Skip to main content
. Author manuscript; available in PMC: 2015 Mar 4.
Published in final edited form as: AIDS Care. 2014 Jan 30;26(8):1004–1012. doi: 10.1080/09540121.2014.880399

Table 2.

Hierarchical Linear Regression Model Predicting Slope of Log HIV RNA Level and CD4 Cell Count Change

Log HIV RNA Level Changea

Step Clinical
Features
B SE B beta P value
1 Intercept 2.30 0.08
PHQ-9 score 0.04 0.01 0.18 < 0.001

2 Intercept 4.63 0.28
PHQ-9 score 0.005 0.006 0.04 0.39
Age −0.004 0.003 −0.05 0.22
Male sex −0.13 0.09 −0.06 0.14
African American 0.25 0.08 0.13 < 0.01
cART −2.29 0.23 −0.42 < 0.001
VAS ≥ 95% −0.35 0.09 −0.18 < 0.001

Current CD4 Cell Count Changeb

1 Intercept 493.46 17.34
PHQ-9 score −7.42 1.92 −0.16 < 0.001

2 Intercept 273.28 105.18
PHQ-9 score −5.21 2.33 −0.11 < 0.05
Age 0.40 1.28 0.01 0.75
Male sex −89.12 31.17 −0.14 < 0.01
African American −81.26 30.93 −0.13 < 0.01
cART 272.19 85.36 0.15 < 0.01
VAS ≥ 95% 81.12 32.17 0.12 < 0.05

Log HIV RNA Level, log10 HIV RNA Level; B, unstandardized coefficient; SE, standard error; beta, standardized coefficient; VAS, visual analogue scale for cART adherence.

a

For final model, F6,423 = 28.08, P < 0.001, R2 = 0.27

b

For final model, F6,427 = 7.53, P < 0.001, R2 = 0.083