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Patterning of the Inner Ear

Elena Dominguez-Frutos,'* Iris Lopez-Hernandez,'* Victor Vendrell,' Joana Neves,> Micaela Gallozzi,' Katja Gutsche,'
Laura Quintana,’ James Sharpe,’ Paul S. Knoepfler,* Robert N. Eisenman,’ Andreas Trumpp,® Fernando Giraldez,

and Thomas Schimmang!

'nstitute of Biology and Molecular Genetics, University of Valladolid and Spanish National Research Council, E-47003 Valladolid, Spain, 2Experimental
and Health Sciences, Barcelona Biomedical Research Park and 3Catalan Institution for Research and Advanced Studies, European Molecular Biology
Laboratory-Centre for Genomic Regulation (CRG) Systems Biology Research Unit, CRG, University of Pompeu Fabra, 08003 Barcelona, Spain, “Department
of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, California 95817, >Fred Hutchinson Cancer Research
Center, Seattle, Washington 98109, and °Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany

Myc family members play crucial roles in regulating cell proliferation, size, and differentiation during organogenesis. Both N-myc and
c-myc are expressed throughout inner ear development. To address their function in the mouse inner ear, we generated mice with
conditional deletions in either N-myc or c-myc. Loss of c-myc in the inner ear causes no apparent defects, whereas inactivation of N-myc
results in reduced growth caused by a lack of proliferation. Reciprocally, the misexpression of N-myc in the inner ear increases prolifer-
ation. Morphogenesis of the inner ear in N-myc mouse mutants is severely disturbed, including loss of the lateral canal, fusion of the
cochlea with the sacculus and utriculus, and stunted outgrowth of the cochlea. Mutant cochleas are characterized by an increased number
of cells exiting the cell cycle that express the cyclin-dependent kinase inhibitor p27*"" and lack cyclin D1, both of which control the
postmitotic state of hair cells. Analysis of different molecular markers in N-myc mutant ears reveals the development of a rudimentary
organ of Corti containing hair cells and the underlying supporting cells. Differentiated cells, however, fail to form the highly ordered
structure characteristic for the organ of Corti but appear as rows or clusters with an excess number of hair cells. The Kélliker’s organ, a
transient structure neighboring the organ of Corti and a potential source of ectopic hair cells, is absent in the mutant ears. Collectively, our

data suggest that N-myc regulates growth, morphogenesis, and pattern formation during the development of the inner ear.

Introduction

The inner ear is derived from the otic placode that, during invag-
ination, forms the otic vesicle. Growth and mophogenesis of the
otic vesicle is coordinated by proliferation and apoptosis of cells
that lead to a complex series of morphogenetic changes, resulting
in the creation of distinct vestibular and cochlear regions. In the
vestibular region, sensory epithelia corresponding to the utricu-
lar and saccular maculae and the ampullary cristae of the semi-
circular canals are found. As the cochlear duct elongates, a subset
of cells in its ventral part develop as the sensory epithelium or
organ of Corti. The structure of the organ of Corti is character-
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ized by inner hair cells (IHCs) and outer hair cells (OHCs), which
are arranged in ordered rows along the length of the cochlea. Hair
cells are accompanied by several types of supporting cells (Kelley,
2006; Bok et al., 2007a; Kelly and Chen, 2009).

Three main cell types are derived from the otic vesicle, includ-
ing the nonsensory, sensory (future hair cells and the associated
supporting cells), and neuronal lineages. Several studies demon-
strate that sensory development requires Notch signaling (Dau-
det and Lewis, 2005; Kiernan et al., 2006; Hartman et al., 2010;
Pan et al., 2010) and the transcription factor Sox2 (Kiernan et al.,
2005; Dabdoub et al., 2008; Neves et al., 2011). As development
continues, prosensory cells within the cochlea upregulate the cy-
clin dependent kinase inhibitor (cdki) p27*P' (Chen and Segil,
1999). The timing of p27"%P! expression correlates with terminal
mitosis within the prosensory domain and closely precedes the
first signs of hair cell differentiation (Lee et al., 2006). During hair
cell differentiation, downregulation of cyclin D1 is observed,
which has been postulated as a prerequisite for the maintenance
of their postmitotic state (Laine et al., 2010).

The myc proto-oncogene family (comprising c-myc, N-myc,
and L-myc) is one of the most studied groups of genes in biology.
Myc proteins integrate signals to modulate diverse processes,
such as proliferation, growth, apoptosis, and differentiation
(Hurlin, 2005; Eilers and Eisenman, 2008). Mice lacking N-myc
or c-myc die at embryonic day 11.5 (E11.5) or E10.5, respectively
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(Sawai et al., 1993; Trumpp et al., 2001), thereby limiting the
analysis of inner ear development to early stages. Mice lacking
L-myc are viable and have no discernible defects (Hatton et al.,
1996).

The development of mice containing conditional alleles of the
c-mycand N-myc genes provide the opportunity to perform more
detailed studies of defects caused by their deficiency in specific
tissues and organ systems (Knoepfler et al., 2002). Here we have
analyzed the consequences of loss of c-myc and N-myc in the
inner ear. Whereas c-myc mutants show no inner ear defects,
N-myc deletion severely perturbs inner ear development. The
resulting phenotypes suggest that N-Myc regulates critical devel-
opmental steps, such as growth of the otic vesicle, formation of
the lateral semicircular canal, separation of sensory epithelia, and
patterning of the organ of Corti.

Materials and Methods

Transgenic mice. The following mouse lines and their genotyping have
been described previously: N-myc19¥1°% (Knoepfler et al., 2002), c-my-
¢ floxrflox (Trumpp et al., 2001), the ROSA26 Cre reporter strain (Soriano,
1999), transgenic mice carrying a Cre gene under the control of Pax2
regulatory regions (Ohyama and Groves, 2004) (obtained by the Mutant
Mouse Regional Resource Centers), and a mouse line in which Cre has
been targeted to the Foxgl locus (Hébert and McConnell, 2000). The
expected mendelian inheritance pattern is seen in N-myc mutants cre-
ated by Pax2Cre: 58 mutants of 237 animals (24.5%). This is not the case
for N-myc mutants created by FoxgICre (35 mutants of 365 animals,
corresponding to 9.6%) because N-myc and Foxgl localize to the same
chromosome. The lethality of FoxglCre-N-Myc mutants may be influ-
enced by heterozygous loss of the Foxgl coding region attributable to its
replacement by the Cre gene (Hébert and McConnell, 2000).

RT-PCR. RNA was isolated from otic vesicles, whole inner ears includ-
ing the otic capsule, or the dissected cochlear sensory epithelia using the
RNA NOW kit (Biogentex). Two micrograms of RNA was reverse tran-
scribed with the Transcriptor First Strand cDNA Synthesis kit (Roche).
The following primers were used: c-myc, 300 bp, sense TCACCAGCA-
CAACTACGCCG and antisense CAGGATGTAGGCGGTGGCTT;
N-mye, 345 bp, sense CAGCTGCACCGCGTCCACCATGCCGGGGAT
GATCTGC and antisense CATGCAGTCCTGAAGGATGACCGGATT-
AGGAGTGAG; gapdh, 441 bp, sense AACGGGAAGCCCATCACC and
antisense CAGCCTTGGCAGCACCAG. Cycling was conducted at 95°C
for 5 min initially followed by 35 cycles of the following: 95°C for 30 s
(c-myc, N-myc, gapdh), 55°C (c-myc, gapdh) or 65°C (N-myc) for 30 s,
and 72°C for 30 s.

Histology and RNA in situ hybridization. Preparation of histological
sections stained with hematoxylin and eosin, RNA whole-mount in situ
hybridization using riboprobes for Lunatic fringe (LFng) and NeuroD
(Morsli et al., 1998; Vazquez-Echeverria et al., 2008), B-galactosidase
staining, and the sectioning of stained embryos (Alvarez et al., 2003) has
been described previously. For detection of N-myc mRNA, a probe en-
coding the complete cDNA was used (MG207382; Origene).

N-myc gain of function. For in ovo electroporation, fertilized hen’s eggs
were incubated until embryos reached Hamburger—Hamilton stage
HH12-HH14 (Hamburger and Hamilton, 1992). An expression vector
carrying N-myc under the control of the CMV promoter (1.7 pg/ul) and
a GFP reporter plasmid pCIG (0.75 pg/ul) and fast green (0.4 ug/ul)
were injected into the right otic cup by gentle air pressure through a
micropipette. The platinum electrode was placed next to the otic cup and
the anode electrode parallel to it on the other side of the embryo. Square
pulses (eight pulses of 10 V, 50 Hz, 250 ms) were generated by a CUY-21
square-wave electroporator (BEX). The left otic vesicle was not injected
and was always used as control. Ectopic expression of N-myc was de-
tected using an antibody against N-myc purchased from Santa Cruz
Biotechnology (C19, sc7091). This antibody does not detect endogenous
N-myc in chicken embryos. Ectopic N-myc expression was reliably de-
tected after 6 h but not at 24 h, most likely because of the high turnover
rate of N-myc. Otic vesicle size and proliferation rate were assessed by 3D
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reconstructions and pH 3 labeling, respectively. Electroporated embryos
were collected 24 h after electroporation and selected for high GFP
expression in the otic vesicle. Embryos were fixed overnight in 4%
PFA/PBS, imbedded in 7.5% gelatin/15% sucrose, cryosectioned, and
processed for immunohistochemistry against pH 3 (rabbit, 1:400; Milli-
pore) on serial sections encompassing the whole otic vesicle. Immunola-
beling was detected with secondary antibody anti-rabbit IgG Alexa
Fluor-594, and sections were counterstained with 4’,6-diamidino-2-
phenylindole (DAPI) (100 ng/ml; Invitrogen) and mounted in Mowiol
(Calbiochem). Images were obtained by conventional fluorescence mi-
croscopy (Leica DMRB fluorescence microscope fitted with a Leica
DC300F CCD camera). The calculation of volume and surface area of the
otic vesicle was done by three-dimensional reconstructions from serial 20
um sections using BioVis3D software. They were calculated for four
independent electroporated otic vesicles and for the corresponding con-
trols. Values in electroporated otic vesicles were referred to controls that
were arbitrarily set to one. To assess cell proliferation rate, the number of
phosphorylated histone H3 (pH3)-positive cells was counted in all serial
sections of each otic vesicle in four different embryos. Counts were per-
formed in electroporated and control otic vesicles. The number of pH3-
positive cells was obtained for the whole otic vesicle and also for the
electroporated domains. The number of pH3 cells within the electropo-
rated domains was normalized to the surface of the electroporated areas
and compared with an equivalent domain of the control side. This pro-
vides an estimate of the changes in cell proliferation rate independently of
otic vesicle growth. Values were referred to controls that were arbitrarily
set to one. Results are shown as average = SEM, and Student’s ¢ test was
used to assess statistical significance.

Immunohistochemistry. For immunohistochemistry, either cryostat or
paraffin sections were prepared and processed using standard protocols.
The following antibodies were used: Pax2 (PRB-276P), TuJ1 (MMS-
435P), and Prox1 (PRB-238C) from Covance; Sox2 (sc-17320), jagl (sc-
6011), proliferating cell nuclear antigen (PCNA) (sc-7907), and Sox10
(sc-17342) from Santa Cruz Biotechnology; p27 %P1 (RB-9019-P0) and
cyclin D1 (RM-9104-S0) from Thermo Fisher Scientific; myosin VIIA
(25-6790) from Proteus; calretinin (7699/3H) from Swant; p75
(AB1554) from Millipore; and Atoh! (gift from Jane Johnson, Universtiy
of Texas Southwestern Medical Center, Dallas, TX). Detection of cell
proliferation was performed by immunohistochemistry using the anti-
phosphorylated histone H3 antibody (catalog #06-570, rabbit polyclonal
pH3; Millipore). An antigen retrieval step consisting of incubation in 1
mM sodium citrate and 0.005% Tween 20, pH 6.0, at 98°C for 20 min was
required for the following antibodies: cyclin D1, PCNA, pH3, and Prox1
antibodies. For immunofluorescence, cryostat sections were incubated
with primary antibodies, and the corresponding secondary antibodies
used were goat anti-mouse Alex Fluor-488, donkey anti-goat Alexa
Fluor-488, and goat anti-rabbit Alexa Fluor-568 or Alexa Fluor-488 (all
from Invitrogen). Some of the sections were counterstained with DAPI.
Whole-mount immunolabeling, dehydration, and clearing of inner ears
was performed as described previously (MacDonald and Rubel, 2008).
On paraffin sections, primary antibodies were detected with a biotinyl-
ated rabbit IgG using the ABC method (Vectastain kit; Vector Laborato-
ries). TUNEL analysis was performed using an in situ cell death detection
kit following the recommendations of the manufacturer (catalog #11 684
795 001; Roche). Bright-field images were captured with a DFC 490
camera (Leica) on a Labophot-2 microscope (Nikon). Immunofluores-
cence images were taken with a Nikon Eclipse 80i fluorescence micro-
scope, Bio-Rad Radiance 2000, or Leica SP confocal microscope and
processed using Photoshop (Adobe Systems). For analysis of proliferation
and cell death, cell counts were performed. For statistics, 10 sections of otic
vesicles with similar dimensions and derived from three animals per group
were selected, and differences were confirmed by Student’s ¢ test.

Optical projection tomography. Embryos were fixed overnight in 4%
paraformaldehyde at 4°C, rinsed briefly in distilled water, and embedded
in prewarmed low-melting agarose (1% in water). Once the agarose had
solidified at room temperature, blocks were cut and dehydrated in meth-
anol overnight. After dehydration of the agarose blocks, specimens were
cleared in benzyl alcohol/benzyl benzoate (1:2) for 1 or 2 d. Scans were
performed in a bright-field channel using 700 or 750 nm filters. The 3D
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Figure 1.  Expression and inactivation of N-mycin the inner ear. 4, RT-PCR for N-myc, c-myc, and gapdh as a control was conducted on total RNA isolated from otic vesicles (OV) isolated at E11, inner ears at
E16,P3, P10, and adult stage, and cochlear sensory epithelia at P3 (EP3). B, RT-PCR for N-myc and gapdh as a control was performed on total RNA from inner ears at PO from wild-type (Wt) and mutants in which
N-mychas been inactivated by Cre driven by Foxg7 or Pax2. (=S, Expression of N-myc detected by RNA in situ hybridization. C, D, At E8.5, N-mycis expressed in the otic placode (op) that is indicated by stippled
lines in € and shown on a horizontal section in D. E, On a sagittal section at £9.5, N-myc RNA is detected throughout the otic vesicle (ov) with exception of the dorsal portion. F, G, In otic vesicles at E11.5
(circumference indicated by stippled lines), N-mycis detected in the anterior (a) and posterior (p) prosensory patch (arrows) in awhole mount (F) and on a horizontal section through the dorsal part of the vesicle
(G). H, Additionally, N-myc is expressed in the medioventral part of the otic vesicle corresponding to the future prosensory region of the cochlea. Orientations of the sections through the otic vesicles along the
dorsal (d)—anterior (a) and anterior—medial (m) axis are indicated in £, G, and H, respectively. ,J, At E13.5, N-myclocalizes to the utriculus (u), sacculus (s), and cochlea (co). Thelocations of the prosensory regions
of the sacculus and cochlea and the level of the section shown inJ are indicated. Additional labeling corresponds to ganglia (g) and nerve fibers innervating the prosensory regions. L, M, 0, Sections through the
cochleaat E13.5 (M) and E14.5 (L, 0) reveals N-myc expression throughout the basal part of the cochlear duct. N, P, Localization of Kdlliker's organ (ko), the prosensory region (ps), and differentiating hair cells
(arrow) localized within the N-myc expression domain is shown by labeling with antibodies against jagged1, p27 X', and myosin VIIA (counterstained with DAPI), respectively. K, Expression of N-mycin a section
through the posterior cristae at E14.5. @, Expression of N-mycinisolated cochlear sensory epithelia at E18.5 is observed on the modiolar side of the organ of Corti (oc). R, Sections through the cochlea reveals some
remnants of N-myc expression throughout Kdlliker's organ (ko) in the apical turn. Higher levels of N-myc expression are maintained in nerve fibers (asterisks) that run beneath the sensory epithelium and
innervate hair cells, shown at a higher magnification for a basal tum in S. Scale bars: L, J, 200 wm; D, E, G, K, M, R, 100 rxm; S, 50 em.

reconstructions were performed as described (Sharpe et al., 2002). Im-
ages of virtual sections shown here were captured directly from the 3D
reconstructions.

Eisenman, 2008). RT-PCR analysis demonstrated that c-myc and
N-myc were coexpressed at approximately similar amounts
throughout inner ear development (Fig. 1A). Weak expression

Results was observed at early stages (otic vesicle stage), whereas highest

Expression and inactivation of myc genes in the inner ear

To study the functions of myc genes during inner ear develop-
ment, we first analyzed the expression of c-myc and N-myc, both
of which have been shown to play essential roles during embry-
onic development and organogenesis (Hurlin, 2005; Eilers and

levels of transcripts were observed in inner ears isolated at mid-
embryogenesis and early postnatal stage. At the latter stage, we
also confirmed expression in isolated sensory epithelia from the
cochlea. Postnatally expression levels of ¢-myc and N-myc de-
clined and were maintained at low levels in the adult inner ear.
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Because both ¢-myc and N-myc null mutants die during early
inner ear development, we used a conditional approach to inac-
tivate myc genes in the inner ear. Mouse mutants carrying floxed
alleles for c-mycand N-myc (Trumpp et al., 2001; Knoepfler et al.,
2002) were crossed with Cre lines driven by the Foxgl locus or
Pax2 regulatory sequences already successfully used to inactivate
floxed alleles during the earliest stages of inner ear development
(Pirvola et al., 2002; Ohyama and Groves, 2004). Inactivation of
N-myc and c-myc was confirmed by RT-PCR using RNA isolated
from neonatal inner ears. Whereas homozygous myc mouse mu-
tants carrying Pax2Cre showed no expression of myc transcripts,
some traces of N-myc and c-myc transcripts were still observed in
the presence of FoxgICre (Fig. 1 B). Phenotypic and immunohis-
tological analysis of the inner of c-myc mutants showed no defects
during inner ear development. In contrast, N-myc mutants ex-
hibited a series of inner ear defects that were fully penetrant and
will be described in the following sections. Correlating with the
degree of conditional inactivation of N-myc as suggested by re-
maining transcript levels, Pax2Cre—N-myc mutants showed a
slightly more severe expressivity of the mutant phenotypes com-
pared with FoxglCre—N-myc mutants. Throughout the text, we
will refer to N-myc homozygous mutants created by FoxgICre or
Pax2Cre as N-myc mutants. The respective Cre line used to inac-
tivate N-myc is indicated in the corresponding figures.

Because N-myc proved to be essential for inner ear develop-
ment, we next examined the spatial expression pattern of N-myc
in the inner ear. We thus analyzed the expression of N-myc by
RNA in situ hybridization throughout inner ear development.
N-mycwas expressed in the invaginating otic placode at E8.5 (Fig.
1C,D). During formation of the otic vesicle, N-myc expression
was detected throughout the otic epithelium excluding its dorsal
aspect (Fig. 1E). Next, N-myc expression concentrated in the
anterior and posterior poles of the otic vesicle that correspond to
the future prosensory regions of the vestibular part of the inner
ear (Fig. 1F,G). Additional labeling was observed in the medio-
ventral domain corresponding to the future prosensory region
of the cochlea (Fig. 1 H). During formation of the prosensory
patches, N-myc was expressed in the utricle, saccule, and cochlea
and also in the ganglia and the innervating nerve fibers (Fig.
11,]). AtE14.5, N-myc expression was also observed in the cristae
of the semicircular canals (Fig. 1K). A more detailed study of
N-myc expression in the cochlea at these stages showed that
N-myc was expressed throughout the basal region of the cochlear
duct (Fig. 1L, M,0), part of which will form the prosensory do-
main that can be visualized by labeling with p27*"*' (Fig. 1N).
Neighboring the prosensory region, the N-myc expression do-
main also included Kolliker’s organ (KO), a transient structure
that will form the inner sulcus and is labeled by jagged! (Fig.
1 M, N). N-myc expression was maintained throughout the basal
part of the cochlea during initiation of hair cell differentiation at
E14 as evidenced by the onset of myosin VIIA expression in the
basal part of the cochlea (Fig. 10,P). In the differentiated cochlear
duct, N-myc was downregulated with some remnants of expres-
sion maintained throughout KO in the apical part (Fig. 1Q,R). At
this stage, strong N-myc expression was maintained in nerve fi-
bers innervating hair cells (Fig. 1R, S).

Inner ear defects in N-myc mutants

N-myc mutants were analyzed from the otic vesicle stage (E9)
until adulthood. The diameter of the otic vesicle of homozygous
N-myc mutants was reduced by ~20% with respect to wild-type
littermates (Fig. 2A). Homozygous FoxglCre—N-myc mutants
died at birth or within the first postnatal days after birth and thus

J. Neurosci., May 11,2011 - 31(19):7178 -7189 + 7181

N mycPaXZCreko

Figure2.  Innerearphenotype of N-myc mutants. 4, Wild-type (wt) and Pax2Cre—N-myc mutant
embryos at E10. The size of the otic (ov) is reduced in the mutant embryo. B, C, At E12.5, N-myc
mutants show a shortened cochlear duct (c) and absence of the lateral semicircular canal (Ic). D, At P2,
Pax2Cre—N-myc mutants are smaller than their wild-type littermates and fail to assume an upright
position. E, Juvenile Pax2Cre—N-myc mutants show head bobbing and circling behavior. F, G, Isolated
inner ears from Foxg7Cre—N-myc mutants at E16 and Pax2Cre—N-myc mutants at P2 are smaller
compared with wild-type inner ears. Clearing of the specimens indicates a lack of the lateral canal and
a shortened cochlea with a reduced coiling. H, 1, P2 inner ears carrying a Pax2(re transgene and a
ROSA26 reporterwerestained for lacZand processed for optical projection tomography confirming the
absence of the lateral canal. ac, Anterior canal; pc, posterior canal.

prevented the analysis of inner ear development beyond this
stage. Pax2Cre—N-myc mutants were born alive, showed a re-
duced size compared with wild-type littermates, and failed to
reach an upright position as neonates (Fig. 2 D). As juveniles and
adults, the Pax2Cre—N-myc mutants showed head bobbing and
circling behavior, indicating an inner ear defect (Fig. 2 E). A gross
examination of inner ears isolated from N-myc mutant animals
revealed a reduced size compared with controls (Fig. 2F,G).
Clearing of the specimens revealed a shortened cochlea with re-
duced coiling and indicated the absence of the lateral semicircu-
lar canal (Fig. 2G). The absence of the lateral semicircular canal
was confirmed on histological sections at E12 (Fig. 2B,C). To
verify this phenotype at the postnatal stage, we performed whole-
mount (-galactosidase staining of inner ears from animals that
carried a ROSA26lacZ reporter (Soriano, 1999). The presence of
Pax2Cre or FoxglCre that are active in the early otic vesicle allows
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labeling of inner ear components
throughout development. Labeled inner
ears were cleared and processed for opti-
cal projection tomography that allows a
detailed reconstruction of the specimens
(see Materials and Methods). While con-
trols showed the presence of all three
semicircular canals, in N-myc mutants,
the horizontal canal was completely ab-
sent (Fig. 2H,I) (see Note added in
proof).

N-myc controls proliferation in the

otic vesicle

The smaller size of the otic vesicle ob-
served in N-myc mutants may be caused
in principle by a lack of proliferation, in-
creased apoptosis, or both. To examine
cell proliferation, we used staining with an
antibody against pH3 that labels cells in
late G2 and M phase of the cell cycle. Serial
sections through the otic vesicle revealed a
reduced number of cells stained with the
pH3 antibody in the otic epithelium
compared with wild-type embryos (Fig.
3A,B). In contrast, proliferation in the
surrounding mesenchyme appeared un-
affected. Cells counts of pH3-positive cells
revealed that cell proliferation was re-
duced by ~50% (48 £ 6 cells vs 25 £ 3
cells; n = 10; p < 0.0001) in the otic epi-
thelium of N-myc mutants, which was
also thinner when compared with con-
trols (Fig. 3A,B). Proliferation was fur-
ther examined in the developing cochlear
duct at E13.5. At this stage, pH3-positive
cells were detected in the region of Kollik-
er’s organ in wild-type animals (Fig. 3C).
In contrast, the basal part of the cochlear
duct of N-myc mutants showed no prolif-
erating cells (Fig. 3D).

To examine cell death, we used TUNEL
staining. In serial sections through the otic
vesicle, apoptotic cells were present in well
known sites of cell death, such as the en-
dolymphatic duct (Fekete et al., 1997), in
both wild-type and N-myc mutants (Fig.
3E,F). However, no increased or ectopic
cell death was detected in otic vesicles of
N-myc mutants, suggesting that apoptosis
is not the cause of the observed reduced
growth.

To further analyze the role of N-myc
for cell proliferation in the inner ear, we
performed gain-of-function experiments
by misexpression of N-myc in chicken
embryos. For this purpose, we electropo-
rated a cDNA for N-myc together with a
GFP reporter (see Materials and Meth-

ods) into the otic placode of chicken embryos. Six hours after
electroporation, ectopic N-myc expression was confirmed by
immunohistochemistry and colocalized with GFP expression
(Fig. 3I). We then examined the size of otic vesicles and cell
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Figure 3.  Effects of N-myc on proliferation and cell death during inner ear development. Sections through the inner ear of wild-type
animals (A, C, E) and N-myc mutants (B, D, F) were stained as indicated. A-D, Cell proliferation was examined by labeling sections with
antibodies against pH3. On selected sections in which otic vesicles showed similar dimensions between control and mutant, the number of
pH3-labeled cells and the thickness of the otic epithelium appears reduced in N-myc mutants (B) compared with controls (A). The circum-
ference of the otic vesicle is indicated by stippled lines. d, Dorsal; m, medial; wt, wild type. , D, Sections through the cochlear duct at E13.5
(circumference indicated by stippled lines) reveal the presence of pH3-positive cells in Klliker's organ (ko) in wild-type embryos. N-myc
mutantslack proliferating cells throughout the basal portion of the cochlear duct. £, F, Cell death was analyzed by TUNEL staining of the otic
area. Apoptotic cells are present in the dorsal region of both wild-type and mutant vesicles. G, Bar charts indicating the volume and surface
area of otic vesicles electroporated with N-myc (ep) compared with control vesicles (c; set to 1). H, The left bar chart indicates the total
number of pH3-positive cells per otic vesicle. The right bar chart shows the density of pH3-positive cells in N-myc-electroporated domains
and in equivalent domains of control vesicles (c; set to 1). The error bars represent SEM. *p << 0.05, **p << 0.01,and ***p < 0.001, levels
of significance of the difference with respect to control values calculated by the Student’s ¢ test. /, Sections from otic placodes 2 h after
coelectroporation with vectors expressing N-myc and GFP. Cells electroporated with the vectors can be detected by antibodies against
N-myc and expression of GFP. J, Sections from otic vesicles labeled with antibodies against pH3 to detect proliferating cells. Proliferating
cells are observed within the electroporated area. Note that the electroporated otic vesicles have not initiated morphogenesis as observed
in controls. Scale bars: 4, D, E, 50 um.

proliferation 24 h after electroporation by serial reconstruction
and labeling with pH3 antibodies (Fig. 3]). Volume and surface
area were significantly increased in N-myc electroporated otic
vesicles (Fig. 3G). In parallel, the number of pH3-positive
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Figure4.  Expression of early otic markers, defective cochlear outgrowth, and fusion between sensory regions in N-myc mutants. A-D,
Labeling of sections through the otic vesicle with Pax2 and Sox2 antibodies reveals normal expression of these markers in N-myc mutants.
Sections were counterstained with DAPI. Orientation of sections along the dorsal (d)-medial (m) axis are indicated in A. wt, Wild type. E-H,
Hybridization with riboprobes for LFng and NeuroD reveals a correct localization of these genes within their normal expression domains in
N-mycmutants, although their intensity is reduced compared with the wild-type. Orientation of embryos along the dorsal (d)—anterior (a)
axis are indicated in E.1,J, Inner ears were labeled with Pax2 antibodies at E13.5 as whole mounts. The extension and coiling of the cochlea
(c)isreduced in N-mycmutants. Orientation of inner ears along the dorsal (d)—ventral (v) axisis indicated in /. K~N, E13.5 inner ears carrying
aPax2Cretransgeneand aR0SA26 reporter were stained forlacZ (K, L) and processed for optical projection tomography (M, N'). The position
of the cochlea, sacculus (s), and utriculus (u) and anterior (a), lateral (1), and posterior (p) cristae are indicated. 0, P, Inner ears were labeled
with Sox2 antibodies at E13 as whole mounts. In wild-type embryos, the prosensory regions of the cochlea (c), utricular (u), and saccular (s)
maculae and anterior (a), lateral (1), and posterior (p) cristae are labeled. In N-myc mutants, the prosensory region of the reduced sized
cochlea has fused with the saccular and utricular maculae. The position of the lateral cristae is displaced compared with the wild-type. @, R,
Magnified boxed areas from 0and P show the prosensory region of the cochlea that is connected with the ductus reuniens (d) in the wild
type. The position of the sacculus that cannot be seen in this confocal plane is indicated. In the mutant, the cochlear prosensory region is
fused to the maculae atits base and ends with a short turn forming a knob-like structure at the apex. S, T, Sections along the dorsoventral
axis of an inner ear at E18 labeled with myosin VIIA and Sox10 antibodies. Whereas in the wild-type the saccular maculae and cochlea
appear clearly separated, in the N-myc mutant, a fusion of the sensory areas, characterized by myosin VIIA-positive hair cells, is observed.
Scale bars: 4, 50 pem; G, 200 m; (inf) I-L, 0, P, 100 em; S, 100 em. g, Cochlear ganglion.
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cells was also higher in N-Myc-
electroporated otic vesicles than in con-
trols (Fig. 3H, left bar diagram). This
effect was indeed related to a change in the
cell proliferation rate, because the density
of cells labeled by pH3 antibodies was sig-
nificantly increased within the N-myc-
electroporated domains (Fig. 3H, right
bar diagram). Interestingly, despite their
bigger size, otic vesicles electroporated
with N-myc often failed to initiate proper
morphogenesis. Together, these data sup-
port a role for N-myc in the regulation of
cell proliferation in the inner ear.

N-myc is required for cochlear
outgrowth and the separation of
prosensory regions
Morphogenesis of the otic vesicle leads to
the ventral outgrowth of the cochlea. In
histological sections through the develop-
ing cochlea at E12, we observed a reduced
outgrowth of the cochlear duct in N-myc
mutants (Fig. 2B,C). Pax2 null mouse
mutants show a defective outgrowth of
the cochlear duct (Burton et al., 2004).
Thus, to further characterize the N-myc
mutant cochlear phenotype, we analyzed
the expression of Pax2 protein. During
normal development, Pax2 antibodies la-
bel the medial wall of the otic vesicle from
where the cochlear anlage derives and
later on in the sensory and nonsensory re-
gions of the cochlear duct (Lawoko-Kerali
et al., 2002; Burton et al., 2004). The re-
duced sized N-myc mutant otic vesicles
showed a normal expression of Pax2 in
the medial domain. (Fig. 4A,B). In E13.5
whole-mount controls, Pax2 labeled the
outgrowing cochlear duct, which had ini-
tiated its characteristic lateral turning
around the dorsoventral axis (Fig. 41). In
contrast, Pax2 labeling of N-myc mutants
confirmed the shortening of the cochlear
duct and presence of a very limited and
short turn at the most apical part that re-
solved in a knob-like structure (Fig. 4]).
We next analyzed the potential roles of
N-myc during the development of neural
elements of the inner ear. The neurosen-
sory region of the otic vesicle is character-
ized by neurogenic genes, such as NeuroD
(Alsina et al., 2009; Fritzsch et al., 2010).
Whole-mount in situ hybridization of
wild-type embryos at E9 revealed the pres-
ence of mRNA encoding NeuroD in the
anteroventral quadrant of the otic vesicle
and in delaminating neurons that will
form the otic ganglion (Fig. 4E). In the
reduced sized otic vesicles of N-myc mu-
tants, NeuroD expression was likewise lo-
calized in the neurogenic region of the otic
vesicle. However, NeuroD was low or
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absent in the expression domain corresponding to the nascent
otic ganglion (Fig. 4 F), indicating a developmental delay in de-
lamination and/or proliferative expansion of otic neuroblasts.

The formation of the prosensory region has been shown to be
controlled by Notch signaling (Daudet and Lewis, 2005; Kiernan
et al., 2006; Hartman et al., 2010; Pan et al., 2010; Neves et al.,
2011). LFngis a component of the Notch signaling pathway, and,
at the otic vesicle stage, it is present in a slightly larger domain
compared with NeuroD that is believed to encompass the pro-
spective organ of Corti and the maculae (Fig. 4G) (Morsli et al.,
1998; Koo et al., 2009). Although clearly reduced, the LFng ex-
pression domain was maintained in N-myc mutant otic vesicles
(Fig. 4H).

Sox2, an HMG transcription factor essential for the formation
of inner ear sensory regions (Kiernan et al., 2005; Dabdoub et al.,
2008; Neves et al., 2011), is first expressed in the proneural region
of the otic vesicle (Fig. 4C) and later on in the prosensory region
of all developing sensory epithelia, including the posterior, lat-
eral, and anterior cristae, the utricular and saccular maculae, and
the cochlea (Kiernan et al., 2005; Mak et al., 2009). A normal
distribution of Sox2 was confirmed in the otic vesicle of N-myc
mutants (Fig. 4D). At E13, the prosensory regions of wild-type
inner ears showed an intense labeling with Sox2 antibodies in
whole-mount preparations (Fig. 40). In N-myc mutants, the an-
terior cristae was approximately localized in its normal position
(Fig. 4P). In contrast, the lateral cristae that is usually found in
close proximity to the anterior cristae was now positioned at a
more medial location and closer to the posterior cristae. Further-
more, the lateral orientation of the prosensory region of the lat-
eral cristae had shifted to a dorsal direction. Finally, analysis of
the cochlear duct confirmed its shortening and the presence of a
small apical turn followed by a knob-like structure with intense
Sox2 staining in N-myc mutants (Fig. 40-R).

The different sensory areas of the inner ear are normally sep-
arated by epithelial constrictions such as the ductus reuniens
between the cochlea and the saccule or the utriculo-saccular fo-
ramen between the saccule and the utricle. Strikingly, the basal
part of the cochlear prosensory region of the N-myc mutant was
fused with the neighboring sacculus and utriculus (Fig. 40-R). This
phenotype was confirmed by tomography of B-galactosidase-
stained inner ears of animals carrying the ROSA26lacZ reporter at
E13 (Fig. 4 K-N). Analysis of mutant sections at E18 revealed a wid-
ening of the basal part of the cochlea, forming a continuum with the
saccular region and confirmed the loss of the ductus reuniens (Fig.
4S,T). Also at this stage, a fusion between the sensory regions of the
cochlea and sacculus, now characterized by hair cells expressing my-
osin VIIA, was verified.

P27 expression and cell cycle exit is increased in N-myc
mutants

Within the prosensory region of the cochlea, cell cycle exit occurs
in a temporal wave that initiates at E12 in the apex and reaches the
base at E14. Expression of the cdki p27 """ defines the prosensory
region and closely mirrors cell cycle withdrawal. Furthermore,
p275%! has been shown to be required for the formation of the
correct number of postmitotic progenitors that give rise to hair
cells and supporting cells (Chen and Segil, 1999; Lee et al., 2006).
We examined p27 ! expression in the cochlea during and after
cell cycle exit between E12 and E16. Wild-type embryos showed
p275P! expression in the prosensory region (Fig. 5A) paralleled
by cell cycle exit that established a zone of non-proliferating cells
as shown by the absence of labeling of proliferating cells by PCNA
(S-phase marker) (Fig. 5C) or pH3 (Fig. 5E).
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In N-myc mutants, the shortened mutant cochlea failed to
undergo the typical turning observed in controls but had elon-
gated mostly along the dorsal ventral axis and ended in a rounded
thickening at the most apical tip of the cochlear duct (Fig. 51,]).
The shortened cochlear duct showed p27 %' expression throughout
the apical part of the cochlea (Fig. 5B,K). This increase of p27 !
expression in the apex of N-myc mutants was even more apparent at
E16 (Fig. 5P,Q). Labeling with PCNA and pH3 antibodies con-
firmed that the expression of p27 P! was paralleled by cell cycle exit
in the N-myc mutant (Fig. 5D, F).

Suppression of cyclin D1 in developing hair cells has been
associated with their differentiation and the maintenance of their
postmitotic state (Laine et al., 2010). As described previously,
cyclin D1 is broadly expressed in the cochlear epithelium and
only shows a weak downregulation in the prosensory region of
the basal turn in which hair cells have initiated their differentia-
tion (Laine et al., 2010) (Fig. 5L). In contrast, N-myc mutants
showed a strong downregulation of cyclin D1 immunoreactivity
throughout the cochlear epithelium, particularly prominent in
the apical part of the cochlea (Fig. 5L-0).

After the establishment of the postmitotic domain, sensory
cell differentiation is initiated in the base of the cochlea and is
characterized by the expression of Atoh1, the transcription factor
that has been found to be both necessary and sufficient for the
production of hair cells in the inner ear (Bermingham et al., 1999;
Chenetal., 2002; Woods et al., 2004). By E14.5, Atoh1 expression
is initiated near the base of the cochlea in a single column of cells
that will form the IHCs (Chen et al., 2002) (Fig. 5G). In contrast,
in the N-myc mutant, an excess of Atohl-expressing cells were
detected in the basal region of the cochlea, indicating that an
unusually high number of precursors developed as hair cells (Fig.
5H). However, no precocious staining of Atohl or myosin VIIA
was observed in the apical regions of the cochlear duct, indicating
that the basal-to-apical gradient of differentiation was neverthe-
less maintained in the N-myc mutant cochlea.

Aberrant patterning of the organ of Corti in N-myc mutants
In the mammalian cochlea, sensory cell differentiation and pat-
terning leads to the formation of the organ of Corti. Histological
sections through the cochlea of wild-type animals at postnatal
day 0 (PO) revealed the typical organization of cochlear turns: one
row of IHCs and three to four rows of OHCs (Fig. 6A,C). The
organ of Corti is flanked by the KO on the modiolar side (Fig.
6C), whereas on the strial side, outer hair cells are flanked by a
series of specialized supporting cells, including Hensen’s and
Claudius cells that will form the outer sulcus. In N-myc mutants,
the ordered rows of IHCs and OHCs were replaced by long rows
or clusters of cells with a hair-cell-like morphology (Fig. 6 B, D).
Most strikingly, on the modiolar side of the organ of Corti, we
observed a complete absence of the KO. To define these defects at
the molecular level, we examined the expression of several mark-
ers. At E18, we observed that clusters of hair-cell-like cells formed
in the N-myc mutants were positive for the expression of myosin
VIIA, indicating their differentiation (Fig. 6 E-H). We next
sought to identify the presence of specific subtypes of hair cells
and used calretinin antibodies that label IHCs at PO (Dechesne et
al., 1994) (Fig. 6I). In N-myc mutants, calretinin labeled some of
the cells within the cluster of hair cells, suggesting their differen-
tiation toward the IHC fate (Fig. 6]).

Formation of hair cells in the organ of Corti is accompanied by
the development of specialized sets of supporting cells. At PO,
Sox2 that initially shows expression throughout the organ of
Corti becomes downregulated in differentiating hair cells, al-
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Cell cycle exit in N-myc mutants. Sections through the cochlea of wild-type animals (4, C, E, G, L, N, P) and N-myc mutants (B, D, F, H, K, M, 0, Q) were stained with the indicated

antibodies. Expression of p27 " in the cochlear duct (4) in a wild-type embryo at E14 defines the zone of non-proliferating cells (znpc) as shown by PCNA (€) and pH3 (E) staining (corresponding
to the magnified boxed area from A in neighboring sections). In mutant N-myc embryos, the cochlea is reduced and expresses p27 ¥"" throughout the apical part of the cochlear duct (B), paralleled
by a lack of PCNA (D) and pH3 (F) expression. G, H, In wild-type embryos, at E14, Atoh1 expression has been initiated in future inner hair cells (arrow). Note numerous cells expressing Atoh1in the
basal part of the cochlear duct in the mutant. ¢, Cochlea; s, sacculus. /, J, Histological sections at E14.5 reveals a shortened cochlear duct that fails to undergo appropriate coiling in the N-myc mutant.
The basal (b)—apical (a) axis of the cochlea s indicated in J. K, Expression of p27 " in the apical part of the cochlear duct in the N-myc mutant at E13. The section is counterstained with DAPI. L, In
wild-type animals at E14, cyclin D1 (cD1) is expressed throughout the basal part of the cochlear duct (c) with a slightly reduced staining in the prosensory region of the basal turn (asterisk). M, In
N-mycmutants, cyclin D1is strongly downregulated in the apical part of the cochlear duct compared with controls, magnified in N and 0. Cartilage (ca) shows high cD1 expression in N-myc mutants.
Sections were counterstained with DAPI. The orientation of the cochlea along the basal (b)—apical (axis) is indicated in M. P, @, Expression of p27 """ expression in the apical cochlear duct at E16.

Note the high amount of p27 !

though it is maintained in supporting cells and in a group of cells
within KO (Dabdoub et al., 2008). In wild-type animals, Sox2
labeling was observed in supporting cells, including the inner
phalangeal cell, inner and outer pillar cells, Deiter’s cells, and
Hensen’s cells, all of which were identified by their characteristic
cell shape and position within the organ of Corti (Fig. 6K). In
N-mycmutants, Sox2 labeling was reduced in cells underlying the
myosin VIIA-positive hair cell clusters (Fig. 6 L). Although these
cells were likely to correspond to supporting cells, they could not
be further classified into specific subtypes of supporting cells be-
cause of their rather homogenous shape and position within the
mutant sensory epithelium. Some weak Sox2 labeling of cells was
also observed in neighboring domains of the myosin VIIA-
positive cell clusters that may correspond to remnants of KO in
the N-myc mutant.

To further try to identify the nature of the supporting cells in
the N-myc mutant, we next examined expression of Prox1 and
p75. At E18, Proxl1 expression is normally observed in Deiter’s
and pillar cells (Bermingham-McDonogh et al., 2006; Kir-
javainen et al., 2008) (Fig. 6 M). In N-myc mutants, Proxl-
expressing cells were localized underneath hair cell rows also in
N-myc mutants (Fig. 6 N). The low-affinity neurotrophin recep-
tor p75 shows a highly characteristic pattern of expression in the

-expressing cells in the apex (asterisk) of the N-myc mutant. Scale bars: 4, 1, P, 100 pum.

apical and lateral cell membranes of the inner pillar cells and
Claudius cells during differentiation of the organ of Corti (Mu-
eller et al., 2002; Shim et al., 2005) (Fig. 60,Q). In the cell clusters
present in the differentiating cochlear sensory epithelia of N-myc
mutants, we observed elongated cells with a prominently labeling
apical cell membrane resembling the so-called pillar cell head
found in the inner pillar cell in controls (Fig. 6 P, R). In the vicin-
ity of these cells, we also found rows of smaller cells labeled with
p75 that may correspond to groups of Claudius cells and that are
usually found on the strial side of the organ of Corti. Cells that
morphologically resembled Claudius and neighboring Hensen’s
cells could also be identified on histological sections in N-myc
mutants (Fig. 6 D).

Finally, we examined the innervation of the cochlear sensory
epithelium in N-myc mutants. Using different markers that label
neuronal cell bodies or neurites such as TuJ1 (Fig. 6 E-H ), p75
(Fig. 60,P), Sox2 (Fig. 6S,T), and Sox10 (Fig. 4S,T), we con-
firmed the presence of the cochlear ganglion and of nerve fibers
that innervated the prosensory region or hair cells in N-myc
mutants.

In summary, different types of cells with a neuronal, hair cell,
and supporting cell character are present in the differentiating
cochlea of N-myc mutants. However, within the organ of Corti,
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Figure 6. Differentiation of the cochlear sensory epithelium in N-myc mutants. A, B, Sections through the cochlea of a N-myc mutant at PO reveal the presence of a cochlear duct (boxed area
magnified in €, D) that fails to form the organ of Corti. Instead of one row of inner and three rows of outer hair cells (indicated by arrows) observed in the wild type (wt), a row of hair-cell-like cells
is observed in N-myc mutants. Note the absence of Kdlliker's organ (ko) in N-myc mutants. On the abneural side, the morphology of cells appeared similar between N-myc mutants and controls. E-T,
Sections through the developing cochlear sensory epithelium of wild-type animals (E, G, I, K, M, 0, Q, ) and N-myc mutants (F, H,J, L, N, P, R, T) stained with different antibodies as indicated. E-H,
Innervation of myosin VIIA (myoVIl)-positive hair cells by B-tubulin (Tul1)-labeled nerve fibers. The position of the cochlear ganglion (g) and the sensory epithelium (s; corresponding to the boxed
area magnified in G and H) is indicated. In G, the inner hair cells (arrow) and outer hair cells (arrowheads) are indicated, whereas in the mutant, a cluster of hair cells is observed. /, Staining with
calretinin antibodies at PO labels the inner hair cell (ihc, arrow) in controls. J, Cells labeled with calretinin are also observed in a row of hair cells in the mutant. The position of cell nuclei are indicated
by asterisks. K, Staining with Sox2 antibodies in wild-type animals reveals the presence of Kdllikers organ (ko) and supporting cells, such as the inner phalangeal cell (iph), inner (ip) and outer (op)
pillar cell, Deiter's cells (d), and Hensen's cells (h). L, In the mutant, reduced Sox2 labeling is observed in cells underlying myosin VIIA-positive hair cells indicating the presence of supporting cells and
some remnants of the neighboring Kolliker's organ. M, N, In wild-type embryos, Prox1 expression is found in supporting cells (pillar and Deiter’s cells) underlying hair cells (indicated by asterisks).
Prox1-expressing cells are detected underneath a hair cell cluster in N-myc mutants. 0, P, Labeling with p75 antibodies shows the presence of the cochlear ganglion (g) and of supporting cells within
the sensory epithelium (s; boxes magnified in @ and R). Q, In the wild type, staining of the inner pillar cell (ip) and Claudius cells (c) is observed. R, Labeling with p75 of a hair cell cluster indicates
the presence of these cell types also in N-myc mutants. S, T, Sox2 expression is found in the sensory epithelium (s) and the cochlear ganglion (g) at E14. The orientation of the cochlea along the basal
(b)—-apical (a) axis is indicated. Scale bars: 4, S, 100 wm; (in G) G-N, Q, R, 50 wm; (in E) E, F, 0, P, 100 um.

maintains cells in a proliferative state, and its downregulation often
leads to differentiation (Hurlin, 2005). Consistent with this, we ob-
served N-myc expression during proliferation in the otic placode and
vesicle but not in differentiated hair cells. Cell proliferation was re-

the number and proportion of the different cell types and their
complex topological organization is not established correctly.

Discussion

Myc proteins regulate fundamental cellular processes, such as pro-
liferation, death, and differentiation in a variety of systems (Hurlin,
2005; Eilers and Eisenman, 2008). Generally, expression of N-myc

duced in the otic vesicle of N-myc mutants and is therefore likely to
cause reduced growth leading to a smaller inner ear. Additionally,
the observed loss of proliferation in the basal part of the cochlear



Dominguez-Frutos et al. @ N-myc Function during Inner Ear Development

duct in N-myc mutants may cause the loss of Kélliker’s organ and the
lateral semicircular canal. The latter forms last during development
and may be more vulnerable to a lack of proliferation (Rinkwitz et
al., 2001). Similar proliferation and growth defects have been ob-
served in the cerebellum, retina, and lung during loss of N-myc
(Knoepfler et al., 2002; Okubo et al., 2005; Martins et al., 2008).
However, in contrast to previous studies on lung and limb develop-
ment, N-myc deficiency did not affect programmed cell death in the
otic vesicle (Okubo et al., 2005; Ota et al., 2007).

In the vestibular system, the most apparent defect observed in
N-myc mutants was the complete loss of the lateral canal. Of the
mouse mutants with a vestibular phenotype reported to date,
Otx1 (Morsli et al., 1999) and Shh (Riccomagno et al., 2002)
mutants share the greatest similarity with the N-myc phenotype.
All of these mutants show a specific loss of the lateral canal. In-
terestingly, in Shh mutants, loss of the lateral canal has been
attributed to misexpression of OtxI (Bok et al., 2007b). However,
the N-myc mutant phenotype is unique because the lateral cris-
tae, although displaced, is maintained, whereas it is absent in
OtxI and Shh mutants.

Otx] mutants also share another feature in common with
N-myc mutants, namely the fusion between different sensory ep-
ithelia. This phenotype manifests as a communication between
the utricle and saccule via an open utriculo-saccular foramen and
the absence of the ductus reuniens (Morsli et al., 1999; Fritzsch et
al., 2001). In the LmxI mouse mutant, this phenotype is further
exaggerated when compared with the OfxI mutant and leads to a
closer proximity between the saccule and the base of the cochlea
(Nichols et al., 2008). In the N-myc mutant, the most severe
version of this phenotype is observed that consists in a complete
fusion between the saccule, the utricle, and the base of the co-
chlea, with no apparent separation between the different sensory
epithelia.

Several mouse mutants show a shortened cochlea that is asso-
ciated with an excess of hair cells (Matei et al., 2005; Brooker et al.,
2006; Kiernan et al., 2006; Pauley et al., 2006; Chen et al., 2008).
Often this phenotype is most prevalent in the apical part of the
cochlea, and this was also the case for the N-myc mutants re-
ported here. This phenotype has been explained by various
mechanisms, including the reduction in the number of sen-
sory progenitors, earlier cell cycle exit, and a failure of convergent
extension required for normal patterning of the organ of Corti. In
the case of the N-myc mutant, the neurosensory region initially
appears smaller, most likely because of the reduced growth rate
and associated developmental delay of the otic vesicle. Next, the
prosensory domain is specified in the mutant cochlea, but its
outgrowth and coiling is severely affected. As judged by p27 <!
and Sox2 expression, the relative expansion of the prosensory
region in the N-myc mutant is best observed in the apical part of
the cochlea and near the fused saccular and utricular compart-
ments. However, because of the overall reduction in size and the
complex morphogenetic changes, it is difficult to assess the extent
of the expansion of the prosensory region compared with the
wild-type cochlea. Nevertheless, the mutant cochlea shows a clear
increase in the number of cells expressing p27 ! and lacking
cyclin D1 together with an expanded domain of cell cycle exit,
particularly in the apical part. Because cyclins and cdkis are prime
targets to coordinate proliferation with differentiation (Kwan et
al,, 2009) and both cyclinD1 and p27 *"P" have been postulated as
targets of N-myc (Oliver et al., 2003), their dysregulation is likely
to be directly responsible for the phenotype observed in the mu-
tant cochlea. It is well documented that cdki p27 “"! is expressed
in a temporal wave within the prosensory region that reflects the
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spatial and temporal pattern of cell cycle exit (Lee et al., 2006).
N-myc mutants maintain the normal onset of p27 P! expression
in the apical part of the cochlea. However, the relative number of
cells exiting the cell cycle in the cochlear duct appears increased
when compared with wild-type animals. This is especially appar-
ent in the apex in which essentially all cells express p27 ' and
exit the cell cycle. Therefore, our work indicates that N-myc usu-
ally represses directly or indirectly p27*¥* expression and pre-
vents cell cycle exit and differentiation. In the case of the myc
family member c-myc, this regulation may occur by direct bind-
ing to the p27*®' promoter (Yang et al., 2001; Cowling et al.,
2006). In parallel with the increase of p27 P! expression, we also
observed a decrease in the number of cells expressing cyclin D1.
Normally, cyclin D1 is widely expressed in the cochlear epithe-
lium, including the prosensory region, but is subsequently down-
regulated during differentiation of hair cells (Laine et al., 2010).
Interestingly, D-type cyclins have been suggested to sequester
cdkis, such as p27 P!, thereby allowing downstream activation of
cyclin complexes that promote cell cycle progression (Besson et
al., 2008). Loss of cyclin D1 in the cochlear epithelium in N-myc
mutants thus may lead to an increased availability of p27 P!,
further promoting cell cycle exit and differentiation. Increased
expression of p27""! and decreased cyclin D2, an additional
N-myc target, has also been observed in the cerebellum of mouse
mutants lacking N-myc (Knoepfler et al., 2002). Similar to the
cochlea, this dysregulation is paralleled by a loss of proliferation
and the concomitant increase of postmitotic progenitors. Addi-
tionally, increased cell cycle exit is not followed by a precocious
differentiation of neuronal progenitors. Repression of p27 P! by
N-myc is also observed in retinal progenitor cells (Martins et al.,
2008). Loss of N-myc in these cells leads to upregulation of
p275%! and reduced proliferation. Interestingly in this case, al-
though retinal progenitor cell proliferation is reduced, the hypo-
cellular retina is properly proportioned to the other ocular
structures. Thus, cell fate specification and differentiation is
maintained and ensures the correct proportions of different ret-
inal cell types. Similarly in the cochlea, our molecular analysis
showed that different subtypes of hair and supporting cells are
present in the absence of N-myc. However, the correct propor-
tions of the different cell types required for the formation of the
organ of Corti are not maintained. Instead, there is an increase in
the number of hair cells indicating a larger proportion of precur-
sors that differentiate into this cell type. Because of the complex
morphogenetic changes in the mutant cochlear duct, it is difficult
to quantify the overall increase of sensory hair cells versus non-
sensory cells. However, clearly in the apex, the vast majority of
cells exit the cell cycle and differentiate into hair cells. As men-
tioned above, N-myc has been associated with increased differen-
tiation in the cerebellum (Knoepfler et al., 2002), but this is not
the case in other tissues, such as retina or lung (Knoepfler et al.,
2002; Okubo et al., 2005; Martins et al., 2008). Concerning dif-
ferentiation, N-myc thus acts in a context-dependent manner in
different organs.

N-myc is a member of the basic helix-loop—helix (bHLH)
family of transcription factors, and different bHLH proteins have
been postulated to form inhibitory loops among each other by
competing for binding to the E box in their target genes (Fritzsch
et al., 2010). In this context, Atohl, which has been shown to be
sufficient for the generation of ectopic hair cells in the cochlear
sensory epithelium (Zheng and Gao, 2000; Woods et al., 2004),
may be one of the bHLH factors that competes with N-myc dur-
ing hair cell differentiation. Expression of N-myc in the prosen-
sory region may normally counteract Atohl, and, therefore, in
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the absence of N-myc, an increase in the binding of Atoh1 to its
target genes will thus promote cells to choose a hair cell fate.

An alternative source for additional hair cells found in the
cochlear sensory epithelium of N-myc mutants may be KO. It has
been shown previously that the KO is competent to generate
ectopic hair cells, suggesting that KO may originate from an ex-
tended prosensory domain that becomes restricted during devel-
opment (Zheng and Gao, 2000; Woods et al., 2004). Because KO
is severely reduced or absent in N-myc mutants, it is tempting to
speculate that some or all of the cells with a hair-cell-forming
potential normally present in the KO region have been converted
into hair cells.

Finally, it is worthwhile mentioning that heterozygous N-myc
mutations are responsible for Feingold syndrome in humans
(van Bokhoven et al., 2005). Feingold syndrome is a dominantly
inherited disease characterized by microcephaly, cardiac defects,
and facial deformities, among others. At a lower frequency, deaf-
ness of patients also has been reported (Marcelis et al., 2008).
Therefore, additional studies on how N-myc controls cell prolif-
eration, differentiation, and patterning in the inner ear will be
vital to identify the molecular basis of human deafness.

Note added in proof. Similar and complementary findings on
the postnatal inner ear phenotype of N-myc mutants are reported
by Kopecky et al. (2011).

Notes

Supplemental material for this article is available at www.
ibgm.med.uva.es/schimmang/index.html. Movie 1 shows a
control P2 inner ear carrying a Pax2Cre transgene, and a
ROSA26 reporter stained for lacZ and processed for optical
projection tomography. Movie 2 shows a P2 N-myc mutant
inner ear carrying a Pax2Cre transgene, and a ROSA26 re-
porter stained for lacZ and processed for optical projection
tomography confirming the absence of the lateral canal. This
material has not been peer reviewed.
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