Skip to main content
. 2015 Jan 2;14(3):544–555. doi: 10.1074/mcp.M114.040576

Table III. AUC values, sensitivities, specificities, and cutoff points of the best discriminating parameters for PD versus healthy or diseased controls.

Parameter Training set
Validation set
AUC p cutoff Sens% Spec% AUC p Sens% Spec%
SPP1
    PD vs Con 0.791 1E-4 4.362 90.0 56.7 0.821 8E-7 77.5 75.0
    PD vs AD 0.948 1E-11 87.5 97.4
LRP1
    PD vs Con 0.706 0.006 −2.218 70.0 70.0 0.698 0.002 80.0 57.5
    PD vs AD 0.662 0.014 70.0 63.2
SPP1, LRP1, CSF1R, EPHA4, and TIMP1
    PD vs Con 0.873 7E-7 0.5394 76.7 80.0 0.853 5E-8 82.5 82.5
    PD vs AD 0.990 1E-13 95.0 97.4
11-peptide panela
    PD vs Con 0.982 1E-10 0.6761 90.0 96.7 0.932 3E-11 85.0 92.5
    PD vs AD 1.000 3E-14 100.0 100.0

a APLP1, APOB, CP, CSF1R, EPHA4, GPR37, LRP1, SERPINC1-FAT, SERPINC1-TSD, SPP1, and TIMP1. Note that the 11-peptide data needs to be interpreted with caution due to potential overfitting. AD, Alzheimer disease; AUC: area under curve; Con, healthy control; PD, Parkinson disease; Sens: sensitivity; Spec: specificity.