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Activating RAS mutations are common in human tumors.  These mutations are often markers for resistance to therapy and subsequent 
poor prognosis.  So far, targeting the RAF-MEK-ERK and PI3K-AKT signaling pathways downstream of RAS is the only promising 
approach in the treatment of cancer patients harboring RAS mutations.  RAL GTPase, another downstream effector of RAS, is also 
considered as a therapeutic option for the treatment of RAS-mutant cancers.  The RAL GTPase family comprises RALA and RALB, which 
can have either divergent or similar functions in different tumor models.  Recent studies on non-small cell lung cancer (NSCLC) have 
showed that different RAS mutations selectively activate specific effector pathways.  This observation requires broader validation in 
other tumor tissue types, but if true, will provide a new approach to the treatment of RAS-mutant cancer patients by targeting specific 
downstream RAS effectors according to the type of RAS mutation.  It also suggests that RAL GTPase inhibition will be an important 
treatment strategy for tumors harboring RAS glycine to cysteine (G12C) or glycien to valine (G12V) mutations, which are commonly 
found in NSCLC and pancreatic cancer.
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RAS GTPase overview
RAS is the most extensively studied GTPase[1].  It is known to 
regulate various cellular functions, including proliferation, 
survival, growth, migration, differentiation and cytoskeletal 
dynamics[2–4] (Figure 1).  Not coincidentally, increased activi-
ties of all of these processes are required by tumor cells to 
promote tumor growth.  Activating oncogenic RAS mutations 
lead to treatment resistance in various tumor models and poor 
patient outcomes[3, 5–9].  Three human RAS genes have been 
identified: HRAS, KRAS, and NRAS[1, 2].  These encode the 
related proteins HRAS, KRAS and NRAS, respectively, of 189 
amino acids in length[1, 4].  KRAS exists as two isoforms, 4A 
and 4B, which are generated by alternative exon splicing[10].  
These different RAS genes are well known to have differential 
cellular specificities and intrinsic transforming potentials[3, 4, 10].

In normal cells, RAS proteins act as molecular switches 
for critical cellular functions.  RAS proteins are activated 
by upstream receptors such as receptor tyrosine kinases 
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Figure 1.  RAS GTPase activation and downstream signaling.  The cartoon 
shows the mechanism of RAS GTPase activation by upstream stimuli 
and numerous downstream effectors stimulated by activated RAS.  RAS 
regulates critical cellular functions through these effectors.  Constitutive 
RAS activation due to mutations leads to protumorigenic signaling through 
these effectors.
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(RTKs), G-protein coupled receptors (GPCRs) and serpen-
tine and cytokine receptors[1, 4, 11].  RAS protein activity is 
tightly regulated by Guanine Nucleotide Exchange Factors 
(GEFs) and GTPase Activating Proteins (GAPs).  Constitu-
tive activation of the RAS protein, in which RAS is unable to 
hydrolyze GTP, leads to cancer and other diseases[1, 9, 12].  Acti-
vating RAS mutations have been observed in 30% of human 
tumors[2, 13]; KRAS is the most commonly mutated isoform, 
mutated in 25%–30% of human cancers[3, 13].  KRAS mutations 
are dominant in colorectal cancer (40%–45%), non-small cell 
lung cancer (NSCLC) (15%–40%) and pancreatic carcinoma 
(69%–95%)[2, 3] and are associated with poor patient outcomes 
and treatment responses in these malignancies[2, 3].  NRAS and 
HRAS mutations are less common (8% and 3% of all tumors, 
respectively)[2, 13], with melanoma harboring the most NRAS 
mutations at 20%–30%[2, 13].

Activating mutations occur at codons 12, 13, and 61, which 
are within the GTPase catalytic domain, in all three RAS iso-
forms[14].  Approximately 80% of KRAS mutations are found 
in codon 12, whereas approximately 60% of NRAS mutations 
are found in codon 61, with 35% in codon 12[2, 14].  HRAS muta-
tions are equally divided between codons 12 and 61[2, 14].  All 
of these activating mutations inhibit RAS GTPase activity by 
preventing GAP-stimulated GTP hydrolysis of GTP-bound 
activated RAS.

Approximately 20 downstream effectors bind to RAS-GTP 
and trigger signaling.  RAS drives tumor growth via a number 
of prominent pathways, including the following: RAF-MEK-
ERK[15, 16]; p110 catalytic subunits (p110α, β, γ, and δ) of class I 
PI3K; TIAM1, a small RAC GTPase-specific GEF; RAL-specific 
GEFs (RALGDS, RGL, RGL2, and RGL3); and phospholipase 
C epsilon[1, 2, 16].  

RAS mutation and cancer therapeutics
Devising an effective treatment strategy for patients with RAS 
mutations has been a major challenge[2, 17].  However, recent 
attempts have been promising[17, 18].  RNA interference is an 
interesting approach but has many technical hurdles, includ-
ing the lack of an efficient delivery system, poor uptake and 
low gene silencing efficiency[2].  The inhibition of RAS mem-
brane localization via the inhibition of RAS farnesylation has 
been investigated, but this approach has failed to materialize 
into a therapeutic strategy due to several limitations, including 
toxicity, and mainly the appearance of a compensatory mecha-
nism via geranylgeranylation[2, 8, 19].

So far, the only approach that has shown promise in treat-
ing cancer patients with RAS mutations is the targeting of its 
downstream signaling cascades such as RAF-MEK-ERK and 
PI3K-AKT[2, 8, 16, 19].  Targeting these two pathways either sepa-
rately or together is beneficial in preventing in vitro and in vivo 
progression of tumors harboring a RAS mutation[2].  Currently, 
clinical trials are being conducted to study the therapeutic 
effects of MEK and PI3K inhibitors in cancer patients harbor-
ing RAS mutations[2].  However, a wrinkle in this approach 
has appeared.  Recent studies have shown that different KRAS 
mutations preferentially activate different downstream sig-

naling pathways.  For example, mutant KRAS with either a 
glycine to cysteine (G12C) or glycine to valine (G12V) muta-
tion at codon 12 preferentially binds to RAL guanine nucleo-
tide dissociation stimulator (RALGDS), a RAL GTPase-specific 
GEF, whereas KRAS harboring a glycine to aspartate mutation 
at codon 12 (G12D) has higher affinity for phosphatidylino-
sitol 3-kinase (PI3K)[20].  These recent studies have brought to 
light the need to clarify the impact of such KRAS mutations on 
the RAL GTPase signaling pathway.  

The RAL GTPase family and effectors
RAL GTPase falls under the RAS family of GTPases.  RAL 
shares a high degree of sequence similarity with the three RAS 
genes, hence the name RAL (RAS-like)[1].  The RAL GTPase 
sub-family comprises the two isoforms RALA and RALB, 
which share high sequence homology[21].  Approximately 85% 
of the amino acid sequences of these two isoforms are identi-
cal[21].  RAL GTPase can be activated by six GEFs (RALGEFs), 
RALGDS, RGL, RGL2/Rlf, RGL3, RALGPS1, and RALGPS2, 
and inactivated by two GAPs, RALGAP1, and RALGAP2[22, 23].  
Four RALGEFs (RALGDS, RGL, RGL2, and RGL3) are known 
to directly interact with the effector binding region of GTP-
bound RAS and are thus important for RAS-mediated tumori-
genesis[22].  RALGEFs and RAL play a dominant role in the 
RAS-mediated transformation of several different immor-
talized human cell lines, as well as in a RAS-driven tumor 
model[24, 25].  

RAL proteins mediate various cellular activities, including 
filopodia formation/membrane ruffling, glycolysis, autoph-
agy, secretion, the maintenance of polarity, apoptosis and 
transcription[21, 26] (Figure 2).  Alterations to these activities can 
lead to tumor invasion, metastasis, altered cellular energy lev-
els, proliferative signaling and resistance to cell death.  These 
activities are mediated by effectors that interact with activated 
(GTP-bound) RAL[22].  Of all the RAL effectors, the most exten-
sively studied are RALBP1 and the members of the exocyst 
complex Sec5 and Exo84[26].  Other RAL effectors include Fila-
min, PLD1 and ZONAB[26].  

RALBP1 has GAP activity for RAC/CDC42 proteins.  In 
this way, RALBP1 is important for actin dynamics, filopodia 
formation and membrane ruffling[1, 26, 27], thereby contributing 
to cancer cell adhesion, invasion and migration.  RALBP1 is 
critical for the migration of bladder and prostate cancer cells, 
which is partly independent of its interaction with RAL[28].  
RALBP1 is also important for endocytosis, including receptor-
mediated endocytosis of proteins such as epidermal growth 
factor receptor, insulin receptor and transferrin receptor, 
through its interactions with POB1, Reps1 and AP2[29–31].  The 
involvement of RALBP1 in receptor endocytosis points to the 
prominence of RAL in signal transduction by these receptors, 
which regulate various cellular processes such as survival 
and proliferation[32, 33].  RALBP1 has also been identified as a 
non-ABC transporter that causes resistance to chemothera-
peutic drugs[34].  RALBP1 is known to cause resistance to 
anthracycline derivatives such as doxorubicin and glutathione 
conjugates by increasing their efflux from cells in an ATP-
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dependent manner[34–36].  This transporter activity of RALBP1 
helps to protect cancer cells from cytotoxic drugs and cel-
lular stress[34].  RALBP1 also induces mitochondrial fission 
by promoting the phosphorylation of the GTPase DRP1 by 
CyclinB/CDK1 and facilitating the recruitment of DRP1 to 
mitochondrial membranes[37].  The absence of RALA-depen-
dent RALBP1 activation leads to the improper segregation of 
mitochondria to daughter cells during cell division, result-
ing in improper cellular metabolic activity, including cellular 
ATP production, which assists cell growth[37].  RALBP1 is also 
known to promote invadopodia formation upon activation 
by RALB[38].  This RALBP1-dependent invadopodia formation 
is essential for RALB-mediated cell invasion and migration.  
RALBP1 ATPase function is required for invadopodia forma-
tion[38].  

Sec5 and Exo84 are members of the exocyst complex and 
are responsible for targeting various secretory vesicles to spe-
cific regions of the cellular membrane[39, 40].  This regulation of 
vesicular trafficking controls various complex cellular func-
tions such as polarized membrane formation, cytokinesis, tight 
junction formation, and tumor cell invasion[41-44].  RALB also 
interacts with Sec5 to activate the IκB kinase TBK1[21, 45].  Upon 
chronic RALB activation, the RALB/Sec5 effector complex, 
through TBK1, promotes cancer cell survival and RALB-medi-
ated protection from apoptosis[45].  A separate RALB/Exo84 
complex activates autophagosome assembly under starvation 
conditions via ULK1 and Beclin1-VPS34[21, 46].  Thus, RALB can 
act as a nutrient sensor by promoting autophagosome forma-
tion upon nutrient deprivation[46].  The RALB/Exo84 complex 
is able to maintain the balance between cellular growth and 

maintenance based on nutrient availability through autopha-
gocytosis[46].  On the other hand, the RALA/Exo84 complex is 
known to regulate the morphology and polarized migration of 
neuronal progenitor cells.  Loss of the RALA/Exo84 interac-
tion hampers polarity in postnatal migratory neuroblasts and 
embryonic neurons[47].  Thus, RALA/Exo84 can promote cel-
lular migration by altering cell polarization[47].  

RAL also interacts with ZONAB to regulate cellular tran-
scription, which gives rise to cellular proliferative signaling[48].  
Upon its activation by RAS, RALA is known to complex with 
ZONAB and inhibit its transcription-repressing activity, 
thereby promoting the transcription of genes required for cel-
lular proliferation and tumorigenesis[48].  RALA is known to 
bind Filamin to regulate actin cross-linking, which ultimately 
results in membrane ruffling and filopodia formation[49].  
RALA is required for CDC42-mediated filopodia formation 
with the help of Filamin, which aids in cell invasion, adhesion 
and migration[49].  PLD1 is another important effector of RAL 
GTPase; PLD1 plays a role in membrane trafficking and as a 
signaling molecule[50].  PLD1 is responsible for RALA-medi-
ated mTOR pathway activation[51].  RALA acts as a nutrient 
sensor and promotes protumorigenic signaling through mTOR 
with the help of PLD1.

RAL in cancer
Even though RALA and RALB have significant amino acid 
sequence homology, they also have some different cellular 
functions.  RALA is important for tumor growth, whereas 
RALB is important for tumor metastasis and invasion[21, 25, 52–54].  
However, it has also been reported a number of times that 

Figure 2.  RAL effectors and their functions.  Upon activation, RAL GTPase regulates numerous biological processes through its effectors.  Abnormal 
regulation of these biological processes by activated RAL leads to protumorigenic biological outcomes.  The various dotted lines show the cellular 
processes regulated by each RAL effector and the corresponding biological outcomes.
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both isoforms also have redundant functions in cancer[24, 54, 55].  
Increased expression and activation of the RAL isoforms are 
observed in various tumor types compared with normal tis-
sues, as well as in high-stage and high-grade tumors, signify-
ing their importance in tumorigenesis[55–59].  In most cancer 
models, RALA has been established as the dominant RAL 
isoform and the main driver of tumor progression and metas-
tasis.  

In melanoma and non-small cell lung cancer (NSCLC), 
RALA and RALB seem to have redundant effects on tumor 
growth[24, 55, 59, 60].  In melanoma, RALA is the dominant iso-
form regulating tumor growth[59].  However, the RAL effectors 
responsible for melanoma tumor growth have not been stud-
ied[59].  Male et al  showed that RALA is important for in vitro 
and in vivo growth and invasion of NSCLC cells using only the 
A549 cell line as a model[60].  The role of RALB in growth and 
invasion of the A549 NSCLC cell line was not investigated in 
this study[60].  RALBP1 was established as the primary RALA 
effector in A549 cells[60].  Our lab used a panel of 14 NSCLC 
cell lines and showed that RALA and RALB had redundant 
functions in NSCLC tumor growth and that RALBP1 is the pri-
mary effector driving this phenotype[55].  Our lab further devel-
oped the first known RAL inhibitors and showed that these 
small molecule drugs inhibited the growth of NSCLC cell lines 
in vitro and in vivo by limiting the binding of RALBP1 to both 
RALA and RALB[61].  In pancreatic cancer, RALA is important 
for tumor growth, whereas RALA and RALB are both required 
for invasion[54].  The RALBP1-RAL interaction was attributed 
to pancreatic tumor growth and invasion[54].  Phosphoryla-
tion of RALA at S194 by Aurora-A has been shown to induce 
pancreatic cancer growth[62].  This study showed that RALA 
phosphorylation assists in the RALA-RALBP1 interaction and 
that this interaction drives pancreatic tumor growth[62].  RALA 
and RALB have also been shown to provide protection against 
ionizing radiation via the effectors RALBP1 and Sec5 in pan-
creatic cancer cell lines[63].  

Both RAL isoforms have important functions in the growth 
and metastasis of bladder cancer[28, 64, 65].  RALA is important 
for the progression of hepatocellular carcinoma, colorectal 
cancer, chronic myeloid leukemia, squamous cell carcinoma 
of the skin and nerve sheath tumors[57, 66–69].  RALA is also pro-
migratory, assisting in the metastasis of prostate cancer to 
bone and aiding in the invasion of squamous cell carcinoma 
of the skin and renal cancers[28, 68, 70, 71].  RALB, however, is 
important for the invasion and migration of bladder cancer, 
oral squamous cell carcinoma, B cells and multiple myeloma 
cells[53, 72, 73].  RALBP1 has been identified as the main RAL 
effector in the majority of these tumors.  RAL-driven colorec-
tal cancer growth has been attributed to RALBP1, Sec5, and 
Exo84[66].  Sec5 and Exo84 have been identified as important 
RAL effectors in squamous cell carcinoma of the skin[68].  The 
phosphorylation of RALB at S198 by protein kinase C (PKC) is 
an important driver of bladder cancer growth and metastasis 
via promotion of the RALB-RALBP1 interaction[65].  A tran-
scriptional signature was recently developed to report cellular 
RAL activity levels [74].  This RAL signature was predictive 

of cancer patient outcomes, indicating for the first time that 
the genes and pathways regulated by RAL are important for 
tumor formation and progression in cancer patients [74].  

Dependency of RAL activity on RAS mutation
Recent studies on NSCLC patient samples showed that 
patients carrying a glycine to cysteine (G12C) or a glycine to 
valine (G12V) amino acid mutation at codon 12 of KRAS have 
worse outcomes compared with patients carrying other KRAS 
mutations or wildtype KRAS[20].  Interestingly, it was observed 
that NSCLC cell lines carrying the KRAS G12C or G12V muta-
tion have higher RAL GTPase activities and lower PI3K/
AKT or RAF-MEK-ERK pathway activation compared with 
cell lines carrying other KRAS mutations (Figure 3) or wild-
type KRAS[20].  It is known that KRAS homodimer formation 
is important for RAL GTPase activation via RALGDS binding 
to KRAS[75].  Ihle et al used extensive molecular modeling to 
show that in case of the KRAS G12C mutation, the smaller 
cysteine residue allows for KRAS homodimer formation, 
RALGDS binding and subsequent RAL activation[20].  Another 
common KRAS mutation at codon 12, the glycine to aspar-
tate (G12D) mutation, was shown to predominantly activate 
the PI3K/AKT pathway[20] (Figure 3).  Aspartate is a bulkier 
amino acid than glycine, G12D mutation prevents KRAS 
homodimer formation via steric hindrance; thus, RAL activa-
tion is prevented[20].  Since KRAS directly binds to PI3K, this 
pathway can be activated irrespective of KRAS dimer forma-
tion[20].  Thus, different KRAS mutations help select for differ-
ent downstream signaling pathways based on the properties 
of the oncogenic amino acid.

Another study on a large group of Korean NSCLC patients 
showed that KRAS mutations are less common in this patient 
population compared with patients from Western countries[76].  
This observation is consistent with other studies showing that 
the frequencies of KRAS mutations vary with ethnicity[77–80].  
G12D was the most frequent KRAS transition mutation found 

Figure 3.  RAS mutations and activated pathways.  Specific RAS mutations 
are known to activate specific downstream signaling pathways in non-
small cell lung cancers.  
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in the Korean patient population; this is consistent with other 
studies conducted on Asian NSCLC patients[76].  The study 
on the Korean patients also showed high RALA membrane 
expression in 80% of the patient samples and high RALB mem-
brane and cytoplasmic expression in 57% of the samples from 
patients carrying a KRAS mutation[76].  Since RAL membrane 
expression is associated with RAL activity, we can speculate 
that patients with KRAS mutations have high RAL activity[55].  
The authors showed that there was no difference in RAL 
expression between patients harboring KRAS transition muta-
tions, including G12D, compared to patients carrying KRAS 
transversion mutations such as G12C and G12V[76].  Similarly, 
AKT was also not differentially expressed between patients 
carrying KRAS transition and transversion mutations[76].  This 
study suggests that although different downstream pathways 
may be activated by specific KRAS mutations, the expression 
of these downstream signaling molecules may not change as a 
function of these specific KRAS mutations.  

Using in vitro and in vivo functional assays, our lab estab-
lished that both RAL isoforms are required for the growth of 
NSCLC cells carrying the KRAS G12C mutation compared 
with cells carrying other KRAS mutations and wild-type 
KRAS[55].  We used a gene knockdown approach on multiple 
NSCLC cell lines that carry either wild-type KRAS or different 
KRAS mutations at codon 12[55].  We showed that the loss of 
RALA and RALB massively inhibited anchorage-dependent 
and anchorage-independent growth of NSCLC cell lines carry-
ing the KRAS G12C mutation[55].  The loss of RALA and RALB 
also inhibited in vivo tumor growth with the NSCLC cell line 
H2122, which carries the G12C mutation[55].  NSCLC cell lines 
that are wild-type for KRAS or that carry other mutations 
showed moderate to no inhibition in anchorage-dependent 
and anchorage-independent growth assays upon the loss of 
the RAL GTPases[55].  Our study also showed that overexpres-
sion of the KRAS G12C mutant in the KRAS-wild-type cell 
line H2228 increased the activation of RAL and the depen-
dency of the cells on RAL GTPases for anchorage-independent 
growth[55].  Thus, we used detailed functional analysis to vali-
date that the KRAS G12C mutation indeed drives tumorigene-
sis, predominantly via RAL GTPases.  In non-smoking NSCLC 
patients, the probability of having a G12C or G12V KRAS 
mutation at codon 12 is 9% or 28%, respectively, whereas in 
smokers, this probability is 47% or 24%, respectively[20, 81].  
Since KRAS G12C and G12V are the most common RAS muta-
tions found in NSCLC, these studies point to the importance 
of RAL in driving tumor growth downstream of KRAS in 
NSCLC.  

KRAS mutations are also frequently found in pancreatic and 
colorectal cancers.  Approximately 90% of pancreatic cancer 
patients have a KRAS mutation at codon 12, with glycine to 
valine, aspartate or arginine (G to V, D, or A) mutations being 
the most frequent[3, 13].  In pancreatic cancers, RAL GTPase was 
shown to be required for in vivo metastatic growth of tumors 
driven by the KRAS G12V mutation[54], pointing to the depen-
dency of these cancers that carry this specific KRAS mutations 
on the RAL pathway.  KRAS mutations at codon 12, predomi-

nantly glycine to aspartate or valine (G to D or V) mutations, 
are also frequent in colorectal cancers[13].  However, the role of 
RAL in colorectal cancer with respect to different KRAS muta-
tions is unclear[66].  Higher RAL GTPase activation was also 
observed in bladder cancer cell lines carrying the G12V HRAS 
mutation compared with cell lines that either are wild-type for 
RAS or carry other RAS mutations[56].  Bladder cancers have 
a low to medium RAS mutation frequency, but 60% of the 
total RAS (either KRAS or HRAS) mutations present are G12V 
mutations, pointing to a potential dependence on the RAL 
signaling pathway in the majority of RAS-mutant tumors[13].  
Based on the currently available information in NSCLC, the 
dependency of pancreatic, colorectal and bladder tumors car-
rying specific RAS mutations on RAL or other downstream 
pathways requires investigation.  

Conclusion
Drugs against the PI3K/AKT and RAF-MEK-ERK pathways 
are used for the treatment of patients carrying RAS mutations.  
RAL GTPase has not been explored as a treatment target for 
cancer patients harboring RAS mutations.  The only reason for 
this is the lack of RAL GTPase inhibitors.  The recent discov-
ery that different RAS mutations specifically activate different 
downstream signaling pathways stresses the need for person-
alized treatment strategies for patients that are stratified based 
on their RAS mutation status.  These recent findings denote 
that RAL GTPase is a potential drug target for the treatment of 
cancer patients carrying specific RAS mutations.  For example, 
we expect that NSCLC patients carrying KRAS G12C or G12V 
mutations would respond to treatment with a RAL inhibitor, 
whereas patients carrying KRAS G12D mutations should be 
treated with a PI3K inhibitor.  This recent observation, pre-
dominantly made in NSCLC, also calls for a comprehensive 
investigation in other tumor types to validate that specific 
RAS mutations drive specific signaling pathways.  We expect 
that targeted therapy against RAL GTPase will be vital in the 
treatment of cancer patients because KRAS G12C and G12V 
mutations are abundant in NSCLC as well as colorectal and 
pancreatic cancers.

Abbreviations
NSCLC, non-small cell lung cancer; GEF, guanine nucleotide 
exchange factor; GAP, GTPase-activating proteins; RTK, recep-
tor tyrosine kinase; PI3K, phosphatidylinositol 3-kinase.
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