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Class IIa histone deacetylases (HDACs4, -5, -7, and -9)
modulate the physiology of the human cardiovascular,
musculoskeletal, nervous, and immune systems. The reg-
ulatory capacity of this family of enzymes stems from their
ability to shuttle between nuclear and cytoplasmic com-
partments in response to signal-driven post-translational
modification. Here, we review the current knowledge of
modifications that control spatial and temporal histone
deacetylase functions by regulating subcellular localization,
transcriptional functions, and cell cycle-dependent activity,
ultimately impacting on human disease. We discuss the
contribution of these modifications to cardiac and vascular
hypertrophy, myoblast differentiation, neuronal cell survival,
and neurodegenerative disorders. Molecular & Cellular
Proteomics 14: 10.1074/mcp.O114.046565, 456–470, 2015.

The enzymatic addition of acetyl moieties to lysine residues
and the removal of these modifications via deacetylation were
first documented over forty years ago (1, 2). As histones were
the first substrates shown to be modified by acetylation (2),
the enzymes responsible for adding and removing acetyla-
tions are commonly known as histone acetyltransferases and
histone deacetylases (HDACs)1, respectively. HDACs have
been shown to regulate a multitude of cellular processes,
including cell cycle progression, differentiation, and apoptosis
(3–5). In particular, HDACs have been intensively studied for
their abilities to control gene transcription and to manipulate
the epigenetic status of cells (6). HDACs are generally thought

to promote transcriptional repression and gene silencing (7–
9); however, nonhistone proteins are also targeted by these
enzymes, and include cell receptors, chaperones, and cyto-
skeletal proteins (10). To date, 18 human HDACs have been
identified and categorized into four classes based on homol-
ogy to yeast deacetylases (11). Class I (HDAC1, -2, -3, and -8)
are related to Rpd3, class IIa (HDAC4, -5, -7, and -9) and class
IIb (HDAC6 and 10) are similar to Hda1, and class IV
(HDAC11) has homology to both Rpd3 and Hda1 (11). These
HDAC classes are zinc-dependent enzymes, in contrast to
class III HDACs, commonly known as sirtuins (SIRT1–7),
which require the cofactor NAD� for activity (12, 13).

In recent years, the class IIa HDACs have been established
as critical regulators of numerous cellular processes (14, 15),
with misregulation being associated with a wide range of
human diseases. Roles for class IIa HDACs have been re-
ported in the development of cardiovascular disease (16),
cancer (17), immune response to viral infection (18), epige-
netic response to drug stimulus (19), diabetes (20), and neu-
rodegenerative diseases, such as Huntington’s disease (21).
Intriguingly, class IIa HDACs have been shown to limit intrinsic
enzymatic activity. Their repressive activity is proposed to
depend largely on their association with class I enzymes, in
particular HDAC3, and on their ability to repress transcription
factors in a deacetylation-independent manner. Structurally,
the limited activity of class IIa HDACs is the result of an amino
acid substitution (His) at the catalytic Tyr present in the DAC
domains of other eukaryotic and prokaryotic deacetylases.
Indeed, His-to-Tyr mutation of HDAC4 resulted in elevated
(1000�) enzymatic activity compared with wild type (22). Ad-
ditionally, the identification of a zinc binding region, contain-
ing a CCHC motif, within class IIa HDACs suggests the pos-
sibility that this and other regions could be important for
substrate recognition, binding, and regulation of HDAC cata-
lytic activity because of proximity to the active site (23). How-
ever, in contrast to the better understanding of class I HDAC
regulation and functions (24), the mechanisms governing
class IIa HDAC functions in health and disease states still
remain less well understood.

It has recently become increasingly clear that class IIa
HDAC functions are significantly regulated by post-transla-
tional modifications (PTMs), including phosphorylations,
acetylations, sumoylations, and ubiquitinations (25). PTMs
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provide important dynamic points of regulation for determin-
ing protein structure, protein interactions, and protein local-
izations, and additionally, in the case of HDACs, their tran-
scriptional repressive functions (26–28). Given the recent
expansion in the knowledge of numerous PTMs on class IIa
HDACs, an ongoing challenge is to collate this meaningful
information and identify key residues that elicit precise phys-
iological functions. This review will first construct a compre-
hensive map of site-specific class IIa HDAC PTMs and the
enzymes that regulate them. The functional significance of
individual PTMs will then be discussed relative to their intra-
cellular roles and their contributions to disease progression.

Site-specific Post-translational Modifications of Class IIa
HDACs—Diversification of the human proteome can be
achieved at the post-transcriptional level through mRNA
splicing (29) and post-translational modification of polypep-
tides (30). A protein can be “decorated” with such chemical
modifications that alter its activity and functions. For class IIa
HDACs, the functions of these specific PTMs are critically
associated with their location within the protein domains.
HDAC4, -5, -7, and -9 possess a definitive bipartite structure
(31). The C terminus contains a conserved deacetylase do-
main and a hydrophobic nuclear export sequence (NES),
which promotes cytoplasmic accumulation (32) (Fig. 1). The
N-terminal region, or adaptor domain, contains a lysine/argi-
nine-rich nuclear localization sequence (NLS) and binding
sites for transcription factors, such as the myocyte enhancer
factor-2 (MEF2) (33, 34), and chaperone proteins (35–37).
These domains serve as platforms for the formation of higher
order protein complexes, such as by interactions with the
C-terminal-binding protein and heterochromatin P1, through
which HDACs perform specific enzymatic and functional ac-
tivities (31). HDAC association with chaperone proteins en-
ables their nuclear export and relieves repression of HDAC
target genes (35–37) (discussed in “PTMs Regulate HDAC
Subcellular Localization and Orchestrate Transcription”). This
section will review the current knowledge of site-specific
modifications, as integrated from comprehensive literature
searches and from multiple databases, highlighting their func-
tional relevance and regulation by distinct enzymes (Fig. 1).

HDAC4—HDAC4 is the most well-characterized member of
the class IIa family in terms of the number of identified PTMs,
which include phosphorylation, acetylation, sumoylation, and
disulfide bond formation (Fig. 1A). Furthermore, many of the
enzymes regulating these modifications have been character-
ized. The numerous phosphorylations on HDAC4 provide a
platform for finely tuned control of protein functions, as each
modification can exert a function as a single signal, or can act
in tandem with other modifications (supplemental Table S1).

FIG. 1. Numerous signaling pathways converge to post-trans-
lationally modify class IIa HDACs. Class IIa HDACs are modified by
phosphorylation, sumoylation, disulfide bridges, acetylation, ubiquiti-
nylation, and are cleaved by caspases. Sites with enzymes assigned
to their modification are shown at the top of each protein schematic;
uncharacterized sites are shown at the bottom. Functional domains of

class IIa HDACs are highlighted: MEF, MEF2 binding domain; NLS,
nuclear localization signal; DAC, deacetylation domain; NES, nuclear
export sequence. A, HDAC4, B, HDAC5, C, HDAC7, D, HDAC9.
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Phosphorylations at S246, S467, and S632 initiate binding of
14-3-3 chaperone proteins that promote shuttling of HDAC4
to the cytoplasm (35, 37). As HDAC localization is tightly
connected to transcriptional regulatory function, loss of phos-
phorylation enhances MEF2 expression by spatially excluding
HDAC4 from the nucleus rather than by limiting its intrinsic
enzymatic activity (35, 37).

Several isoforms of the calcium/calmodulin-dependent ki-
nase (CaMK) family phosphorylate HDAC4 (38–46) and reg-
ulate its ability to repress target genes in the nucleus (supple-
mental Table S1), suggesting a high degree of regulatory
specificity with respect to individual sites. CaMKI preferen-
tially phosphorylates S246 on HDAC4, having only limited
activity toward S467 and S632 (40). The major regulatory
kinase of S467 is CaMKII, which is also able to efficiently
phosphorylate S632 (40) (Fig. 1A). S467 and S632 are also
known to be phosphorylated by CaMKIV and can promote
nuclear export by a mechanism independent of 14–3-3 bind-
ing (39). CaMKII�B is also known to preferentially target S210
in cardiac cells (41), and this modification is associated with
heart disease (see “The Post-translational Regulation of
HDACs is Critically Linked to Human Disease”).

Apart from the CaMK superfamily, a diverse set of enzymes
is involved in regulating HDAC4 modifications. Although the
regulation of some sites remains unknown, the S265 and
S266 NLS sites were shown to be phosphorylated by Aurora
B and Mirk/dyrk1B, respectively (47, 48). S298 and S302
phosphorylation status are both under the control of the
glycogen synthase kinase 3� (GSK3�), and the phospho-
mimetic S298D mutation promotes polyubiquitination of
HDAC4, suggesting a link between phosphorylation and
ubiquitin PTMs (49). The proteins and pathways involved in
the dephosphorylation of HDAC4 have also been investi-
gated. Several studies have shown that the protein phos-
phatase 2A (PP2A) family can remove HDAC4 phosphoryl-
ation, promoting its nuclear accumulation (50–53).

Additional PTMs modulate the subcellular localization of
HDAC4 independently of its phosphorylation status. Hyper-
trophic stimuli promote the oxidation of C667 and C669 and
the formation of a disulfide bond that signals HDAC4 nuclear
export (54). Conversely, sumoylation of HDAC4 by the E3
ligase RanBP2, which covalently attaches SUMO-1 to HDAC4
at K559, promotes nuclear retention (55). Caspase-mediated
cleavage can also enhance HDAC4 nuclear accumulation.
caspase 2- and caspase 3-dependent cleavage of HDAC4 at
D289 generates an NLS-containing protein fragment that re-
presses transcription factors and activates apoptotic path-
ways (56). HDAC4 cleavage is also linked to protein kinase A
(PKA)-mediated processing that leads to the repression of
MEF2 activity (57). Cleavage occurs between T201 and W202
to release a �28 kDa N-terminal fragment; however, as no
PKA phosphorylation sites were determined for HDAC4, the
association between PKA, HDAC4, and the protease requires
further investigation (57).

HDAC5—Although numerous HDAC5 PTMs have been
identified in recent years, fewer of these modifications have
been functionally characterized. Those that have been inves-
tigated are clustered within and around the NLS (Fig. 1B, top).
However, proteomic investigation of HDAC5 has also re-
vealed extensive PTMs throughout the protein sequence, in-
cluding within the DAC and NES domains (28) (Fig. 1B, bot-
tom). Through a mechanism conserved across all class IIa
HDACs, critical HDAC5 residues (S259 and S498) promote
14–3-3 chaperone protein binding (27, 36) and nuclear export
upon phosphorylation by CaMK-I, -II, and -IV (27, 43, 58, 59).
Distinct from analogous HDAC4 sites, these key residues are
known to be phosphorylated by additional kinases (Fig. 1B,
supplemental Table S1). Regulation of HDAC5 by protein
kinase D (PKD) and its various isoforms has been widely
reported (e.g. (60–65)). PKD also phosphorylates S660, an
additional 14–3-3 binding site (66). PKC, an upstream regu-
lator of PKD, can also phosphorylate S259 directly (67),
whereas PKA can modify S498 (66). PKC-related kinases 1
and 2 (PRK1 and PRK2) also target T292 (68), highlighting the
PKC signaling pathway as an important determinant of
HDAC5 phosphorylation status. Other enzymes that target
both S259 and S498 are AMP-activated protein kinase (69,
70), G protein-coupled receptor kinase-5 (GRK5) (71),
whereas salt-inducible kinase 1 (SIK1) phosphorylates only
S259 (72).

Recent investigation of phosphorylations within the NLS
has uncovered new regulatory features of HDAC5. S279
phosphorylation has been shown to be critical for the nuclear
HDAC5 localization (28) (discussed in “PTMs Regulate HDAC
Subcellular Localization and Orchestrate Transcription”) (sup-
plemental Table S1). Mirk/dyrk1B (48), PKA (73), and Cdk5
(74) have all been shown to phosphorylate S279, whereas
PP2A has been reported to dephosphorylate it (74). Interest-
ingly, the phosphorylation of the immediately adjacent NLS
serine residue, S278, was shown to have a distinct spatial and
temporal regulation, being controlled by Aurora B in a cell
cycle-dependent manner (47). NLS phosphorylation by Aurora
B is conserved in both HDAC4 and HDAC9.

HDAC7—Readers should note that HDAC7 amino acid
numbering has changed considerably over the years as se-
quence information has been updated. To limit ambiguities,
the sites we discuss are consistent with those reported in the
PhosphoSitePlus database (Fig. 1C); please note that in some
studies sites 179, 344, and 479 correspond to 155, 358, and
486 (supplemental Table S1). Similar to other class IIa HDACs,
phosphorylation regulates the interaction between HDAC7
and chaperone proteins and protein stability (75). The HDAC7
residues critical for these processes are S181, S155, S358,
and S486 (76). The latter three sites can be modified by
CaMKI (77, 78), whereas PKD can phosphorylate all four
residues (76, 79–83). In addition, hPar-1 kinases EMK and
C-TAK1 phosphorylate S155 (84), and PRK1 targets S185
(68). The modification of individual sites by multiple distinct
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kinases demonstrates that phosphorylation is a finely tuned
system for regulation of HDAC function. Furthermore, the
ability of a diverse set of kinases to regulate the same sites
may reflect an evolutionary flexibility that allows differential
modulation of critical functional sites. Interestingly, dephos-
phorylation of the four 14–3-3 binding sites in HDAC7 is
mediated by PP2A, which shows no preference for one site
over the others (85). Although the precise sites of action
remain unknown, protein phosphatase 1� and myosin phos-
phatase targeting subunit 1 promote nuclear accumulation of
HDAC7 (86). Like HDAC4, the stability of HDAC7 can be
mediated though caspase-dependent cleavage. Caspase-8
cleaves HDAC7 at D412 (87), generating an unstable N-ter-
minal fragment that resides in the nucleus and a C-terminal
fragment that is excluded from the nucleus (88).

HDAC9—HDAC9 remains the least well-characterized
class IIa HDAC in terms of known PTMs and modifying en-
zymes (Fig. 1D). Information about HDAC9 has been derived
based on its high degree of homology to the other class IIa
family members. Prior to the cloning of HDAC9 (89), an iso-
form lacking the DAC domain and consisting of residues
sharing homology with HDAC4 and HDAC5 was identified and
named MEF2-interacting transcription repressor (MITR) (34).
The sites regulating 14–3-3 binding in HDAC5 (27) were ob-
served to be conserved in MITR at S220 and S451. Moreover,
phosphorylation by CaMK disrupted MEF2 interaction and
altered the localization of MITR (90). Later, PKD was also
shown to phosphorylate these residues (81), modifications
also detected in cortical neurons (91). Additionally, HDAC9
residues S239, S240, and S253 are phosphorylated by Aurora
B (47), Mirk/dyrk1B (48), and PRK1 (68), respectively (Fig. 1D),
similar to the analogous residues in other class IIa HDACs.

The Distribution of PTMs within HDAC Structure—The po-
sitioning of PTMs within different structural features of HDACs
can significantly contribute to determining their functions. As
detailed previously, the PTMs within or in the proximity of the
NLS have been well documented to modulate HDAC localiza-
tion and transcriptional repressive function. However, the
presence of PTMs within multiple HDAC functional domains
and regions with distinct structural properties must also be
considered. To examine the distribution of HDAC PTMs (red
stars, Fig. 2), disordered protein regions were predicted using
the PrDOS software (92). Established domains, including the
MEF binding, NLS, DAC, and NES, exhibit varying degrees of
disorder, with the DAC domain representing the least disor-
dered region of each HDAC. The highly structured prediction
for the DAC domain is not surprising, given that the first
crystal structure solved for class IIa HDACs was the catalytic
domain of HDAC7 (23). Highly ordered regions may be favor-
able environments for structural PTMs, such as the disulfide
bond that forms immediately adjacent to the DAC domain in
HDAC4 (Figs. 1 and 2). The MEF domain itself harbors no
currently known PTMs, but appears to have greater structural
variation across the class IIa HDAC family than the NLS,

suggesting a possible source of plasticity in transcription
factor binding preferences among HDACs. Interestingly,
phosphorylations found in the NLS appear to map to the more
disordered portion of this region (Fig. 2).

Previous HDAC5 structure prediction indicated that the ma-
jority of phosphorylations map to the external surface of the
protein, suggesting that these modifications may be primarily
important for mediating protein interactions (12). Loss of
phosphorylation within an acidic region, the DAC domain, and

FIG. 2. The distribution of class IIa HDAC post-translational
modifications within ordered and disordered regions. The proba-
bility of disorder was determined for each HDAC amino acid se-
quence using the PrDOS prediction software. Known PTMS are rep-
resented as red stars. Regions falling within established HDAC
functional domains are shaded: MEF, red; NLS, green; DAC, purple;
NES, yellow. A, HDAC4 sequence, B, HDAC5 sequence, C, HDAC7
sequence, D, HDAC9 sequence.
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the NES was shown to modulate HDAC5 protein interactions,
including associations necessary for transcriptional repres-
sion (12). Interestingly, mass spectrometry-based quantifica-
tion of HDAC5 phosphorylations within these functional
domains showed substantial variation in their relative abun-
dances (12). Prominent modifications could point to sites
necessary for protein folding or structural stability, whereas
modifications with low abundances may reflect dynamic or
transient events that are spatially and temporally modu-
lated. It may be of interest to investigate possible correla-
tions between the degree of order surrounding a PTM and
its abundance.

Most HDAC PTMs seem to localize within regions predicted
as naturally disordered (Fig. 2), in agreement with previous
reports of abundant phosphorylation within disordered re-
gions of other proteins (93). These regions are likely to repre-
sent more rapidly evolving sequences, and it is estimated that
a significant percentage of S/T/Y sites (�25%) within disor-
dered regions are modified (29). The increased availability of
these sites may also promote their regulation by multiple
enzymes, thereby allowing flexible control over protein func-
tion without altering amino acid sequences and conferring an
evolutionary advantage. Indeed, numerous sites on class IIa
HDACs are targeted by multiple enzymes (Fig. 1) and under
different biological conditions (supplemental Table S1).

Although it is clear that numerous PTMs play important
roles in regulating protein functions, it is also possible that a
subset of PTMs occur from random subcellular events. Al-
though enzymatic post-translational modification does re-
quire energy input, additions could be energetically favorable
within local reaction environments of the densely packed cell.
Thus, expending additional energy to prevent their occur-
rence or to actively remove PTMs would be of no great benefit
when these PTMs do not impact protein function. Another
likely explanation for yet-uncharacterized PTMs is that the
appropriate functional assays have not yet been discovered
or employed. Individual PTMs may exert their functions at
specific time points or locations. Currently, as little is known
about the co-occurrence of multiple PTMs on HDACs at any
given time, it would be of significant interest to examine the
coordinated regulation of PTMs and the possibility of syner-
gistic modification. Multiple sites await detailed site-specific
investigation of their biological functions, which will no doubt
be of tremendous value in building a more complete under-
standing the regulation of HDACs functions. For these yet
functionally uncharacterized sites, we direct interested read-
ers to the following papers that reported their discovery:
HDAC4-K236 (94), T278 (95), S339 (96), S565 (97–99), S633
(97); HDAC5-(S3, S7, S53, S55, S66, S206, T234, S368, S755)
(28), K533 (100), T546 (101), S671 (28, 102), S1108 (28, 103);
HDAC7-T104 (104), S109 (97, 104), Y114 (105), S283 (97,
106), T286 (97, 106), S405 (102), S487 (107, 108), K603 (109),
and HDAC9-S22 (96). The remainder of this review will focus
on PTMs that have been functionally characterized and shown

to regulate subcellular localization and transcription, thereby
significantly contributing to maintenance of health and dis-
ease states.

PTMs Regulate HDAC Subcellular Localization and Orches-
trate Transcription—Class IIa HDAC PTMs profoundly impact
their capacity to modulate transcription of gene targets.
Within the nucleus, HDACs carry out their transcriptional re-
pressive functions as components of numerous multiprotein
complexes (10), including the nuclear corepressor (NCoR)
(110–112) and the Bcl-6 corepressor complexes (113). The
nuclear association of class IIa HDACs to transcription factors
through their N termini and to corepressors through their C
termini provides a mechanism of targeting these specific
functional protein complexes to particular genomic regions.
The deacetylation of targets themselves is performed through
association with various corepressor complexes that contain
a class I HDAC (i.e. predominantly HDAC3), such as C-termi-
nal-binding protein (114), NCoR/SMRT (110), and BCoR (115).
For HDAC4, HDAC5, and HDAC9, the interaction with the E1A
C-terminal binding protein occurs through a conserved N
terminus PxDLS-like motif (114). The NCoR/SMRT complexes
have been shown to associate with and regulate multiple
transcription factors, including PLZF (116), BCL6 (117), MyoD
(118), and Bach2 (119). The interaction with the SMRT com-
plex was mapped to the C-terminal deacetylation domain of
HDAC5 and HDAC7 and domains III and IV of SMRT (111,
120). NCoR and SMRT are also known to interact with
HDAC3, as well as the HDAC1/HDAC2-containing Sin3 re-
pressor complex (121). HDAC7 also interacts directly with
mSin3A via an amphipathic helix in its N terminus (111),
pointing to the complex regulation of HDAC associations with
corepressors through both direct and indirect mechanisms.
Another important nuclear interaction of HDAC4, HDAC5, and
HDAC9 is with heterochromatin protein 1, which represses
transcription via recruitment of histone methyltransferases,
thus, linking the functional roles of deacetylation and meth-
ylation in regulating gene expression (122).

As mentioned previously, phosphorylation is a well-estab-
lished regulator of HDAC protein localization, impacting the
association with these distinct functional complexes (Fig. 3A).
Phosphorylation of sites flanking the NLS in all class IIa
HDACs promotes 14–3-3 chaperone protein binding and sub-
sequent nuclear export in a CRM1-mediated fashion (27, 33,
78, 90, 123). Specifically, CRM1 binds a hydrophobic C-ter-
minal NES motif conserved among class IIa HDACs (123).
Association of 14–3-3 proteins was initially discovered for
HDAC4 and HDAC5 using yeast two-hybrid and protein co-
immunoprecipitation studies (35, 36). In the same study,
HDAC4 and HDAC5 were also shown to associate with the
Class I enzyme HDAC3 (35); recent quantitative proteomic
studies have highlighted that this association occurs via bind-
ing to NCoR components (10). Although 14–3-3 simultane-
ously recognizes and binds to multiple phosphorylated sites,
phosphorylation of a single site is sufficient for maintaining
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this interaction (35). 14–3-3 association restricts the binding
of HDAC4 to importin-�, indicating that inhibition of HDAC
nuclear import likely occurs via occlusion of the NLS (35). A
similar regulatory mechanism has been reported for other
proteins, including Cdc25 in Xenopus XTC cells and ATXN1 in
neurons (21, 124).

The phosphorylation sites important for nuclear export rep-
resent convergence points for multiple signaling pathways,
most notably the CaMK superfamily, PKC/PKD, and MARK 1
and 2 (84). Ca2�-mediated activation of the CaMK pathway
promotes nuclear export of HDAC5 by stimulating phosphor-
ylation of 14–3-3 binding sites (36). This change in localization
triggers the dissociation of the MEF2/HDAC complex and
subsequent activation of MEF2 transcriptional targets (36, 58,

125), a process observed to be essential for proper cardiac
function (92, 126) (discussed in “The Post-translational Reg-
ulation of HDACs is Critically Linked to Human Disease”). In
agreement, overexpression of HDAC4, HDAC5, and HDAC9
suppresses MEF2 activity in cardiomyocytes (16).

Similarly, phosphorylation of HDAC7 at its 14–3-3 binding
sites by PKD promotes dissociation of HDAC7 from the tran-
scriptional targets Nur77 (78, 80, 127), RUNX2 (82), and
RCAN2 (81). Moreover, retention of HDAC7 in the nucleus
results in repression of the matrix metalloproteinase MTI-
matrix metalloproteinase (MTI-MMP) and MMP10, which are
important for microvessel sprouting in angiogenesis (79). In
addition to PKD signaling, the MARK kinases C-TAK1 and
EMK also serve to regulate HDAC4-, HDAC5-, and HDAC7-

FIG. 3. Phosphorylations and func-
tions of class IIa HDACs are spatially
and temporally regulated. A, Nuclear
HDACs repress transcription of target
genes through associations with core-
pressor complexes. Phosphorylation of
HDACs in the nucleus promotes binding
of 14–3-3 chaperone proteins and nu-
clear export of all class IIa HDACs,
whereas NLS phosphorylation promotes
nuclear accumulation of HDAC5. B, In
dividing cells, HDACs 4, 5, and 9 localize
to the midzone within a mitotic midzone
phosphorylation gradient and are phos-
phorylated by Aurora B within NLS.
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mediated repression of Nur77 and c-Jun (84). Interestingly, in
HDAC7, the initial phosphorylation of one 14–3-3 binding site
promotes the subsequent phosphorylation of the other chap-
erone binding sites (84), suggesting the cooperative regula-
tion of PTMs within HDACs.

In addition to the PTMs flanking the NLS region, phosphor-
ylation within the NLS at S279 is also critical for nuclear
localization of HDAC5. Specifically, phosphorylation was
shown to be important for efficient nuclear import in HEK293
and U2OS cells (28), whereas found to prevent PKD/CaMK-
induced nuclear export in Cos7 cells (73).

Thus far, understanding of the PTM-induced changes in
HDAC localization have been limited to the modification of the
NLS region and 14–3-3 binding sites; however, recent studies
have suggested that other PTMs can also trigger changes in
HDAC5 protein association with important transcriptional reg-
ulators. Specifically, S611 mutation led to changes in the
association of HDAC5 with the transcription factor MEF2D
(12). Therefore, future studies investigating additional PTMs
could shed light on their impact on HDAC localizations and
interactions within different regions of the same subcellular
compartments (e.g. subnuclear). Furthermore, it is worth not-
ing that the aforementioned HDAC-mediated mechanisms are
restricted to the effects of the presence or absence of HDACs
on their nuclear roles. To date, the cytoplasmic functions of
class IIa HDACs remain insufficiently explored, and are likely
to be relevant in numerous cellular processes.

Cell Cycle-dependent Regulation of HDACs—As transcrip-
tion is carefully regulated throughout cell cycle progression, it
is expected that HDAC and histone acetyltransferases func-
tions are also dynamic during different stages of the cell cycle.
Along with changes in chromosome condensation status,
histone acetylation levels have been shown to decrease early
in mitosis, reaching their lowest levels during metaphase and
anaphase, and rising at the late telophase/interphase transi-
tion (128). Additionally, global inhibition of HDACs using small
molecules has been shown to inhibit mitotic progression by
inducing G2-phase checkpoint response (129, 130). HDAC
inhibition by Trichostatin A results in spindle and kinetochore
attachment defects in mitotic cell populations, indicating that
HDAC-containing complexes are important in properly main-
taining mitotic structures (131). Additional HDAC inhibitors
have been shown to promote cell cycle arrest at G0/G1 and at
G2/M, and to be associated with increased apoptosis (132,
133). The acetylation status of spindle components has been
proposed to be important for proper mitotic progression (131),
and the class IIb enzyme HDAC6 is directly responsible for
deacetylation of tubulin (17).

Changes in the distribution of HDAC4, HDAC5, and HDAC7
have been observed during mitosis, including the exclusion of
HDAC4 from condensed chromatin regions (128). Moreover,
HDAC5 was shown to localize to the spindle midzone during
mitosis and to the midbody during cytokinesis, where it inter-
acts with the mitotic kinase Aurora B and is phosphorylated at

S278 within the NLS (47) (Fig. 3B). Phosphorylation of this site
is conserved in HDAC4 and HDAC9, suggesting a shared
point of regulation; however, in HDAC7 this NLS serine resi-
due is replaced by lysine, indicating divergent regulation of
HDAC7 from the rest of the class IIa family (47). Although
phosphorylation of S278 coincides with HDAC localization to
the mitotic midzone, whether S278 phosphorylation deter-
mines this redistribution, or whether the presence of HDAC5
at the midzone promotes its phosphorylation remains to be
explored. Consistent with the midzone sequestration of
HDAC5 during mitosis, interactions of HDAC5 with members
of the NCoR complex were significantly diminished in a G2/
M-arrested population of HEK293 cells, with a concomitant
decrease in in vitro deacetylation activity (47). It is clear that
histone acetylation profiles are dynamic during cell cycle pro-
gression, contributing to the regulation of gene expression
during mitosis; therefore, further investigation of the mecha-
nisms governing HDAC and histone acetyltransferase local-
ization and activity during specific cell cycle stages will be an
important resource for gaining a better understanding of tran-
scriptional control throughout the cell cycle.

The Post-translational Regulation of HDACs is Critically
Linked to Human Disease—Although class I HDACs have
previously stirred significant interest for their roles in human
disease progression and their therapeutic potential, in partic-
ular in cancers, studies in recent years have established
unique functions for class IIa HDACs in different tissues and
organs that can critically impact the development of disease.
Given the extensive PTMs and localization-dependent func-
tions of class IIa HDACs, and their intricate regulation by
numerous signaling pathways, it is not surprising that these
enzymes impact a wide range of cellular processes relevant to
human health. Class IIa HDACs are expressed abundantly in
the heart, brain, and musculoskeletal tissues, and known to
regulate physiological processes in a tissue-specific manner
(Fig. 4 and supplemental Table S1). The misregulation of class
IIa HDAC levels, PTMs, localization, and transcriptional regu-
latory functions have been critically linked to significant hu-
man diseases, including cardiac, neurodegenerative, and
musculoskeletal disorders. As such, these HDACs have
emerged as potential novel targets for therapeutic interven-
tions. This section presents an overview of the regulation and
functions of class IIa HDACs in the context of human disease,
as specifically connected to their PTM status.

Cardiovascular System and Cardiac Hypertrophy—One of
the best established roles of class IIa HDACs in human dis-
ease is their impact on the cardiovascular system, in particular
on the development of cardiac hypertrophy. The constant
response of heart tissue to physiological and pathological
stimuli can lead to increased cardiac cell size, also known as
cardiac hypertrophy. Hypertrophy strengthens the cardiac
wall in response to increased stress arising from hyperten-
sion, cardiac injury, valve disease, and myocardial infarction
(134, 135); however, prolonged hypertrophy can lead to car-
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diomyopathy, fibrosis, and heart failure (136). Cardiac remod-
eling results from the activation of the “fetal gene program”
that mediates the expression of proteins involved in muscle
contraction and calcium absorption (137). In the absence of
injury, this program is repressed by nuclear MEF2-interacting
HDACs (138, 139). Hypertrophic stimuli activate a cardiac
kinase that relieves HDAC-mediated repression thorough
phosphorylation-dependent nuclear export (16). HDAC mu-
tants lacking phosphorylation sites were refractory to hyper-
trophic stimuli, whereas HDAC9 knock-out mice displayed
enhanced sensitivity to hypertrophic stimuli (16). Aberrant
calcium signaling has also been implicated in the pathological
remodeling of the heart in response to stress signaling (140)
and the downstream phosphorylation of HDAC4 via CaMKI
and CaMKII (40). Although some level of redundancy exists
with regard to enzymes targeting multiple sites for phospho-
rylation (Fig. 1), several kinases only modify specific HDACs
and/or sites. For example, CaMKII�-null mice display reduced
kinase activity toward HDAC4, whereas HDAC5 was unaf-
fected (41, 141). Additional specificity is conferred via the
alternate splicing of CaMKII�, which yields localization-de-

pendent phosphorylation of HDAC4 by a nuclear �B isoform
activated by phenylephrine, and a cytoplasmic �C isoform
activated by caffeine (27). Both isoforms can phosphorylate
HDAC4 and induce similar MEF2 gene expression, and
CaMKII�C can also phosphorylate calcium regulatory proteins
to modulate Ca2� levels (42). Several other HDAC-modifying
enzymes have been shown to induce cardiac hypertrophy via
transmission of calcium-independent signals. PKD, a down-
stream effector of PKC signaling, can directly phosphorylate
HDAC5 to stimulate its nuclear export (64, 142). Cardiac
A-kinase anchoring proteins serve as scaffolds for PKA- and
PKC-dependent activation of PKD1, thus facilitating nuclear
export of HDAC5 (66). Export of HDAC5, and subsequent
MEF2 activation, can also be triggered by nuclear GRK5
under hypertensive conditions, leading to ventricular hyper-
trophy (124, 143). Independently of blood pressure, high salt
intake has also been known to be associated with left ventri-
cle hypertrophy (128, 144). More recently, this mechanism
was shown to be phosphorylation-dependent, as increased
sodium levels activate the critical cardiac kinase SIK1, leading
to HDAC5 phosphorylation and enhanced MEF2 and NFAT
transcriptional activity (72). Interestingly, a recent study ex-
amined the mechanisms through which clinically relevant neu-
rohormonal stimuli regulate HDAC phosphorylation in adult
cardiomyocytes (62). Although PKD was found to be a critical
mediator of endothelin-1-induced phosphorylation and nu-
clear export of HDAC5, �1-adrenergic receptor (�1-AR) also
stimulated nuclear export and MEF2 activation through a
phosphorylation-independent mechanism (62). Therefore,
more research is needed to understand how these multiple
pathways are integrated to achieve a common end point,
such as fetal gene program activation.

Mechanisms that act to inhibit cardiac hypertrophy through
nuclear retention of HDACs and repression of MEF2 activity
further contribute to the challenge of fully understanding the
regulation of HDACs during cardiac disease (supplemental
Table S1). Such mechanisms are of particular interest as they
can potentially be harnessed for therapeutic benefit. Phenyl-
ephrine signaling was shown to promote the formation of
disulfide bonds between cysteine 667 and 669 of HDAC4 and
nuclear export (54). Importantly, reduction of these disulfide
bonds by thioredoxin 1 has the potential to limit cardiac
hypertrophy (54). Specific phosphorylations are also capable
of limiting HDAC nuclear export. PKA-mediated phosphory-
lation of HDAC5 at S279 impairs 14–3-3 binding, ultimately
leading to nuclear retention, repression of MEF2-dependent
transcription, and inhibition of cardiac hypertrophy (73). Acti-
vation of PKA by �1-AR also promotes HDAC5 nuclear accu-
mulation, most likely through a PP2A-dependent mechanism
(145). Another cardioprotective function of PKA involves the
proteolytic cleavage of HDAC4, which releases an N-terminal
fragment that translocates to the nucleus and represses
MEF2 (57). Also inhibiting nuclear export is the direct binding

FIG. 4. Class IIa HDACs have broad impact on the development
of human disease. HDAC4, 5, 7, and 9 have shared roles in cardiac
development and muscle differentiation; however, specific roles for
individual HDACs have been reported in certain organ systems and
pathologies.
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of the transcription factor YY1 to HDAC5 that prevents its
phosphorylation (146).

Vascularization—Like cardiac muscle cells, vascular smooth
muscle cells can also undergo pathological remodeling leading
to hypertrophy via similar molecular mechanisms. Class IIa
HDAC PTMs are also modulated under conditions of vascular
hypertrophy. Phosphorylation of HDAC4 and HDAC5 in vas-
cular smooth muscle cells is modulated by stimulation of
PKD1 (65) and CaMKII (147). Formation of new blood vessels
(angiogenesis) involves recruitment of both vascular smooth
muscle cells and mature endothelial cells 126). During angio-
genesis, VEGF induces phosphorylation of 14–3-3 binding
sites and nuclear export of HDAC5 (60) and HDAC7 (79, 81).
These phosphorylation events are mediated by PKD signaling,
and result in the expression of VEGF-responsive genes (sup-
plemental Table S1) that promote cell proliferation and migra-
tion (81), tube formation, and microvessel sprouting (60, 79).
HDAC5 phosphorylation and localization are similarly regu-
lated by CaMK during atherosclerosis, triggering enhanced
expression of Kruppel-like factor 2 and endothelial nitric oxide
synthase in endothelial cells (148). It has also been reported
that nitric oxide, a product of endothelial nitric oxide synthase,
induces PP2A-dependent dephosphorylation of HDAC4 (50).
Lastly, PKD phosphorylation of HDAC5 has been shown to
regulate erythropoiesis (149), suggesting that HDACs have
roles in the development of both cardiovascular structures
and blood cells.

Musculoskeletal System—Phosphorylation is also respon-
sible for controlling the ability of class IIa HDACs to modulate
gene programs associated with muscle and bone develop-
ment, implicating them in diseases of the musculoskeletal
system, including myopathies and osteoarthritis.

Muscle Development—Myogenesis encompasses the con-
version of myoblasts into differentiated myotubes and in-
volves the activation of hundreds of muscle-specific genes
and concomitant repression of cell proliferation genes (14). In
undifferentiated cells, MEF2 transcription factors are re-
pressed when in a complex with HDAC4 or HDAC5 (133),
which undergo nuclear export upon phosphorylation of 14–
3-3 binding sites by GIT1 and CaMKs (27, 36). Although class
IIa HDACs have a characteristic dual-compartment localiza-
tion, individual HDACs exhibit different localization patterns
upon myoblast differentiation. The pool of HDAC4 seques-
tered in the cytoplasm returns to the nucleus following myo-
blast fusion; however, CaMKIV can inhibit HDAC4 nuclear
relocalization (38). Interestingly, HDAC7 is exclusively cyto-
plasmic in differentiated myotubes (150). The HDAC9 splice
variant MITR inhibits the myogenic program, and is also sub-
ject to CaMK and Mirk/dyrk1B-dependent phosphorylation-
dependent subcellular localization (48, 90). Mirk targets resi-
dues within the NLS domains of HDAC5 and MITR, rather than
the 14–3-3 binding sites targeted by CaMKs (Fig. 1).

Bone Development—Skeletal biology, including the differ-
entiation of osteoblasts and chondrocytes, is regulated by

bone morphogenic proteins (BMPs) that establish bone for-
mation and growth (151, 152). BMP2 induces nuclear export
of HDAC7, but not of HDAC5, via PKD-mediated signal-de-
pendent phosphorylation (82). This process relieves the
HDAC7-mediated repression of Runx2, the master transcrip-
tional regulator of the skeletal system (153). Differentiation of
proliferating chondrocytes into prehypertrophic chondrocytes
is also induced by CaMKIV-mediated nuclear exclusion of
HDAC4 and elevated Runx2 activity (46), whereas HDAC4-null
mice exhibit premature bone ossification (154), implicating
these regulatory mechanisms in the development of osteoar-
thritis. This maturation process can be reversed by expression
of the parathyroid hormone-related peptide, which represses
Runx2 via PP2A-dependent dephosphorylation of HDAC4
(52), suggesting that modulation of HDAC phosphorylation
may represent a promising therapeutic for osteoarthritis and
bone calcification disorders.

The Nervous System and Neurodegenerative Diseases—
The cytoplasmic localization of class IIa HDACs in neurons
allows MEF2 and CREB to express numerous genes involved
in neuronal differentiation (155). Neuronal activity itself spec-
ifies HDAC subcellular localization; spontaneous synaptic ac-
tivity is sufficient to induce nuclear export of HDAC4, whereas
export of HDAC5 requires CaMK inhibition and calcium flux
(156). Similarly, phosphorylation-dependent HDAC9 translo-
cation occurs following spontaneous firing in cortical neurons
(91), and subsequent expression of c-fos promotes dendritic
growth. Knowledge of the cytoplasmic functions of these
HDACs is currently limited; however, multiple studies indicate
that the roles and regulatory mechanisms of HDACs in the
cytoplasm are highly relevant to understanding their contribu-
tion to human disease progression.

In the cytoplasm of peripheral neurons, HDAC5 deacety-
lates tubulin, promoting neuro-regenerative growth (157).
HDAC5 also regulates axon regeneration when activated by
PKC (157), further indicating that phosphorylation is an im-
portant determinant of HDAC function during neuronal devel-
opment and in the presence of neuronal injury. Cocaine treat-
ment induces the nuclear export of HDAC5 and activation of
MEF2C via SIK1-dependent phosphorylation (158). Interest-
ingly, a separate study has demonstrated that cocaine can
alternatively induce nuclear accumulation of HDAC5
through cAMP signaling and PP2A-mediated dephosphor-
ylation of S279 (74). Thus, it is possible that multiple signal-
ing pathways may direct differentially phosphorylated
HDAC species to the relevant subcellular compartments
under such stress conditions.

HDAC4 has a substantial cytoplasmic localization in neu-
rons (159). Although the nuclear accumulation of HDAC4 be-
cause of increased PP2A activity is associated with ataxia
telangiectasia (53), the cytoplasmic functions of HDAC4 may
also be involved in neurodegenerative diseases. Huntington’s
disease is caused by the mis-folding of the huntingtin protein,
and its pathology is associated with the formation of both
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nuclear and cytoplasmic aggregates (160). HDAC4 has
emerged as a possible promising target for the treatment of
Huntington’s disease because of its association with the hun-
tingtin protein and its ability to influence the formation of
cytoplasmic aggregates (21). As HDAC4 localization is deter-
mined by its phosphorylation status, these signaling pathways
could be exploited to promote the nuclear retention of HDAC4
in order to limit the formation of cytoplasmic aggregates as-
sociated with Huntington’s disease pathogenesis. This obser-
vation is especially noteworthy as the cytoplasmic roles of
class IIa HDACs remain poorly characterized, and increased
understanding of such roles will likely be of significant clinical
relevance.

Emerging Roles for Class IIa HDACs in Cancer and Diabe-
tes—Although the PTM status of class IIa HDACs has been
established to modulate their functions in cardiovascular and
neurodegenerative disease, recent studies indicate that their
roles in human disease may be far reaching.

It is well-established that HDACs have roles in cancer de-
velopment. The broad HDAC inhibitor Vorinostat is currently
approved for treatment of T-cell lymphomas, indicating that
HDACs represent important targets for limiting cancer pro-
gression. Thus far, class I HDACs have been the major focus
of cancer studies, as their loss of function is linked to cancer
development (132). However, class II HDACs may also repre-
sent important regulators of tumorigenesis. In gastric cancer
cells, PKD2 accumulates in the nucleus and induces phos-
phorylation of HDAC7, ultimately resulting in HDAC7 nuclear
export and expression of downstream targets including Nur77
(83). Conversely, HDAC4 localizes to the nucleus in cancerous
colon cells, where it interacts with Sp1 and represses tran-
scription of p21, promoting cancer cell growth (161). Addi-
tional investigation of class IIa HDAC localizations, post-
translational modifications, and functions in multiple cancer
types will provide important insight into their roles in tumor
development.

The pathogenesis of diabetes is also linked to HDAC func-
tion and involves resistance to insulin in tissues such as
skeletal muscle. The fasting hormone glucagon induces de-
phosphorylation and nuclear retention of HDAC4, HDAC5,
and HDAC7 (20). Surprisingly, however, the expression of
gluconeogenic genes, such as the catalytic subunit of
G6Pase, requires class IIa HDACs to deacetylate and activate
FOXO transcription factors (20), indicating that HDACs are
able to regulate the production of hormones that can control
blood glucose levels. Additionally, HDAC5 modulates the ex-
pression of GLUT4, a key regulator of insulin resistance, via
phosphorylation-dependent nuclear export and derepression
(69). Interestingly, HDAC5 phosphorylation levels have been
shown to be elevated during aerobic exercise (162), which
could indicate that HDACs respond to change in blood oxy-
gen levels. The broader family of human deacetylases is
known to respond to changes in cellular metabolic environ-
ments. It is well established that the class III deacetylase

(SIRT) activities are regulated by NAD�, and their enzy-
matic activities can be modulated by glucose and glutamine
availability (163–166). Moreover, acetyl-CoA and other CoA
derivatives, along with NADPH, have been shown to alloster-
ically activate class I enzymes, HDAC1 and HDAC2 (167).
Additional metabolic regulators of HDACs include short chain
fatty acids (e.g. butyrate), which formed the basis for the
design of chemotherapeutic treatments (168). Increased
abundance of short chain fatty acids and butyrate have been
proposed to contribute to the cardioprotective and antidia-
betic roles of dietary whole grains (169). It is possible that
alterations in butyrate concentrations could contribute to
modulating HDAC activities in diabetic patients.

Perspectives—Class IIa HDACs are comprehensively con-
trolled by numerous signaling pathways and enzymes that
mediate their post-translational modification (Fig. 1). These
modifications are found in multiple protein domains and areas
of disordered structure (Fig. 2), and not only alter HDAC
subcellular localization, but fundamentally impact the ability of
HDACs to repress/activate targets. Accumulating evidence
indicates that site-specific PTMs control distinct spatial and
temporal HDAC regulatory mechanisms, such as via mediat-
ing protein interactions, dynamic localization, and cell cycle-
dependent effects. Nuclear export of class IIa HDACs has
been generally investigated in the context of its ability to
regulate transcription. However, the cytoplasmic functions of
HDACs are now starting to be more widely explored, partic-
ularly with respect to their impacts on human diseases, in-
cluding neurodegenerative disorders, cardiac disease, and
virus-induced pathologies.

The HDAC regulatory network is highly complex, and is
responsive to both tissue context and environmental cues.
Proteomic studies and advances in mass spectrometry-
based methods provide valuable tools for further expanding
the identification of PTMs within these different biological
contexts. Characterizing these modifications, their regulation
by specific enzymes, and their possible coordinated functions
in different tissues and under physiological conditions will be
critical for gaining a deeper understanding of organ- and
disease-specific HDAC functions (Fig. 4). Furthermore, multi-
disciplinary approaches integrating molecular, clinical, and
mass spectrometry-based methods, promise to generate a
systems-wide understanding of the dynamic regulation of
HDACs. Given the critical links starting to be established
between HDAC PTM status and human diseases, the quan-
tification of site-specific PTMs by targeted mass spectrome-
try may provide accurate and sensitive detection of disease
biomarkers in clinical samples.

HDACs have been exploited for their therapeutic benefit
given their involvement in conditions such as cardiac and
vascular hypertrophy, atherosclerosis, cancer, and diabetes.
With several HDAC inhibitors in phase I and II clinical trials,
and the development of small molecule inhibitors that block
the MEF2 interaction, it is only a matter of time before the full
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potential of HDAC regulatory mechanisms are realized and
used to treat human diseases and disorders. As numerous
small molecules can simultaneously inhibit multiple HDACs,
the use of such drugs can alter numerous gene programs and
lead to cytotoxicity. Gaining a better understanding of HDAC
regulation promises to provide targets with increased speci-
ficity that can selectively modulate a single HDAC or a given
context-dependent function. Such targets may include ki-
nases/phosphatases or other enzymes regulating a certain
PTM site or factors influencing the formation of HDAC protein
interactions.
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