
Evidence Accumulation in Obsessive-Compulsive Disorder:
the Role of Uncertainty and Monetary Reward on Perceptual
Decision-Making Thresholds

Paula Banca1,2,3, Martin D Vestergaard4, Vladan Rankov1, Kwangyeol Baek1, Simon Mitchell1, Tatyana Lapa1,
Miguel Castelo-Branco3 and Valerie Voon*,1,5,6

1Department of Psychiatry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK; 2PhD Programme in Experimental Biology and

Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; 3Institute for Biomedical Imaging and Life Sciences,

University of Coimbra, Portugal; 4Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK;
5Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge, UK; 6Cambridgeshire and Peterborough NHS Foundation

Trust, Cambridge, UK

The compulsive behaviour underlying obsessive-compulsive disorder (OCD) may be related to abnormalities in decision-making. The

inability to commit to ultimate decisions, for example, patients unable to decide whether their hands are sufficiently clean, may reflect

failures in accumulating sufficient evidence before a decision. Here we investigate the process of evidence accumulation in OCD in

perceptual discrimination, hypothesizing enhanced evidence accumulation relative to healthy volunteers. Twenty-eight OCD patients and

thirty-five controls were tested with a low-level visual perceptual task (random-dot-motion task, RDMT) and two response conflict

control tasks. Regression analysis across different motion coherence levels and Hierarchical Drift Diffusion Modelling (HDDM) were used

to characterize response strategies between groups in the RDMT. Patients required more evidence under high uncertainty perceptual

contexts, as indexed by longer response time and higher decision boundaries. HDDM, which defines a decision when accumulated noisy

evidence reaches a decision boundary, further showed slower drift rate towards the decision boundary reflecting poorer quality of

evidence entering the decision process in patients under low uncertainty. With monetary incentives emphasizing speed and penalty for

slower responses, patients decreased the decision thresholds relative to controls, accumulating less evidence in low uncertainty. These

findings were unrelated to visual perceptual deficits and response conflict. This study provides evidence for impaired decision-formation

processes in OCD, with a differential influence of high and low uncertainty contexts on evidence accumulation (decision threshold) and

on the quality of evidence gathered (drift rates). It further emphasizes that OCD patients are sensitive to monetary incentives heightening

speed in the speed-accuracy tradeoff, improving evidence accumulation.
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INTRODUCTION

The weighting of evidence before a decision can be trivial or
can require careful deliberation. The amount of evidence
required has much interindividual variability and can be
abnormal in psychiatric disorders. The inability to commit
to a final decision may be a relevant feature in OCD. In the
repetitive act of washing or checking, the available sensory-
perceptual evidence appears insufficient to commit to a
solid decision: patients appear unable to decide whether
their hands are sufficiently clean or the door is properly

locked (Sachdev and Malhi, 2005). Instead, the compulsive
behaviour itself appears to reflect the need for continuous
‘evidence gathering’, possibly to reduce uncertainty (Rotge
et al, 2008; Stern et al, 2013).

The process of accumulating and evaluating evidence
before a decision has been assessed using probabilistic
reasoning tasks. In the Beads-in-a-Jar task (Beads task)
participants judge from which of two jars, containing equal
but opposite ratios of colour beads, the beads are being
selected (Volans, 1976). In patients with schizophrenia,
lower evidence accumulation is consistently observed (Fine
et al, 2007; Moutoussis et al, 2011). In the Information
Sampling Task participants decide which of two colours is
predominant in a 5� 5 matrix by opening boxes to make
a decision (Clark et al, 2006). Although both behavioural
measures are conceptually similar, recent studies in
schizophrenia (Huddy et al, 2013) show impairments in
the Beads task but not the Information Sampling Task
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suggesting important task differences. Evidence accumula-
tion in OCD has focused on probabilistic reasoning but the
results are mixed. Using the Beads task, two studies (Fear
and Healy, 1997; Pelissier and O’Connor, 2002) showed that
OCD patients gather more evidence compared with healthy
controls, although a third study (Volans, 1976) showed
similar findings only after controlling for neuroticism as a
confounder. In contrast, a recent study did not replicate this
difference (Jacobsen et al, 2012). Using the Information
Sampling Task, there were no differences observed in
evidence accumulation between OCD patients and controls
(Chamberlain et al, 2007).

In this study, we assess evidence gathering in OCD in the
perceptual domain. Decisions in daily life are commonly
perceptual (for example, do my hands look or feel clean?)
rather than probabilistic (for example, are my hands likely
to be clean?) or a mix of the two. Typical experimental
approaches using sensory discrimination in vibrotactile
(Romo and Salinas, 2003), auditory (Kaiser et al, 2007) and
visual (for example, using the ‘random dot motion’ task
(RDMT); Newsome et al, 1989) domains have been widely
used to investigate perceptual decision-making in primates
and healthy humans (for review see (Gold and Shadlen,
2007; Heekeren et al, 2008)). The analysis separates
transient sensory integration and decision formation
(Gold and Shadlen, 2007). Drift diffusion models, which
define a decision when accumulated noisy evidence reaches
a criterion level (a decision boundary), have been particu-
larly successful in explaining response time and accuracy
data in these binary choice tasks (Ratcliff and McKoon,
2008).

We compared OCD patients and healthy volunteers using
the RDMT, a low-level visual perceptual task in which
participants decide whether a net of randomly moving dots
is predominantly moving right or left. Perceptual and
probabilistic decisions are qualitatively different in nature
and this is likely to affect patients’ cognitive process of
evidence accumulation before a decision. One possible
difference is that probabilistic tasks (for example, the beads
task or Information Sampling Task) require an active
accumulation of information (drawing another bead or
opening another box), whereas in the perceptual RDMT
motor inhibition is necessary (waiting longer results in
more evidence accumulation). Motor inhibition as tested
using the stop signal task has been shown to be impaired in
OCD (Menzies et al, 2007), which may be relevant in any
differential impairment of the RDMT. We tested decision
thresholds across a range of coherence levels to control for
visual processing and compared high and low uncertainty
conditions, thus linking decision-making to perceptual
uncertainty. The data were analyzed with both conventional
regression analysis and computational drift diffusion
models. We hypothesized that compared with healthy
volunteers, OCD patients would accumulate more percep-
tual evidence, particularly during high relative to low
uncertainty. We also predict that patients with higher
compulsive symptoms would exhibit greater impairments in
evidence accumulation.

The RDMT has features possibly relevant to response
conflict as lower coherence motion may invoke competing
responses. In event-related brain potential (ERP) studies,
OCD patients have consistently shown enhanced error-

related negativity relative to healthy controls (Gehring et al,
2000; Johannes et al, 2001) in response conflict tasks,
although variability in behavioural differences has been
observed (Marsh et al, 2013; Ursu et al, 2003). This error-
processing enhancement is localized within the rostral ACC
(Fitzgerald et al, 2005; Kiehl et al, 2000) with similar
enhanced activity also during correct high conflict (HC)
trials, suggesting abnormalities in conflict detection in OCD
(Endrass et al, 2008; Ursu et al, 2003). Here we use two
different tasks assessing response conflict to act as control
tasks: a variation of the Flanker task (Eriksen and Eriksen,
1974), a motor response competition task, modified to
enhance task difficulty and a probabilistic selection task
(Frank et al, 2007). In this latter task, participants learn
three stimulus-pair contingencies during training and are
tested on HC and low conflict (LC) decisions by varying the
stimulus reinforcement values using different pairings.

MATERIALS AND METHODS

Participants

Sixty-three participants, twenty-eight OCD patients, and
thirty-five healthy volunteers (HVs) took part in the study.
Recruitment was conducted through community settings
and clinicians in East Anglia and advertisements to local
support groups. All patients were screened by a psychiatrist,
using a structured clinical interview (the Mini International
Neuropsychiatric Inventory (Sheehan et al, 1998)), to
confirm the OCD diagnosis (DSM-IV-TR criteria; Associa-
tion AP (2000)) and exclude any comorbid psychiatric dis-
orders. Nineteen of the twenty-eight patients with OCD
were taking SSRI medication. Four of them were also taking
antipsychotic medication. To assess the severity and
characteristics of OCD symptoms, each patient completed
the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS)
(Goodman et al, 1989). General exclusion criteria for both
groups were substance dependence, current major depres-
sion of moderate severity, serious neurological, medical or
psychiatric illnesses, or head injury. Patients for whom
hoarding was the primary complaint were also excluded
because hoarding has been recently considered a discrete
diagnostic entity due to its significantly different epidemio-
logical, phenomenological, and neurobiological character-
istics (Marchand and Phillips McEnany, 2012).

Groups were recruited to match gender, age, and verbal
IQ using the National Adult Reading Test (Nelson, 1982).
HVs were free from medication or neurological, medical,
or psychiatric conditions. All participants completed the
Beck Depression Inventory (BDI; Beck et al, 1961) and
the State and Trait Anxiety Inventory (Spielberger, 1985).

Participants completed three behavioural tasks in a
counterbalanced order and were compensated for their
time and performance. The study was approved by the
University of Cambridge Research Ethics Committee and
written informed consent was obtained.

Behavioural Procedures

Random-dot motion task (RDMT). Participants viewed a
cloud of dots moving within a borderless circle in the screen
centre (Figure 1a). The goal was to decide whether the dots
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cloud appeared to be moving right or left. Subjects pressed
‘S’ for left and ‘K’ for right using their index fingers. Two
sets of 500 dots (dot size: 3 pixels) were created: the
‘coherent set’ (dots moving coherently) and the ‘random
set’ (dots moving randomly). From the first 50-ms frame to
the next, the ‘coherent set’ moved 1 pixel towards the target
direction, whereas the ‘random set’ was randomly reallo-
cated. In the subsequent frame the sets switched, with the
‘coherent set’ displayed randomly and the ‘random set’
displayed coherently. This strategy prevented tracking of a
specific dot and ensured the cloud remained centred while
maintaining the global perception of movement towards
one direction (Forstmann et al, 2010). Nine different motion
coherence levels were defined by varying the proportion of
dots in the ‘coherent set’. Coherence levels were selected
following extensive piloting to ensure coverage of a wide
range of individual visual detection thresholds (coherence
levels: 0 (random control condition), 0.025, 0.05, 0.1, 0.15,
0.25, 0.35, 0.45, and 0.7) and to ensure representation of
high, medium, and low uncertainty. Each trial was followed
by an intertrial fixation cross, centred in the middle of the
screen, varying between 0.5 and 1 s duration. The stimulus
was displayed for a maximum duration of 10 s and ceased
following a response. Monetary feedback (þ d1 or � d1)
indicated whether the response was correct or incorrect.

The task consisted of a practice session and three
separate conditions. The first condition included nine
coherence levels with monetary feedback. The second

condition assessed subjective confidence following the
decision (six coherence levels). The third condition
introduced a monetary penalty (Cost) for slow responses,
as well as monetary incentive for fast responses, individua-
lized for reaction time to measure the speed-accuracy trade-
off (six coherence levels). A response time (RT) greater than
the individual’s average RTþ 1 SD calculated from the first
condition was penalized with 2d. Participants received
increasing monetary feedback for faster responses (0.50d,
1d, or 2d) and were told that they would receive a
proportion of their rewards in the end of the experiment.
For further details about each condition, see Supplementary
Information.

Primary outcome measures were accuracy, RT, and
confidence rates.

Control Tasks

Two tasks were administered to control for response
conflict and are described briefly in the following (see
Supplementary Information for a detailed description).

Probabilistic selection task. The Probabilistic selection
task has been extensively described involving a training
session characterized by choice discrimination of three
pairs of stimuli followed by a test phase in which stimuli
were paired resulting in either high or LC pairing (Frank
et al, 2004) (Figure 4b).

Figure 1 Random dot motion task and behavioural outcomes. (a) Random-dot motion (RDM) task. Participants viewed a net of dots randomly moving
within a borderless circle in the center of the screen. The goal was to decide whether the net of dots appeared to be moving to the right (s) or left (k)
direction. (b) Accuracy across the coherence levels for patients with obsessive-compulsive disorder (OCD: red) or healthy volunteers (HV: blue). There
were no significant differences when analysed using logistic discrimination of coherent motion. (c) Reaction time (RT) in correctly identified trials across the
coherence levels. *RT intercept, po0.05 when analysed using Poisson regression; Open circle: mean average; solid (no cost) and dotted (cost) lines:
estimated group averages.
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Flanker task. The Flanker task (Eriksen and Eriksen,
1974; Figure 4a) was modified to enhance task difficulty.

Data Analysis

Subject characteristics and primary outcomes of the beha-
vioural tasks were analysed using w2, independent t-tests,
and mixed-measures ANOVA. The relationship between
primary outcome measures and clinical measures was
compared using the Pearson correlation.

Random Dot Motion Task

The RDMT was analysed in detail by using two different
approaches focusing on different concepts. A regression
analysis accounted for individual visual detection thresh-
olds and assessed performance across all coherence levels.
A hierarchical drift diffusion modelling analysis was used to
investigate in-depth mechanisms underlying the different
response strategies between patients and healthy controls.

Regression analyses. We conducted regression analyses
on accuracy and RT assuming coherence level represents
the available evidence for detecting motion direction. By
only analyzing correctly identified trials, log(RT) can be
interpreted as an index of the cognitive demand required
for successful recognition of the motion direction.

Accuracy. Using accuracy as the primary outcome, we
used logistic discrimination, log p� 0:5

1� p

� �
¼ BSCþBT to

model the identification of coherent motion (p) and
characterized behaviour by estimates of visual detection
threshold and sensitivity. We used a link function in which
odds ratio is characterized in relation to chance perfor-
mance so that the psychometric function has a lower bound
of 50%. Thus, visual detection threshold (�BT/BS) is the
coherence level (C) at which 75% correct identification
occurs. BS measures sensitivity to variation in coherence
level. Logistic discrimination assumes binomial distribution
of the motion direction identification outcome (p).

Reaction time. Using RT in correctly identified trials as a
primary outcome, we then used Poisson regression,
log(E(RT|C))¼BCCþB0 to model RT in successful motion
direction identification, and characterized behaviour by the
intercept and slope. The intercept (B0) represents the adjusted
response for C¼ 0 (that is, the expected RT for zero evidence
is RT0¼ exp(B0)). The negative slope parameter (BC) indicates
the steepness of the exponential decay in RT and represents
the release of cognitive demand with increasing coherence level
or increasing certainty for motion direction. This regression
assumes Poisson distribution of RT. We excluded the random
condition (C¼ 0) in the estimation of the parameters.

The generative models were fitted to the behavioural data
of each participant using Matlab 2011b Statistics Toolbox
v 7.6. Group differences were tested using t-statistics on the
parameter estimates across groups.

Hierarchical drift diffusion modelling. We also used
Hierarchical Drift Diffusion Model (HDDM) to further
explore the mechanisms underlying decisions in the RDMT

analysis. This software package (http://ski.clps.brown.edu/
hddm_docs/; Wiecki et al, 2013) allows a fast and flexible
estimation of the drift-diffusion model (the most widely used
mathematical model of two-alternative forced-choice deci-
sion-making tasks (Ratcliff and McKoon, 2008)). In this
model each choice is represented as a diffusion towards an
upper and lower decision boundary. When the accumulated
noisy evidence reaches one of these two boundaries over time,
the decision is made and the respective response initiated.

HDDM simultaneously accounts for the proportion of
correct and incorrect trials and its respective RT distribu-
tions across conditions, considering the latter a result of
underlying latent parameters of a decision-making model. It
further estimates the posterior probability density of the
diffusion model parameters, by using Markov chain Monte
Carlo simulation, generating group data, while accounting
for individual differences (for details about the model see
(Wiecki et al, 2013)). These parameter estimates include:
drift rate — the speed of the evidence accumulation process
towards either boundary or the quality of the accumulated
evidence; decision threshold — the distance between the two
boundaries or amount of evidence accumulated; and non-
decision time — perceptual encoding and motor execution.
The model also allows for a prepotent bias affecting the
starting point of the drift process relative to the two
boundaries. It then uses analytic integration of the like-
lihood function for variability in drift-rate and numerical
integration for variability in non-decision time and bias.

In this framework, we fit participants’ RT and accuracy
measures into the model. We compared drift rate and
decision threshold. We used all coherence levels in the
analysis comparing high (0.025 and 0.05), medium
(0.15 and 0.25), and low (0.45 and 0.7) levels of uncertainty.
We compared the proportion (q) of posterior distributions
that overlap between groups in the high, medium, and low
uncertainty conditions and assess if less than 5% of the
distribution overlaps (Wiecki et al, 2013). For the main
hypothesis, to account for multiple comparisons, we
assigned significance if less than 0.8% (or qo0.008) of the
distributions overlapped (Bonferroni correction).

We tested the hypothesis that OCD patients would show
a more cautious style of responding represented by a higher
decision threshold and/or a slower drift rate.

Control Tasks

Probabilistic selection task. For the training phase, we
assessed both accuracy and learning consistency. Consis-
tency was defined for individual performance in terms of
how well the actual performance reflected the performance
of an optimal learner taking into account the actual
evidence observed. The accuracy score is based on the
prior probability of the options, whereas the consistency
score is based on the posterior probability of the options.
Thus, the consistency score is a more accurate score of
performance as an index of learning. We also assessed
measures of win-stay or lose-switch. Group differences were
analysed using independent t-tests.

For the testing phase we used a mixed measures ANOVA
with Group as a between-subjects factor and Conflict as a
within-subjects factor, to assess accuracy and RT on correct
trials.
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Flanker task. In the Flanker task, the mean RT for correct
trials and accuracy were computed for each visual context
(congruent and incongruent) and each stimulus type (arrow
and letters). These measures were analysed using an
ANOVA with the following factors: group, visual context,
and stimulus type, in which the last two were specified as
repeated measures.

RESULTS

Twenty-eight OCD subjects and thirty-five HVs were asses-
sed. Table 1 summarizes the groups’ demographic and
clinical characteristics.

Random-Dot Motion Task

The data from two OCD participants were excluded as their
performance was at chance level throughout the task.

Regression Analyses

Logistic discrimination analysis showed no differences in the
visual detection threshold and sensitivity parameters between
groups (Figure 1b), meaning that accuracy and the sensitivity
to variation in the coherence level were similar across groups.
However, as predicted in our primary hypothesis, the Poisson
regression analysis showed that RT intercept, but not the slope,
differed between groups (t¼ 2.37, df¼ 59, p¼ 0.021; Figure 1c;
for secondary analysis please see Table 2). As the RT intercept
occurs at low coherence level, this result is consistent with
OCD patients being slower than HV under higher uncertainty.

The regression analysis in the Cost condition showed no
group differences (Table 2).

There was no correlation between visual detection
threshold and RT intercept (HV: p¼ 0.68; OCD: p¼ 0.33),
suggesting that visual detection threshold was unrelated to
these findings.

A positive correlation was found between the Y-BOCS
compulsive subscale scores and the visual detection thresh-
old (r¼ 0.48, p¼ 0.015) and the RT slope (r¼ 0.40,
p¼ 0.047; exploratory analysis between RDMT parameters
and Y-BOCS subscales are shown in Table 3). Thus, the

Table 1 Demographic and Clinical Characteristics of the
Participants

OCD
(n¼ 28)

HV
(n¼ 35)

Statistics

t df p

Gender (female/male) 16/12 20/15

Age 37.5 (13.5) 37.9 (14.7) 0.141 61 ns

Verbal IQ 115.4 (5.8) 118.4 (6.0) 1.705 45 ns

Y-BOCS total 24.3 (6.9) —

Obsessions 12.6 (3.8) —

Compulsions 12.1 (3.2) —

OCS — 9.88 (3.31)

OCI-R — 9.76 (8.91)

BDI 18.0 (10.1) 4.4 (4.7) � 6.498 60 o0.001

STAI-S 46.9 (12.5) 32.7 (10.4) � 4.826 59 o0.001

STAI-T 54.4 (11.7) 35.2 (10.8) � 6.581 58 o0.001

Abbreviations: BDI, Beck Depression Inventory; HV, healthy volunteers; NART,
National Adult Reading Test; OCD, patient group; STAI-S, State component of
State-Trait Anxiety Inventory; STAI-T, Trait component of State-Trait Anxiety
Inventory; Y-BOCS, Yale-Brown Obsessive Compulsive Scale (total, obsession,
and compulsion scores).
Standard deviations are in parentheses: mean (SD).
The different degrees of freedom (df) resulted from missing data in the data
set.

Table 2 Random-dot Motion Task Statistics for the Regression Analysis

Parameters OCD HV Statistics

t P

No Cost Visual detection threshold (� BT/BS) 0.22 (0.21) 0.19 (0.17) 0.583 0.56

Sensitivity (BS) 13.35 (12.19) 13.64 (11.39) � 0.095 0.92

RT intercept (RT0) 2.53 (1.07) 1.96 (0.82) 2.365 0.02

Slope (BC) � 1.61 (0.83) � 1.36 (0.60) � 1.368 0.18

Cost Visual detection threshold (� BT/BS) 0.23 (0.12) 0.21 (0.14) 0.649 0.52

Sensitivity (BS) 17.62 (39.63) 21.07 (37.13) � 0.343 0.73

RT intercept (RT0) 0.96 (0.68) 0.88 (0.43) 0.540 0.59

Slope (BC) 0.60 (0.44) � 0.69 (0.45) 0.715 0.48

Abbreviations: HV, healthy volunteers; OCD, patient group.
Standard deviations are in parentheses: mean (SD).

Table 3 Correlations Between the Parameters Estimated
with Regression Analysis of the Random-dot Motion Task
(no cost condition) and Y-BOCS Measure

Correlations: r (p-value)

Parameters Y-COMP Y-OBS

Vis. detection threshold (�BT/BS) 0.48 (0.015) 0.38 (0.06)

Sensitivity (BS) � 0.01 (0.95) � 0.15 (0.47)

RT intercept (B0) � 0.25 (0.22) � 0.02 (0.89)

Slope (BC) 0.40 (0.047) 0.18 (0.38)

Abbreviations: YOBS, Y-BOCS obsessive subscale; YCOMP, Y-BOCS
compulsive subscale.
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more severe compulsive symptoms, the higher the motion
detection thresholds and the steepness of the exponential
decay in RT. There were no other significant correlations
between the RDMT parameters and clinical measures or the
outcome measures from other tasks.

We assessed baseline reaction time using the successful RT
from coherence level¼ 0.7 to study the possible effect of
neuroleptic medication. As no significant results were found
(p¼ 0.88) between patients on and off neuroleptic medication,
we assume that this medication did not interfere in the RT.

Hierarchical Drift Diffusion Modelling

HDDM analysis showed that OCD patients had higher
decision thresholds than HV in conditions under higher
uncertainty (proportion of overlap of posterior distribu-
tions: high uncertainty: qo0.0001; medium uncertainty:
qo0.0001; low uncertainty: q¼ 0.16; Figure 2). However,
the drift rate was slower in OCD patients as compared with
HV only in low and medium uncertainty (q¼ 0.001) but not
in high uncertainty (q¼ 0.05; Bonferroni corrected
qo0.008).

There was an effect of cost on decision threshold and drift
rate. In the Cost condition, OCD subjects had similar
thresholds to HV in high uncertainty (q¼ 0.83) and
medium uncertainty (q¼ 0.86) and lower thresholds in
low uncertainty (qo0.001; Figure 3). With cost, OCD
patients continued to show slower drift rates compared with
HV in low uncertainty (qo0.0001) but not in medium and
high uncertainty (q¼ 0.21).

Confidence and Post-Feedback RT

There were no significant differences in confidence or post-
feedback RT (see Supplementary Information and Supple-
mentary Figure S1).

Control Tasks

Probabilistic selection task. In the training phase, there
were no differences between groups in the consistency
score, RT, or win-stay or lose-switch measures. In the
testing phase, there were no Group effects or Group�
Conflict effects on accuracy or RT (see Supplementary
Information). Results are shown in Figure 4b.

Flanker task. Three participants were not tested on this
task due to time constraints. Thus, the following results are
from 26 OCD participants and 34 HV. There were no Group
or Group�Visual context or Group� Stimulus type inter-
action effects on accuracy or RT (see Supplementary
Information). Results are shown in Figure 4a.

Relationship between behavioural tasks. There were no
correlations between the parameter estimates of the three
behavioural tasks.

DISCUSSION

Using a visual perceptual task, we found that compared with
HVs, OCD patients were more cautious in weighing the
alternatives before making a decision, particularly when
decisions involved higher perceptual uncertainty. Higher
compulsivity scores were associated with greater impair-
ments in evidence accumulation with higher motion
detection thresholds and slower performance. In the HDDM
analysis, OCD subjects had higher decision boundaries (that
is, they needed more evidence to make a decision),
particularly under high uncertainty. However, the HDDM
analysis also showed slower drift rate in OCD patients
particularly under low uncertainty. The drift rate is a
measure of the speed of accumulation of evidence over time
and represents the strength or quality of evidence from the
stimulus entering the decision process (Ratcliff and

Figure 2 Hierarchical drift diffusion modelling of random dot motion task: No Cost condition. Posterior density plots of the group means of the decision
thresholds and drift-rates for No Cost condition and their schematic representation (on the right). Red lines: Obsessive-compulsive disorder (OCD); blue
lines: healthy volunteers (HV); solid lines: high uncertainty (HU); Stepped lines: medium uncertainty (MU); Dashed lines: low uncertainty (LU); **overlap of
posterior distribution o0.001.
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Figure 3 Hierarchical drift diffusion modelling of random dot motion task: Cost condition. Posterior density plots of the group means of the decision
thresholds and drift-rates for Cost condition and their schematic representation (on the right). Red lines: obsessive-compulsive disorder (OCD); blue lines:
healthy volunteers (HV); solid lines: high uncertainty (HU); stepped lines: medium uncertainty (MU); dashed lines: low uncertainty (LU); **overlap of
posterior distribution o0.001.

Figure 4 Flanker task and probabilistic selection task. (a) Flanker task. Top: subjects viewed a string of arrows or letters varying in screen position. The goal
was to indicate the direction (left: arrow or S; right: arrow or M) of the central character flanked by either the same (congruent) or different (incongruent)
flankers using the left or right button. Bottom: mean response time (RT) for congruent and incongruent conditions for Obsessive compulsive disorder (OCD)
and healthy volunteers (HVs). (b) Probabilistic selection task. Top: During training, subjects learned stimulus contingencies from randomly presented stimulus
pairs from three probability configurations followed by monetary feedback for correct and incorrect choices. Correct choices were determined
probabilistically (ratio of positive/negative monetary feedback is shown in parentheses for each stimulus). In the testing phase novel combinations were
presented to assess high and low conflict decisions. This schematic illustration was adapted from Frank et al, (2007). Bottom: mean RT for low conflict (LC),
high conflict win–win (HCWW), and high conflict lose–lose (HCLL) conditions in OCD and HV. Error bars represent SEM.
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McKoon, 2008). These findings emphasize the compatibility
and added value of the behavioural and computational
model analyses. Our findings further highlight that by
emphasizing speed (in the Cost condition of the RDMT),
OCD subjects normalized their decision reaction time and
reversed the difference in decision boundaries, thus
improving evidence accumulation and speed and possibly
shifting away from a pathological internal monitoring
without compromising accuracy (as shown with the logistic
regression analysis).

Random Dots Motion Task

Several features make this low-level perceptual task an
optimal paradigm to study evidence accumulation in OCD.
First, it has been extensively investigated in primate studies
and healthy humans (Gold and Shadlen, 2007; Heekeren
et al, 2008). Second, by using neutral and nonthreatening
stimuli, decision accumulation is assessed without con-
founding OCD-relevant stimuli. Third, in studies manip-
ulating dot motion-viewing time, decision accuracy
improved as a function of motion-viewing duration (Gold
and Shadlen, 2007), contrary to other perceptual tasks in
which the two were unrelated (Uchida et al, 2006). Thus,
RDMT reaction time is representative of decision-making.
Fourth, patients with OCD have reported difficulties with
high-level perceptual tasks (Savage et al, 1999; Kim et al,
2008; Shin et al, 2013) but no differences in low-level visual
processing (RDMT) have been observed (Kim et al, 2008).
We further confirm that visual detection thresholds were
similar between groups. Finally, this task controls for
working memory by using a single stimulus presentation.
Other perceptual paradigms assessed in OCD have studied
working memory (Lambrecq et al, 2013), perceptual visual
deficits (Kim et al, 2008), and uncertainty (Rotge et al, 2008;
Toffolo et al, 2013; van den Hout et al, 2009) without specifi-
cally focusing on the degree of uncertainty or evaluating
decision formation. Many of these tasks did not control
for working memory, which may be particularly relevant
in OCD given reported impairments in working memory
(Chamberlain et al, 2007; Morein-Zamir et al, 2010) and in
memory confidence and distrust (Dar, 2004; Hermans et al,
2008; van den Hout et al, 2009). Thus, the RDMT measures
cognitive evidence accumulation without the relevant con-
founders of working memory or high-level visual perception.

Probabilistic reasoning studies in OCD have previously
shown inconsistent results (Fear and Healy, 1997; Jacobsen
et al, 2012). Perceptual decision tasks may be more
ecologically valid as many daily decisions are based on
sensory ambiguity rather than probabilistic evaluations.
Perceptual tasks have been applied to HVs with high OC
scores (a visual search task focusing on absent targets with
presumably greater uncertainty (Toffolo et al, 2013) and a
perceptual colour judgement task), showing prolonged RT
and increased indecisiveness along with greater feedback
requests (Sarig et al, 2012). Here we focused specifically on
OCD patients. Our study also controlled for possible related
explanations related to conflict monitoring, by considering
both perceptual and probabilistic types of conflict. We did
not find any group differences in the Flanker task or
probabilistic selection task or any correlations between
conflict outcome measures and the RDMT.

Speed-Accuracy Tradeoff

Here we show that by emphasizing speed over accuracy we
eliminate and indeed reverse differences in evidence accu-
mulation with no differences in accuracy between groups.
The drift rate hastens and decision boundaries decrease
across all subjects. However, although OCD subjects still
have slower drift rates under low uncertainty conditions,
they markedly improve the evidence accumulation with
lower decision boundaries compared with HVs. In other
words, although patients were still impaired in their implicit
experience of the quality of evidence and were slower to
reach the decision boundary, they required less evidence to
make a decision and did not sacrifice accuracy.

Our results contrast with a study with the Information
Sampling Task showing that OCD patients were not
sensitive to point penalty for evidence accumulation
(Chamberlain et al, 2007), which may be less salient than
monetary penalty. Our results suggest that in OCD subjects
explicit salient incentives on evidence accumulation (speed
or information sampling) may be implicitly incorporated
into and shift the internal cost-benefit signals during the
evidence accumulation process, presumably shifting away
from pathological internal monitoring. That we did not find
an influence on outcome parameters following positive or
negative feedback further emphasizes a differential role of
implicit cost and external feedback in decision formation in
OCD, possibly consistent with a reliance in OCD patients on
internal signals rather than external feedback.

The Role of Uncertainty

We demonstrated a differential influence of high and low
objective uncertainty contexts on evidence accumulation
and on the quality of evidence. Both high and low
uncertainty may be relevant in OCD; high uncertainty
may reflect situations such as exposure to biological fluids
from an ill individual and low uncertainty the compulsive
behaviour even after repeated hand washing. Both the
regression analysis and decision boundary differences
(amount of evidence accumulated) in the HDDM analysis
emphasized an effect of high uncertainty, whereas the
HDDM analysis further emphasized differences in drift rate
as a function of low uncertainty. The drift rate or speed of
evidence accumulation provides a qualitatively different
measure representing the strength or quality of evidence
from the stimulus entering the decision process. Other
studies have also shown impairments in OCD as a function
of uncertainty; using a delayed matching-to-sample task
with unrestricted choice verification, poor insight triggered
greater checking behaviours in OCD patients, which
indexed uncertainty (Jaafari et al, 2011; Rotge et al, 2008).

OCD subjects have also shown greater explicit subjective
ratings of uncertainty for low but not higher uncertainty
evidence in a probabilistic reasoning task (Stern et al, 2013).
The subjective levels of certainty assessed intermediate
levels of evidence, whereas we assessed subjective decision
confidence levels and did not show any differences. Some
(Dar, 2004; Stern et al, 2012) but not all studies (Sarig et al,
2012) have shown impairments in subjective certainty in
OCD. Patients have also been shown to be more risk averse
under low risk (defined as variance with a lower difference
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between positive and negative OCD-relevant outcomes) as
compared with high-risk situations. Although our current
study has broad similarities on the role of low uncertainty,
we focused on neutral stimuli under uncertainty (in which
probabilities are unknown) as compared with OCD-relevant
outcomes of risk (in which the probabilities are known).

Although OCD checking may be motivated by the wish to
reduce uncertainty, checking compulsions appear to have
the opposite effect, fostering doubt, greater uncertainty and
meta-memory problems (Hermans et al, 2008; van den Hout
and Kindt, 2003a,b). This paradoxical effect might be a
consequence of deficits in memory confidence, which
ironically appears to result from the checking behaviour
itself (Rotge et al, 2012; van den Hout et al, 2009). OC-like
perseveration itself has been suggested to impair memory
and perception distrust. For instance, prolonged visual
attention to stimuli provokes feelings of dissociation and
uncertainty about perception (van den Hout et al, 2008).
Thus, shifting the attentional focus may secondarily
improve perceptual uncertainty and may have therapeutic
relevance.

Behavioural and Computational Analyses

The behavioural and HDDM analyses were highly consis-
tent. The regression analysis commonly used in visual
processing studies, which conventionally focuses on suc-
cessful trials, highlighted a role for high uncertainty. This
analysis accounts for visual detection thresholds and fit
across all coherence levels for successful trials. Similarly,
HDDM, which models both successful and unsuccessful
trials, showed greater decision boundaries, which was
particularly enhanced under high uncertainty. HDDM has
the potential to characterize the mechanism underlying
these results by further estimating the latent parameters,
drift rate, and decision boundaries based on the distribu-
tions of RT for both correct and incorrect trials (Wiecki
et al, 2013). A specific effect of low uncertainty on drift rate
was shown in the HDDM analysis, which may be in part
related to the inclusion of incorrect trials in the HDDM
analysis. In OCD subjects, incorrect trials as assessed in
conflict tasks using ERP measures are associated with a
robust enhancement in error-related negativity, whereas
correct trials are associated with a weaker increase in
correct related negativity (Endrass et al, 2008). This
enhanced monitoring of incorrect responses may also be
reflected in the implicit assessment of the evidence quality,
which may be more relevant in ambiguous or low
uncertainty situations. Thus, by including all possible
outcomes in the HDDM analysis, a more comprehensive
picture may emerge relative to the behavioural analysis.

CONCLUSION

Compulsive behaviours in OCD may be an attempt to
accumulate sufficient evidence to commit to a decision and
may be influenced by the degree of uncertainty. Deep brain
stimulation targeting the subthalamic nucleus has shown an
influence on the RDMT in patients with Parkinson’s disease
(Green et al, 2013) but not on a perceptual decision task
(Djamshidian et al, 2014); further studies exploring these

differences and particularly in OCD patients may be indi-
cated. Our results highlight the differential role of implicit
incentives and external feedback in decision formation in
OCD. We show that OCD subjects are sensitive to monetary
incentives emphasizing speed in evidence accumulation,
shifting the speed-accuracy tradeoff away from the patho-
logical internal monitoring without sacrificing accu-
racy. This capacity to shift may enable new therapeutic
approaches.
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