral selectivity of primary auditory 
cortical neurons
A. Schematics of the acoustic environments that the animals experienced. The three acoustic 

environments had the same logarithmically uniform frequency distribution from 4–32kHz 

and the same temporal presentation rates, but differed in the conditional probabilities of the 

tonal frequencies within sequences. B. Representative cortical maps. The sound exposure 

did not alter the overall tonotopic characteristic frequency distribution. C. Representative 

frequency-intensity receptive fields. The corresponding locations are marked on the 

tonotopic maps in B. The green vertical lines mark the low conditional probability boundary 

experienced by the half-range group. Stars denote the characteristic frequency (CF) and 

triangles denote the center-of-mass frequency. Horizontal axis depicts frequency 

logarithmically from 1 to 32 kHz and vertical axis depicts intensity from 10 to 80 dB SPL. 

D. Tuning bandwidth at 60 dB SPL. Cyan = naïve control, dark blue = single-frequency, red 

= half-range, green = full-range. Frequency tuning bandwidth became narrower in the 

single-frequency group and broader for the full-range group compared to control. Error bars 

depict standard error of the mean. * indicates p<0.05 determined by an ANOVA with 

posthoc Tukey-Kramer test. This figure was originally published in (Kover et al., 2013).
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Figure 3. Experience-dependent cortical plasticity accounts for altered perceptual behaviors
A. Representative cortical characteristic frequency maps from a 7.1-kHz-exposed animal 

and a control animal. Neurons in outlined areas had characteristic frequencies in a range of 

7.1 kHz ± 0.2 octave. B. Characteristic frequency distribution along the tonotopic axis in 

control and 7.1-kHz-exposed groups. Note the clustering of CFs near 7.1 kHz in the 7.1-

kHz-exposed animals. C. Percent AI area representing frequencies in a 0.4-octave frequency 

band. The representations of 7.1 kHz ± 0.2 octave were significantly larger in tone-exposed 

animals (red) than in control animals (blue). Comparison of the psychometric function of the 

model naïve AI and that of the naïve animals. Note that the performances were scaled for 

comparison. E. Comparison of performance of the model 7.1-kHz-exposed AI and that of 

the 7.1-kHz-exposed animals in the frequency discrimination task. Discrimination of the 

over-represented frequencies was impaired, and that of under-represented frequencies was 

improved to nearly the asymptotic 100% level. Error bars in D–E depict 95% confidence 

interval. This figure was originally published in (Han et al., 2007)
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Figure 4. Segregated representations of jungle song motifs instructed by early experience
A. Spectrogram of a section of the testing jungle sound stimuli (duration, 4.5 s). Arrows 

with different colors indicate different song motifs. B. Cumulative distributions of response 

dissimilarities. Dissimilarities between responses to different song motifs were plotted with 

thick lines, and those to same song motifs were plotted with thin lines. (*, p < 0.05; **, p < 

0.005; comparing with the other two groups). C. Similarity relations between responses to 

jungle sounds. Each dot represents a cortical population-temporal response to a jungle 

sound. The distances between dots are proportional to the dissimilarity between 
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corresponding responses. The color-coding for song motifs is the same as shown in A. Note 

that cortical responses to different song motifs were sharply segregated in jungle sounds-

experienced animals (p < 0.05). This figure was originally published in (Bao et al., 2013).
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