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INTRODUCTION

Researchers in the field of animal behavior have recently placed increasing focus and 

attention on differences in behavior expressed among individuals within a species. While 

traditional studies of animal behavior generally sought to characterize typical or modal 

patterns of behavior within a given species, investigators are now providing detailed 

empirical descriptions and extensive theoretical analysis of individual variation (Reale et al. 

2007; Smith and Blumstein 2008), its potential proximate causes (Rogers et al. 2013; 

Hopkins et al. 2014; Reale et al. 2010; Barr et al. 2003) and its long-term ecological and 

evolutionary consequences (Wolf and Weissing 2012; Tung et al. 2012). The concept of 

personality (sometimes referred to as temperament) provides an important organizing 

framework for the study of behavioral differences among individuals within a given animal 

species, as well as differences among species. Personality is often defined as a pattern or 

consistency of behavior expressed by a specific individual across various situations and 

contexts (Gosling 2001; Briffa and Weiss 2010). The central finding of this line of research 

is that these patterns often show stable differences among individuals, and therefore any 

given animal can be described as displaying one or more consistent personality traits, such 

as aggressiveness, anxiousness, agreeableness and others (Briffa and Weiss 2010; Morton et 

al. 2013; Fox et al. 2008; Kinnally et al. 2008; Capitanio 2004).
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Given their cognitive and social complexity, developmental plasticity, and phylogenetic 

proximity to humans, nonhuman primates are interesting and productive subjects in the 

study of personality (Rogers et al. 2013; Weiss et al. 2011; Capitanio et al. 1999). Much of 

the work on personality in nonhuman primates has used observer ratings in which 

experienced observers having extensive familiarity with a particular set of animals assess 

their personalities using standardized questionnaires (Morton et al. 2013; Capitanio et al. 

1999; Freeman et al. 2013; Hopper et al. 2014; Weiss et al. 2009). The alternative approach, 

also used in studies of primates and other vertebrate species, is based on structured 

observation and quantification of expressed behaviors recorded during specific observation 

periods, either in natural circumstances (Seyfarth et al. 2012; Silk et al. 2009) or during 

standardized behavioral testing of captive animals (Kalin and Shelton 2003; Fairbanks et al. 

2004; Oler et al. 2010). Differences in temperament or personality among animals can have 

significant correlations with a number of important life-history outcomes, such as predation 

risk, access to preferred foods, reproductive success or dispersal (Wolf and Weissing 2012; 

Silk et al. 2009). This means that personality can have meaningful influences on fitness and 

thus broader evolutionary processes (Smith and Blumstein 2008; Wolf and Weissing 2012).

Personality is of course also a central and fundamental concept in human psychology, and 

differences in human personality have been studied extensively for many years. Among 

humans, personality is correlated with the likelihood of developing specific psychiatric 

disorders such as anxiety disorders (Brandes and Bienvenu 2006; Clark et al. 1994), major 

depression (Kendler et al. 1993; Hirschfeld et al. 1989) or alcoholism (Cloninger et al. 1988; 

Wills et al. 1994), as well as with risk for other medical problems (Denollet et al. 1996; Cole 

et al. 2003). Due to their close genetic, physiological and neurobiological similarities with 

humans, nonhuman primates are valuable biomedical models for the study of the 

relationships among personality, underlying neurobiological or genetic causes, and 

downstream consequences for health (Rogers et al. 2013; Barr et al. 2003; Capitanio et al. 

1999; Fawcett et al. 2014; Birn et al. 2014; Roseboom et al. 2013). Thus, two lines of 

research (ethologically-oriented studies of behavioral variation within animal species and 

biomedically-focused investigation of behavioral variation and its health-related correlates 

in model organisms) are providing increasing information about personality within and 

among nonhuman primate species.

Baboons (genus Papio) are one of the most intensively studied nonhuman primate groups. 

The genus Papio is now generally considered to consist of six closely related parapatric 

species that differ in pelage and other morphological traits, but which often form natural 

hybrid zones where they come into contact in the wild (Keller et al. 2010; Jolly et al. 2011; 

Jolly 2001). The behavior of these six species differs in several ways, including aspects of 

diet and ranging that likely reflect adaptation to local environments. However, baboon 

species also differ in several aspects of social behavior, resulting in important divergences in 

social organization and social structure (Henzi and Barrett 2003; Jolly 1993) which generate 

fascinating complexity within hybrid zones (Jolly 2001; Bergman et al. 2008). Furthermore, 

researchers find significant differences in social relationships, social interactions and other 

aspects of behavior among individuals within taxonomically homogeneous (non-hybrid) 
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baboon populations (Seyfarth et al. 2012; Silk et al. 2010; Gesquiere et al. 2011; Moscovice 

et al. 2009; Smuts 1985).

One aspect of primate behavior that can be readily quantified and may impact an 

individual’s ability to cope with complex ecological and social challenges is response to 

novelty, often described as varying from “shy” to “bold.” This “shy-bold” continuum has 

been investigated in many vertebrate species, but may be particularly important for a 

geographically widespread and omnivorous group such as the baboons, which live 

successfully in a variety of ecological habitats. “Boldness” and related measures of one type 

or another has been studied in several other nonhuman primates (Morton et al. 2013; 

Kinnally et al. 2008; Hopper et al. 2014; Weiss et al. 2009; Fairbanks et al. 2004; Fawcett et 

al. 2014; Weiss et al. 2006; Weiss et al. 2013; Fairbanks et al. 1999). Previous studies have 

described individual differences among wild chacma baboons in reaction to novel food 

items (Carter et al. 2012). Thus baboons, like other nonhuman primates, exhibit personality 

differences related to boldness and response to novelty.

One fundamental question in animal personality research is the nature of the proximate 

mechanisms that generate the observed individual variation. Genetic differences among 

individuals likely account for some proportion of the observed variation within many 

species. In chimpanzees (Hopkins et al. 2014), rhesus macaques (Oler et al. 2010; Rogers et 

al. 2008; Fawcett et al. 2014) and vervet monkeys (Fairbanks et al. 2004), additive genetic 

variation influences response to novelty, anxiety or other cognitive/behavioral traits. 

Specific genes have been associated with aspects of nonhuman primate personality and 

particular behaviors in rhesus macaques (Rogers et al. 2013; Barr et al. 2004; Chen et al. 

2010; Trefilov et al. 2000) and chimpanzees (Hong et al. 2011; Hopkins et al. 2012). Thus, 

genetic variation accounts for a proportion of the variation in personality in several primate 

species. Despite decades of extensive behavioral study, little is known about the genetic 

basis of behavioral variation among Papio baboons. The goals of this study are: a) to 

explore individual variation in personality, as indexed by response to novel objects and a 

mirror, among a large pedigreed population of baboons, b) to investigate quantitative genetic 

differences among individuals as a potential proximate cause of that variation, and c) to 

attempt to identify specific genes that influence individual behavioral differences.

METHODS

Study Subjects

The study subjects were 578 olive baboons (P. anubis), yellow baboons (P. cynocephalus) 

and their offspring maintained at the Southwest National Primate Research Center, San 

Antonio, Texas. Some of the founding members of the colony were likely trapped in or near 

a hybrid zone between yellow and olive baboons, so this population consists of olive 

baboons, yellow baboons and individuals with varying degrees of admixture. Taxonomy is 

somewhat controversial in Papio baboons, but most experts now divide Papio baboons into 

six species (Jolly et al. 2011; Zinner et al. 2013). Regardless of classification scheme, 

natural populations of olive and yellow baboons hybridize in the wild (Alberts and Altmann 

2001; Charpentier et al. 2012), as well as in the captive population at the Southwest National 

Primate Research Center, producing healthy fertile offspring. All subjects were adult at the 
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time of testing (mean age of 15.8 years, range 8.0 to 29.8 yrs). At the time of testing, all 

subjects were living in social groups of 15–40 individuals, in large outdoor cages (27–47 

m2) with heated indoor shelters. All study procedures were approved by the Institutional 

Animal Care and Use Committee of the Texas Biomedical Research Institute, an AAALAC, 

Int. accredited institution.

The 578 subjects for which phenotypes were measured can be connected into a single four 

generation pedigree. This pedigree must also include 87 additional baboons that were not 

phenotyped but are needed to link the phenotyped animals into a suitable unbroken pedigree 

configuration. The frequency of pairwise kinship coefficients between the 578 subjects that 

did undergo phenotyping is presented in Supplemental Table 1. Importantly, a small number 

of relationship pairs reveal minor levels of inbreeding within the population. These 

relationship pairs are the result of directed breeding plans designed to facilitate specific 

unrelated genetic studies. As can be seen in Supplemental Table 1, the overall the population 

shows little inbreeding.

Assessment of Response to Novelty

To assess response to novelty, sets of eight animals were removed from their home social 

groups, placed in individual cages (0.75 m2) in an indoor facility, and a small metal tray was 

attached to the outside of each cage to habituate the subject to its presence. The next 

morning two inanimate, novel objects (first a plastic truck and then a plastic bear, Figure S1) 

were placed separately on the tray for 5 minutes each. After these trials a 0.09 m2 mirror was 

placed on the tray facing the animal for two minutes. Only a single observer (investigator) 

was present during testing, and while there were generally other baboons housed in the same 

room, none of the other subjects could see the baboon being tested or the toys being used.

Each baboon’s behavioral responses to each novel object were recorded using an ethogram. 

Measures of frequency and duration of 73 individual behaviors related to locomotion, 

aggression, submission, object interaction, and other relevant variables were scored. 

Additionally, location information within the cage and the timing of each event were 

recorded. The ethogram used was based on responses to novel objects observed during a 

preliminary study employing a separate set of baboons. A laptop computer and Observer™ 

software were used to record data. Table 1 presents the specific behaviors scored, and the 

categories used to group them into classes. Several observers were involved in the study, 

with all achieving at least 85% inter-observer reliability with L.B. prior to performing 

testing. Analyses presented here are based on data from each of the 578 subjects. Forty-three 

subjects underwent testing for two of the novel objects (truck and bear) on two occasions, 

with an average of 2.76 (SD = 0.58) years between tests.

Behavioral Data Summarization

All files were summarized in the Observer™ program (Noldus, Leesburg, VA) as the 

frequency and duration of each behavior for each subject on each trial (object). Individual 

behaviors were grouped into exclusive categories for analysis (see Table 1), and more 

common individual behaviors (e.g., slap cage, vigilance, watch observer, yawn) were also 

analyzed separately. All variables are listed as frequency or duration per 5-minute or 2-
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minute observation. The Systat® statistical program was used for initial evaluation of 

results. Upon initial inspection of the univariate plots of the data for each trial and each 

behavior category, significant skewness and nonhomogeneity of variances were apparent in 

most distributions. A square root transformation was thus applied to all data prior to analysis 

to reduce skewness.

Measurement of monoamine metabolites

The second morning after novel object testing the animals were sedated with RAAK 

(rompum, acepromazine, atropine, and ketamine) and a spinal tap into the cisterna magna 

was performed to obtain a sample of cerebrospinal fluid (CSF) from each study baboon. The 

CSF sample was collected within 30 minutes of animal sedation and immediately placed on 

wet ice. The samples were centrifuged to pellet contaminates and placed at -80°C within 90 

minutes of collection. Homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA) and 

3-methoxy-4-hydroxyphenylglycol (MHPG) levels were measured in each CSF sample by 

High Performance Liquid Chromatography (HPLC). A measured aliquot of each sample was 

mixed with an equal volume of cold mobile phase. The mixture was then filtered at 

centrifugation and part of the filtrate transferred to a 300-FL microinjection insert. This 

material was then analyzed using HPLC with electrical detection, allowing simultaneous 

measurement of HVA, 5-HIAA, and MHPG.

Heritability Analysis

Quantitative genetic theory establishes that within a pedigree, total phenotypic variance of a 

trait (σ2
p) can be decomposed into an additive genetic component (σ2

g), an environmental 

component (σ2
e), and any number of covariates (σ2

c) so that σ2
p = σ2

g + σ2
e + σ2

c (Falconer 

1981). Using variance components methods implemented in SOLAR (Almasy and Blangero 

1998; Blangero et al. 2001), we investigated the statistical significance of additive genetic 

variation as well as specific co-variates (age, sex and their interaction) as contributing 

factors to phenotypic variance in behavioral traits.

Genetic Correlations and Factor Analysis

To identify multivariate factors or dimensions of personality, the heritability of each 

individual behavior was quantified as described above. The estimated heritability of a 

behavior is the proportion of phenotypic variance explained by additive genetic variation, 

while the genetic correlation between two behaviors is the proportion of that genetic 

variance that is shared between the two. Any behavior phenotype without a significant 

heritability in our initial analysis was discarded from the subsequent factor analysis. Pair-

wise phenotypic correlations were calculated for all remaining behaviors with significant 

estimates of heritability. All highly correlated behaviors and behavior scores that did not 

have continuous distribution were also discarded. Pair-wise genetic correlations were 

estimated among the remaining behaviors using SOLAR to measure genetic variance shared 

by any two behaviors. This analysis of genetic correlations identified 31 behaviors that 

served as our genetic correlation matrix. Factor analysis using Statistica version 6.1 was 

performed using both varimax and promax oblique rotation in an attempt to simplify data 

structure.
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Follow-up observations in home cages

After the assessment of response to novelty among the study baboons, we designed a follow-

up analysis to test the validity and relevance of our novel object testing for broader aspects 

of baboon behavior. One of us (J.R.) selected ten individuals that scored high on levels of 

aggression in response to the truck stimulus, and ten baboons that scored low on this trait. 

The list of 20 animal IDs was randomized and provided to S.R., who was therefore blinded 

to the scores of these animals on the previous novel object testing. S.R. conducted 10 hours 

of observations on each of these 20 animals in their home social groups, 20 observations of 

30 minutes each. During these sessions, S.R. recorded both social and non-social behavior, 

using a standardized ethogram and the Observer program.

QTL scans

To perform whole genome scans for Quantitative Trait Loci (QTL), the following model 

was used:

where Πi is a matrix of Identity by Descent (IBD) allele sharing among family members at 

marker i,  is the additive genetic variance at marker I, Φ is a matrix of kinship values, 

is the residual additive genetic variance,  is the individual-specific environmental 

variance, and I is an identity matrix. A maximum likelihood analysis was used in which 

was estimated and the likelihood of that model compared to a model in which  is 

constrained to zero, thus testing the null hypothesis that  is not significantly greater than 

zero. The log10 difference between the two models is a LOD score. This analysis was 

performed using the software suite SOLAR (Almasy and Blangero 1998). Traditionally in 

human genetics a LOD score of 3.0 is considered strong evidence of linkage and accounts 

for issues of multiple testing across the genome. However within this baboon pedigree 

structure, and due to the density and location of markers in this microsatellite linkage map, a 

LOD score of 2.73 is genome-wide significant and adequately accounts for multiple testing, 

while a LOD of 1.5 is suggestive evidence of a QTL in this baboon population (Feingold et 

al. 1993).

Microsatellite design

Following initial QTL scans using the baboon linkage map (Rogers et al. 2000), we 

conducted additional analyses to refine positive QTL mapping results. New baboon 

microsatellites were identified through two processes. Baboon and human chromosomes 

were aligned using the original baboon linkage map, and both the deCODE (Kong et al. 

2002) and Marshfield (Broman et al. 1998) human linkage maps were searched for human 

microsatellite markers predicted to fall in baboon chromosome regions of interest. Each 

identified microsatellite was tested for amplification and polymorphism in a set of eight 

male baboons. Microsatellites with four or more alleles and that were heterozygous in at 

least half of these eight individuals were then genotyped in the full animal set. The second 
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method employed was to search the rhesus macaque whole genome DNA sequence (Gibbs 

et al. 2007) to identify microsatellites in that species. The rhesus–baboon relationship in 

much closer than the human-baboon, so any microsatellites identified in rhesus have a 

higher probability of being present and polymorphic in baboons than microsatellites 

identified in humans (Raveendran et al. 2006). Primer pairs were designed using Primer3 

software (http://frodo.wi.mit.edu/) to flank these repeats and then tested and genotyped in all 

study baboons.

Microsatellite genotyping

Genotyping was performed using panels of four to eight microsatellites. Amplification 

reactions were performed on ABI 9700 thermal cyclers, and PCR product sizes analyzed 

using an ABI 3730 Genetic Analyzer and Genemapper 4.0 software. The raw genotypes 

were checked for Mendelian discrepancies with the PEDSYS software package (Dyke 

1996). Errors were individually examined, and changes made when appropriate. In cases 

where discrepancies still existed, allele frequencies and patterns of allele distribution within 

the pedigree were evaluated using the Preswalk routine within PEDSYS, and the least likely 

genotypes blanked. The resulting genotype data were then used to generate first pass linkage 

maps. Recombination distances were determined using MultiMap (Matise et al. 1994) 

following the method described previously (Rogers et al. 2000; Cox et al. 2006). These data 

are then checked for double recombinants using Preswalk, and finally mapped again using 

MultiMap.

Sequencing analysis of candidate gene SNAP25

To discover and investigate variation in the baboon SNAP25 locus, sequencing primers were 

designed using the whole genome DNA sequence of the rhesus macaque (Gibbs et al. 2007) 

and Primer3 (http://frodo.wi.mit.edu). A series of study baboons were sequenced across the 

SNAP25 gene to identify SNPs. PCR was performed using standard amplification reactions 

on ABI 9700 thermal cyclers, and products sequenced on an ABI 3730. Once identified, 

each SNP was genotyped in the baboon population using one of three methods: ABI Snplex, 

Taqman, or Illumina golden gate assays following each respective protocol.

SNP association analysis

To estimate the influence of genetic differences in SNAP25 on phenotypic variance among 

animals, we performed pedigree-based genetic association analysis. The initial heritability 

analyses were performed using age, sex and their interaction as covariates with the 

following model σ2
p = σ2

age + σ2
sex + σ2

age × sex + σ2
g + σ2

e. To measure the effect of any 

individual SNP on phenotype, we modify this model to σ2
p = σ2

age + σ2
sex + σ2

age × sex + 

σ2
g + σ2

e + σ2
SNP1, where σ2

SNP1 is the variance in the phenotype due to the genotype of 

SNP1. If the variance attributed to SNP1 is statistically significantly different from zero, 

based on likelihood comparisons as described above, we then conclude that either SNP1, or 

an unknown polymorphism in linkage disequilibrium with SNP1, is responsible for a portion 

of the total phenotypic variance of the trait (Rogers et al. 2013; Rogers et al. 1999).
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RESULTS

Initial Analysis of Phenotypic Variation

This population of baboons exhibited substantial individual variation in a number of 

behavioral responses to novelty. Table 1 presents the specific behaviors scored, and the 

categories used to group them into classes. In response to the toys, study subjects varied in 

their duration of locomotion, position within the cage relative to the novel object (i.e. front 

or back), and frequency of specific behaviors such as cage slapping, object contact and 

aggression. In response to the mirror, the study baboons differed again in levels of 

aggressive behavior, various locomotor behaviors, location within the cage and arousal 

reactions. Among 43 randomly chosen subjects tested on two separate occasions using both 

the truck and bear, we found a high degree of individual consistency in response 

(Supplemental Table 2). A wide range of individual behaviors, including measures of 

activity, arousal, object contact and others show significant correlations between exposures 

over 2 years apart.

Our measures of behavioral response to novelty differ by sex and age of the study subject in 

several but not all categories. These results are presented in Tables 2 and 3. Females tended 

to score higher for activity frequency, locomotion duration, submissive frequency and both 

watch observer frequency and watch observer duration. Females also had a longer latency to 

touch the novel object than did males. Males spent significantly more time in the front of the 

cage and had longer durations of self-directed behavior.

Estimates of Heritability

We found that many behaviors expressed in response to the three stimuli exhibit significant 

individual trait heritabilities (additive genetic heritability). Genetic results are also presented 

in Tables 2 and 3. The average heritability of individual behaviors in response to the bear 

was h2 (mean) = 0.251 for frequency measures and h2 (mean) = 0.242 for duration measures. 

For the truck, those two means are h2 = 0.227 and h2 = 0.213 respectively. Average 

heritability was slightly lower for the mirror test, h2 (mean) = 0.171 for frequency and h2 

(mean) = 0.184 for duration. Heritability estimates greater than these average values were 

observed for watch object frequency, locomote frequency and duration, cage slap frequency, 

vigilance duration and measures of location within the cage (front, back, other) in response 

to the toys. In response to the mirror, we observed above average heritability for aggression 

frequency, submission frequency, watch object frequency and duration, and locomote 

duration.

Factor Analysis

Our subsequent factor analyses identified three orthogonal factors that account for 77.7% of 

the variation among the 31 individual behaviors included. Factor 1 is composed of 21 

individual behaviors (Table 4). These behaviors may reflect generalized arousal and 

possibly fear- or anxiety-related reactivity. While there are risks in assigning labels to 

personality factors, because those labels may over-simplify the nature of the behavioral 

variation, and similar labels assigned to dimensions of personality in different species or 

research studies can lead to incorrect assumptions about comparability (Carter et al. 2012), 
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we nevertheless see Factor 1 as reflecting variation similar to what has been called 

“Boldness” in other studies. Factor 1 (Boldness) accounts for 46.8% of the variation within 

the population, and has a high heritability (h2 = 0.59, p = 2.3 × 10−17). Factor 2 is composed 

of 14 behaviors, and those with heaviest loadings are in general related to interaction with 

the novel object itself (Table 4). Factor 2 (Engagement with Object) accounts for 18.8% of 

the variation, and has a lower but still substantial heritability (h2 = 0.33, p = 1 × 10−7), 

which is nevertheless higher than the average values for heritability across the two toys or 

mirror. The third factor included only a single behavior, accounts for a small proportion of 

the variance, and therefore was not further analyzed.

Follow-up Validation

Our results indicate that the behavioral reactions of the study baboons to these test stimuli 

are influenced by age, sex and genetic variation. However, evaluating the significance and 

implications of these observations for understanding baboon behavior outside the artificial 

test situation required further analyses. Our follow-up studies showed that the experimental 

assessments of temperament conducted individually in a novel environment are positively 

correlated with social behavior exhibited months after the study subjects were returned to 

their home cages and social groups. Ten baboons that exhibited above average rates of 

aggression to the truck also displayed higher rates of aggression to their home cage-mates 

than did the ten animals that scored low on aggression to the truck (p = 0.008). In addition, 

the same highly aggressive animals received more submissive behavior from their cage 

mates than did the other ten animals (p = 0.018). These results extend our findings and 

suggest that our novel object test exposes individual variation that does have predictive 

value regarding normal social behavior in an animal’s home social environment.

Scan for Quantitative Trait Loci

Whole genome QTL linkage scans for each individual behavior, factor scores and CSF 

monoamine metabolite levels (HVA, MHPG and 5HIAA) using the available baboon 

microsatellite linkage map (Rogers et al. 2000; Cox et al. 2006) identified suggestive, but 

not definitive peak LOD scores on baboon chromosome 10 for temperament factor 2 (TF2, 

Engagement with Object), CSF level of HVA, CSF levels of 5-HIAA and the behavior 

labeled “avert.” After the identification and genotyping of an additional 11 microsatellite 

loci in the region, subsequent QTL analyses revealed peak LOD scores of 1.9 for TF2 

(Engagement with Object), 1.6 for avert, 1.5 for HVA and 0.8 for 5-HIAA, all within the 

same area of PHA10. All of these LOD scores are below the genome-wide threshold to 

establish definitive linkage (LOD = 2.78), but the scores for TF2 (Engagement with Object), 

HVA and avert are at or above the threshold for suggestive linkage (LOD = 1.5). Locations 

of peak LOD score can be seen in supplemental table 3.

Candidate Gene SNP analysis

Given the nature of the phenotypes with overlapping QTL results, we hypothesized that 

differences among animals in monoamine neurotransmitter levels may be partly responsible 

for differences in observed behavior and derived personality factor scores. Consequently, we 

evaluated all genes within the QTL interval as potential candidates, and chose SNAP25 as 

the most likely positional candidate because of its known role in exocytosis and 
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neurotransmitter function and its suggested role in bipolar depression, neuroticism and 

attention deficit hyperactivity (Etain et al. 2010; Brophy et al. 2002; Terracciano et al. 

2010). Sequencing of founder individuals in the baboon pedigree identified 15 SNPs within 

the exons, at exon/intron borders, and across the putative promoter region of SNAP25. We 

genotyped all study animals for the newly discovered SNPs, and tested association between 

each polymorphism and our phenotypes (TF2, monoamine metabolite levels and avert). 

Specific polymorphisms are significantly associated with TF2 (Engagement with Object) 

(p=0.015), avert behavior (p=.024), HVA levels (p=.035), MHPG levels (p=.050). The 

amount of variation in the respective phenotypes explained by these SNPs is modest: 1.6%, 

2.2%, 1.4%, and 0.8% respectively (supplemental table 4).

DISCUSSION

The increasing use of the concept of temperament or personality in animal behavior research 

is producing several important benefits (Reale et al. 2010; Weiss et al. 2011; Freeman et al. 

2013; Nettle and Penke 2010). One of these is the growth of analyses of the proximate 

causes of individual variation in particular behaviors and broader dimensions of personality. 

Clearly, researchers have for many years measured and discussed the factors that lead to 

differences in expressed behavior among individuals within a population or species. But the 

increasing focus on identifying and probing patterns of correlated behaviors that are stably 

expressed by specific individuals in various situations, and that differ among conspecifics 

has encouraged new approaches to behavioral description and new theory (Reale et al. 2010; 

Briffa and Weiss 2010; Capitanio 2004; Capitanio et al. 1999; Seyfarth et al. 2012).

Our study of baboons was designed to investigate the causes of individual variation in 

behavioral responses to novel objects and a mirror. The data clearly show that sex is one 

factor significantly influencing the behavioral responses of these baboons to our test 

challenge. Females tended to score higher for activity (e.g. more locomotion) and anxiety, 

fear or withdrawal (indexed by higher frequency of submission and longer latency to touch a 

novel object). Males exhibited average responses that can be characterized as bolder and less 

inhibited. This is not unexpected given prior studies. Humans exhibit consistent sex 

differences in personality (Costa et al. 2001; Del Giudice et al. 2012). Moreover, consistent 

with field observations, personality ratings of captive chimpanzees score males as more 

impulsive and more aggressive than females (King et al 2008). Macaque males are scored as 

more confident and more active than females (Stevenson-Hinde 1978). Like other primates 

(human and nonhuman), there are consistent behavioral differences among male and female 

baboons, and this current finding that males and females respond differently to the novel 

object challenge is concordant with expectations.

The primary focus of our study was the assessment of genetic differences among individuals 

as a proximate cause for individual variation in behavioral responses and personality. We 

found significant heritability for multiple behaviors in response to both novel objects and the 

mirror. In addition, we determined that the estimated heritability for both of the multivariate 

factor scores we derived was higher than the average heritability of individual behavioral 

measurements. This is encouraging, suggesting that these factor scores captured the shared 

information common to multiple individual behaviors. This approach may reduce the 
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random variation and noise present in scores for individual behaviors in individual animals. 

Furthermore, we were able to demonstrate that these heritable responses to the experimental 

procedures were predictive of patterns of social behavior months later in the home social 

group. These follow-up studies help to establish the broader ecological, ethological and 

evolutionary relevance of our experimental results.

Recent studies have begun to investigate differences in personality expressed among wild 

baboons in natural habitats. Silk and colleagues have documented stable individual 

differences in patterns of social behavior and social interaction among female yellow 

baboons (Silk et al. 2003) and chacma baboons (Silk et al. 2009; Silk et al. 2010). Seyfarth 

et al. (2012) examined variation among wild female chacma baboons in the time they spend 

alone and their rates of affiliative and aggressive interactions. Seyfarth and colleagues 

identified three dimensions of personality, and found these are predictive of levels of stress 

and other aspects of behavior (Seyfarth et al. 2012). The social stimulus we used here, a 

mirror, obviously constitutes a different type of test, and we would not expect the factors we 

identified to correspond to the factors identified in strictly observational studies of wild 

baboons. However, our finding of significant heritability for several behaviors expressed by 

the baboons to the mirror challenge, including rates of affiliative and aggressive behaviors, 

suggests that the dimensions of personality identified by Seyfarth et al (2012) may also have 

some degree of heritability. The factors those authors identified were not accounted for by 

differences in dominance rank or availability of kin, and therefore some additional 

proximate cause for these stable patterns of behavioral variation is needed.

Individual differences in response to novelty may also have ecological consequences or 

correlates. Chacma baboons were found to exhibit more interest in and more exploration of a 

series of novel objects than did phylogenetically close gelada baboons, genus Theropithecus 

(Bergman and Kitchen 2009). These authors suggest this may be related to the generalist 

diet of Papio baboons, as compared to that of geladas, which feed predominantly on grass. 

As a group, Papio baboons may exhibit greater interest in novel objects than geladas, and if 

so this too would raise the question of evolutionary mechanism. Our results indicate that 

there is genetic variability among Papio baboons (in our case olive and yellow baboons, 

rather than chacma baboons) accounting for differences in behavioral reaction to novel 

objects. This type of genetic variation would be required in order for different species to 

evolve different patterns of reactivity as a result of natural selection.

However, it is critical to remain cautious and conservative when comparing results across 

studies that investigate different environmental contexts, which use different measures of 

behavior or different analytical approaches. Of necessity, researchers apply labels to 

identified dimensions of personality (e.g. “extraversion” or “anxiousness” or “impulsivity”) 

to convey their interpretation of these analytically derived factors, but a priori ideas 

concerning the equivalence of such patterns of behavior across situations or species, such as 

the inference that two personality dimensions in different studies have the same underlying 

proximate causes, may be problematic. Carter et al. (2012) showed that among 57 wild 

chacma baboons, variation in “boldness” as measured by response to a model snake was not 

correlated with variation in “boldness” as measured by reaction to a novel food item (Carter 

et al. 2012). There is tremendous power in the study of personality among nonhuman 
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primates, but caution in drawing conclusions about the identity of the proximate 

mechanisms that lead to apparently similar behaviors expressed in diverse circumstances is 

certainly warranted.

QTL analysis of several independently measured phenotypes including personality factor 2 

(Engagement with Object), the avert behavior, and CSF levels of HVA and 5-HIAA 

identified a single region of baboon chromosome 10 (PHA10) with a suggestive LOD score. 

While each of these results alone is interesting, their mapping to overlapping locations 

makes these results more compelling. Furthermore, the region of human chromosome 20 

(HSA20) that is homologous to the segment of PHA10 containing this baboon QTL has 

been implicated in conditions such as restless legs syndrome (Levchenko et al. 2006), 

migraine (Oedegaard et al. 2010), and bi-polar disorder (Etain et al. 2010). While the 

connection between these conditions and our baboon personality phenotypes may not be 

immediately obvious, dysregulation of the dopaminergic system is a suspected influence on 

each human phenotype. There are numerous protein coding genes in this region of PHA10, 

but we selected SNAP 25 as the most likely positional candidate gene because of (a) its role 

in exocytosis and neurotransmitter function and (b) its prior association with bipolar 

depression, neuroticism and attention deficit hyperactivity (Etain et al. 2010; Brophy et al. 

2002; Terracciano et al. 2010). SNAP25 is involved in SNARE complex formation through 

interaction with snare proteins present on the vesicles (v-snares) and target membranes (t-

snares) of neurons (Hodel 1998; Rizo and Sudhof 2002). The interaction of these proteins 

(v-snares, t-snares and the SNAP25 protein) is thought to localize synaptic vesicles to the 

plasma membrane in anticipation of exocytosis, with SNAP25 directly involved in 

triggering that exocytosis (Hodel 1998; Vilinsky et al. 2002). In mice, homozygous 

knockouts are lethal, but heterozygous deletion of the SNAP25 gene produces a phenotype 

resembling attention deficit hyperactivity disorder (Feng et al. 2005; Hess et al. 1992). In 

addition these heterozygous null mice also show decreased extracellular levels of both 

dopamine and serotonin within the brain, suggesting that SNAP25 expression may be 

associated with deficiency in neurotransmitter release. Therefore, our association results are 

supported by independent data suggesting that SNAP25 can influence neurotransmitter 

release. In that way, sequence variation in SNAP25 among baboons may influence 

monoamine levels and downstream expressed behavior.

As the study of individual variation in personality within nonhuman primate species 

develops, efforts will be made to answer fundamental questions, including the nature and 

relative impact of various proximate causes of variation. Our results provide additional 

information concerning behavioral reactivity and personality among baboons. The behavior 

of baboons, like all nonhuman primates, is influenced by a wide array of inputs. These 

results from controlled studies of response to novelty demonstrate that sex, age and genetic 

differences exert significant influences on those traits among baboons, and raise the possibly 

that sequence differences in the SNAP25 locus may also be among the inputs that determine 

individual variation in those behaviors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Behaviors recorded and behavioral categories analyzed

Category Data Type Behavior(s)

Abnormal Frequency Duration clasp self, feces paint, head toss, pace, pull/eat hair, regurgitate, rock, self aggression, other 
stereotyped movement, suck self

Activity Frequency changes in position (front sit, front stand, back sit, back stand, other location, shun)

Aggression Frequency Duration aversive to object, brow raise, cage slap, lunge, open mouth threat, stare, teeth grind, yawn

Arousal Frequency muzzle wipe, piloerection, penis erection, urinate/defectate, scratch self, mantle shake

Avert Frequency Duration look intently away from stimulus object (usually upward) with fixed gaze

Front Duration time spent in front of cage (front sit and front stand)

Latency to touch Duration latency to first touch object

Locomotion Duration locomote, including walk, jump, climb

Object contact Frequency Duration bite object, manipulate object, smell object, watch object

Self Frequency Duration groom self, manipulate self, masturbate, scratch self

Slap cage Frequency cage slap

Submissive Frequency Duration ambivalent (displaying submissive and other behavior at same time), avert, clasp self, present, ear 
flatten, fear grimace, jump back from object, lipsmack, present, scream

Vigilance Frequency Duration intent monitoring area away from cage, stimulus and observer

Watch Observer Frequency Duration watch observer

Yawn Frequency Duration open mouth fully to expose teeth
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Table 2

Heritabilities for Behaviors: Duration Measures

A) Truck

Behavior Heritability Covariates p value

Back Stand 0.27 Sex 0.000025

Locomotion 0.25 age/sex 0.000015

Mantle Shake 0.21 Sex 0.0016

Latency to Touch 0.29 Sex 9.4E-06

Other Location 0.28 age/sex 0.000029

Self Scratch 0.13 Sex 0.0082

Cage Slap 0.39 None 7.3 × 10−9

Watch Object 0.16 age/sex 0.0019

Watch Observer 0.18 age/sex 0.00078

B) Bear

Behavior Heritability Covariates p value

Aggression 0.19 None 0.00011

Avert 0.33 age/sex 0.000001

Back Stand 0.21 Sex 0.000059

Locomotion 0.51 age/sex 5.0 × 10−12

Mantle Shake 0.17 age/sex 0.0024

Object Interaction 0.17 Sex 0.000022

Other Location 0.3 age/sex 6E-07

Self Scratch 0.27 age/sex 1E-07

Cage Slap 0.33 age/sex 8.4 × 10−11

C) Mirror

Behavior Heritability Covariates p value

Aggression 0.24 age 0.0023

Avert 0.11 age/sex 3.5 × 10−15

Back Stand 0.12 sex 0.003

Front of cage 0.15 age/sex 0.007

Half Yawn 0.12 Sex 0.011

Lip Smack 0.27 None 0.0012

Locomotion 0.22 age/sex 0.00031

Other Location 0.21 Sex 0.002

Self Scratch 0.16 age/sex 0.018

Cage Slap 0.27 None 0.00027

Watch Observer 0.22 Sex 0.00027

Yawn 0.16 None 0.0031
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Table 3

Heritabilities for Behaviors: Frequency Measures

A) Truck

Behavior Heritability Covariates p value

Aggression 0.24 Sex 0.0000063

Back Stand 0.32 age/sex 0.0000028

Abnormal Behav 0.38 age/sex 4.88 × 10−10

Front Stand 0.18 Sex 0.002

Locomotion 0.28 age/sex 0.000051

Mantle Shake 0.14 Sex 0.011

Object interaction 0.19 age/sex 0.0018

Other Location 0.30 age/sex 0.000006

Passive 0.29 age/sex 0.0000029

Self Scratch 0.13 age/sex 0.0097

Cage Slap 0.36 Sex 0.000001

Watch Object 0.30 age/sex 0.0000005

Watch Observer 0.38 age/sex 1.00 × 10−9

Yawn 0.12 Sex 0.011

B) Bear

Behavior Heritability Covariates p value

Aggression 0.28 age/sex 0.0000001

Avert 0.32 age/sex 0.000009

Back Sit 0.15 None 0.0038

Back Stand 0.30 Sex 0.000006

Abnormal Behav 0.29 None 0.0000011

Locomation 0.50 age/sex 3.54 × 10−12

Other Location 0.28 age/sex 0.0000013

Passive 0.22 age/sex 0.000033

Self Scratch 0.32 Age 2.19 × 10−8

Cage Slap 0.37 age/sex 4.19 × 10−10

Submissive 0.19 None 0.00077

Watch Observer 0.31 age/sex 1.89 × 10−8

C) Mirror

Behavior Heritability Covariates p value

Aggression 0.24 None 0.0021

Watch Observer 0.27 None 0.00052

Front Sit 0.20 age/sex 0.0047

Half Yawn 0.24 Sex 0.00037

Lips Smack 0.21 None 0.0058

Locomotion 0.23 age/sex 0.00065
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C) Mirror

Behavior Heritability Covariates p value

Other Location 0.20 Sex 0.00034

Self-Scratch 0.14 age/sex 0.031

Cage Slap 0.27 None 0.00055

Yawn 0.22 Sex 0.000066
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Table 4

Factor Loadings

Factor 1(Boldness) 2(Engagement with Object)

Object Behavior

Truck Aggressive Freq 0.57

Back Stand 0.53

Latency to touch −0.40

Locomotion 0.47 −0.31

Mantle shake −0.43 0.37

Other Location 0.51 −0.34

Passive Freq 0.61

Touch Object (Freq) 0.69

Watch Object (Freq) 0.36 0.58

Watch Observer (Freq) 0.73 0.30

Bear Aggressive Freq 0.53

Avert −0.32

Back Stand 0.47

Locomotion 0.48

Other Location 0.55 −0.33

Passive Freq 0.46 0.38

Watch Observer (Dur) 0.37

Watch Observer (Freq) 0.65 0.46

Mirror Aggressive Freq 0.32 −0.33

Half Yawn 0.30

Locomotion 0.30

Other Location 0.37 −0.35

Watch Observer (Dur) 0.33

Watch Observer (Freq) 0.54 0.34

Yawn 0.30
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