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The function of a large percentage of proteins is modu-
lated by post-translational modifications (PTMs). Cur-
rently, mass spectrometry (MS) is the only proteome-wide
technology that can identify PTMs. Unfortunately, the in-
ability to detect a PTM by MS is not proof that the modi-
fication is not present. The detectability of peptides varies
significantly making MS potentially blind to a large frac-
tion of peptides. Learning from published algorithms that
generally focus on predicting the most detectable pep-
tides we developed a tool that incorporates protein abun-
dance into the peptide prediction algorithm with the aim
to determine the detectability of every peptide within a
protein. We tested our tool, “Peptide Prediction with
Abundance” (PPA), on in-house acquired as well as pub-
lished data sets from other groups acquired on different
instrument platforms. Incorporation of protein abundance
into the prediction allows us to assess not only the de-
tectability of all peptides but also whether a peptide of
interest is likely to become detectable upon enrichment.
We validated the ability of our tool to predict changes in
protein detectability with a dilution series of 31 purified
proteins at several different concentrations. PPA pre-
dicted the concentration dependent peptide detectability
in 78% of the cases correctly, demonstrating its utility for
predicting the protein enrichment needed to observe a
peptide of interest in targeted experiments. This is espe-
cially important in the analysis of PTMs. PPA is available
as a web-based or executable package that can work with
generally applicable defaults or retrained from a pilot MS
data set. Molecular & Cellular Proteomics 14: 10.1074/
mcp.M114.044321, 430–440, 2015.

Post-translational modification (PTM)1 of proteins is a key
regulatory mechanism in the vast majority of biological pro-
cesses. Historically, to follow PTMs, site-specific antibodies
had to be generated in a time-consuming and laborious pro-
cess associated with high failure rates. Mass spectrometry
(MS) holds enormous promise in PTM analysis as it is cur-
rently the only technique that has the ability to both discover,
localize, and quantify proteome-wide modifications (1). Re-
cent advances in instrumentation and method optimization
makes it possible to detect the complete yeast proteome
within one hour (2), an ever increasing proportion of the hu-
man proteome (3–6), and more than 10,000 phosphorylation
sites in a single MS experiment (7, 8). As a result one of the
major publicly available databases (www.phosphosite.org (9))
has curated �200,000 phosphorylation sites.

Although the number of proteins and PTMs that can be
identified is impressive, many modifications have still not
been identified in any MS-based experiment. The identifica-
tion and quantification of biologically relevant modifications is
challenging for three reasons: (1) many proteins of interest are
of very low abundance rendering them difficult to detect and
quantify; (2) many modifications sites are present at substoi-
chiometric quantities, further reducing their detectability; and
(3) as large scale proteomics is based on the detection of
peptides after a proteolytic digest, and the detectability of a
peptide is determined by its physiochemical properties (10),
many peptides from highly abundant proteins are never de-
tected. This is particularly important, as there is a shift in the
use of MS-based proteomics from large scale, unbiased,
discovery-focused experiments toward directed experiments
for accurate and precise quantification of biologically relevant
PTMs. Protein and peptide enrichment strategies and/or tar-
geted MS experiments like single reaction monitoring (SRM)
(11) have increased the number of detectable peptides; how-
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ever, both of these methods are laborious, and often not
successful, that is, the peptide carrying the modification of
interest is still not observed as it is fundamentally very difficult
to detect.

Protein enrichment is the method choice for most experi-
mentalists, but there is no current way to determine whether
this is likely to succeed prior to engaging in lengthy biochem-
ical and/or analytical experiments. In an effort to gauge the
chances of success for detecting a particular peptide we
sought to develop an algorithm that can predict both the
chances of detecting a particular peptide and, more impor-
tantly, what enrichment it would take to detect a particular
peptide that is not easily detected. Here we present such a
tool that predicts the detectability and estimates an enrich-
ment factor, i.e. an increase in signal over the background that
is necessary to actually detect a particular peptide. Our algo-
rithm development was motivated by two premises: (1) In
silico methods have been developed that focus on the pre-
diction of easily detectable “proteotypic” peptides (peptides
that are likely to provide the best detection sensitivity) with
good accuracy (12–15). (2) Comprehensive proteome studies
have shown that the number of detected peptides per protein,
and thus the sequence coverage, varies with protein abun-
dance (which is the basis for spectral counting-based protein
quantification (16, 17)). We find that incorporation of protein
abundance in a peptide classification tool improves the ac-
curacy of the prediction of peptide detectability allowing us to
predict the detectability of all peptides within a protein as well
as the amount of enrichment needed to detect a peptide of
interest.

We used a set of 120 purified in vitro expressed proteins as
a training set to develop a prediction tool. We deliver this in
the form of a web-based interface that provides information
about: (1) the probability of detecting the different tryptic
peptides of a protein, and (2) the fold enrichment that would
be required to bring a peptide of interest into the detectable
range. This tool will help guide researchers in their efforts to
monitor particular peptides and their modified cognates by
MS, specifically, in prioritizing their efforts toward enriching
proteins where they would be likely to be able to detect a
peptide or modification of interest.

MATERIALS AND METHODS

Cloning and In Vitro Expression of Full-length Stable Isotope La-
beled Proteins

The pEU-E01-His-N1-FlexII in vitro expression vector is similar to
the vector described by Singh et al. (18) with some modifications to
create three FLEXII-peptides (supplemental Fig. S1). These peptides,
TVLLFLEISK, TVLYFSEISK, and TSLYFSEISK, were synthesized by
New England Peptide (Gardner, MA) and quantified by amino acid
analysis (Molecular Biology Core Facilities, Dana-Farber Cancer In-
stitute (DFCI), Boston, MA). A subset of the human ORFeome (846
genes) was generously provided by the Center for Cancer Systems
Biology (DFCI).

The human ORFs were moved into the FLEXII-Tag-vector using
Gateway Cloning (Invitrogen, Carlsbad, CA). Briefly, 100 ng of entry

vector and 100 ng of destination vector were mixed in a 3 �l reaction
mix using LR Clonase II Enzyme Mix (Invitrogen) for 18 h at 25 °C
followed by 10min digestion with 1 �g proteinase K at 37 °C. Cells
were then transformed into E. coli and liquid selection was performed.
Spot sequencing was performed on one column from each of nine 96
well plates (Genewiz, South Plainfield, NJ).

The in vitro transcription and translation reactions were carried out
as described by the manufacturer (Cell free sciences, Ehime, Japan,
Wheat Germ Expression H Kit-NA) and Singh et al. (18) modified to 96
well format. Transcription was performed at 37 °C for 8 h and imme-
diately used in translation in presence of heavy isotope labeled lysine
(K8) and arginine (R10) for 17–20 h at 16 °C. Expressed proteins were
purified with a His MultiTrap HP 96-well plate according to the man-
ufacturers instruction (GE Healthcare) using a binding/wash buffer of
20 mM sodium phosphate, pH 7.4, 500 mM NaCl, 30 mM imidazole,
and eluted two times with 70 �l of 20 mM sodium phosphate, pH 7.4,
500 mM NaCl, 500 mM imidazole, and 5% glycerol. The flowthrough
from the initial binding to the His MultiTrap plate was rebound to the
same plate and a third 70 �l elution was performed. Eluent was stored
at �80 °C in 20 �l aliquots. Expression was checked with a 15 �l
aliquot by 1D-SDS-PAGE (4–12% Bis-Tris, NuPage, Invitrogen). Ex-
pression was scored by visual assessment of Coomassie staining
intensity with proteins sorted into five categories from zero (no ex-
pression) to five (highest expression).

In-solution Digestion—A 20 �l aliquot of expressed protein was
mixed with an equal volume of a 0.2% (w/v) RapiGest SF (Waters,
Milford, MA) solution and incubated at 37 °C for 30 min. The samples
were then reduced with the addition of 5 �l of 200 mM DTT and 15 �l
of 100 mM ammonium bicarbonate (ABC), pH 8.0, and heated to
60 °C for 30 min then cooled to room temperature for 5 min. The
samples were alkylated by the addition of 4 �l of 40% pure acrylam-
ide (Calbiochem, San Diego, CA) in the dark for 30 min. The reaction
was quenched by the addition of 20 �l of 200 mM DTT for at least 30
min. Trypsin was added in a 20 �l aliquot of ABC to a total of 100 ng
per sample. After digestions for 17–20 h at 37 °C 8 samples were
pooled and acidified with the addition of a fresh vial of 0.1% trifluo-
roacetic acid (TFA, Pierce). For pooled samples, the samples were
mixed after digestion and were then dried by speed-vac to a volume
between 100 to 200 �l. Additionally, a subset of proteins was di-
gested and subsequent analyzed singly.

Peptides were desalted using a C18 Silica Column (Nest Group
#SS18V) spinning on a bench top centrifuge at 50 � g. Columns were
washed two times with 200 �l 70% acetonitrile (ACN) 0.1% TFA and
equilibrated two times with 200 �l 0.1% TFA. Then the samples were
loaded and passed two times over the column. The columns
were then washed three times with 100 �l of 0.1% TFA. Samples
were eluted over three 75 �l elutions; 30% ACN, 0.1% TFA; 50%
ACN, 0.1% TFA; 70% ACN, and 0.1% TFA. The final elution was
passed over the column a second time. The samples were then dried
down and resuspended in sample buffer containing 5% formic acid
(FA), 5% ACN. For absolute quantification 10 fmol/�l of unlabeled
FLEXII-peptides were added.

Additionally, commercially available tryptic digests of a human cell
lysate (K562) and of a yeast cell lysate were analyzed (both from
Promega, Fitchburg, WI).

LC-MS/MS Analysis and Data Processing—Samples were ana-
lyzed by a nanoLC system (Eksigent, Dublin, CA) equipped with a
LC-chip system (cHiPLC nanoflex, Eksigent, trapping column: Nano
cHiPLC Trap column 200 �m x 0.5 mm ChromXP C18-CL 3 �m 120
Å, analytical column: Nano cHiPLC column 75 �m x 15 cm ChromXP
C18-CL 3 �m 120 Å) coupled online to a Q-Exactive mass spectrom-
eter (Thermo Scientific). Peptides were separated by a linear gradient
from 95% buffer A (0.2% FA in water)/5% buffer B (0.2% FA in ACN)
to 65% buffer A/35% buffer B. The gradient length was altered
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between 10 min (single protein digest), 30 min (pools of eight) and 60
min (human and yeast digests). The MS was operated in data-de-
pendent TOP10 mode with the following settings: mass range 300–
1500 Th; resolution for MS1 scan 70,000 @ 200 Th; lock mass:
445.120025 Th; resolution for MS2 scan 17,500 @ 200 Th; isolation
width 2 m/z; NCE 27; underfill ratio 0.1%; charge state exclusion:
unassigned, 1; dynamic exclusion 15 s. Prior database search RAW-
files were converted into MGF-files using the ProteoWizard software
tool (19).

Additionally the yeast digest was analyzed with the same LC setup
on a Q-ToF MS (AB Sciex TripleToF 5600). The MS was operated in
data-dependent TOP25 mode with following settings: MS1 mass
range 400–1000 Th with 200 ms acc. time; MS2 mass range 150–
1400 Th with 60 ms acc. time and following MS2 selection criteria:
UNIT resolution, intensity threshold 200 cts; charge states 2–4.

MGF- and WIFF-files were searched in ProteinPilot 4.5 (AB Sciex,
Framingham, MA) with the implemented Paragon algorithm using
following settings – sample type: identification or SILAC (K�8, R�10);
Cys alkylation acrylamide; digestion: trypsin; instrument: Orbi MS,
Orbi MS/MS; search effort: rapid ID. ProteinPilot does not allow it to
choose the mass tolerances and number of missed cleavages. After
database search (spectral library samples: combined database of
human proteins in clone library (based on Uniprot May 2011) plus
wheat database (Triticum aestivum, PlantGDB Aug 2011), 5169 en-
tries; human sample: Uniprot database (May 2011), 35,807 entries;
yeast sample: SGD database downloaded on Sept 2011, 6751 en-
tries; all databases contained common laboratory contaminants). The
search results were exported and based on the peptide confidence
filtered by a global FDR of 1%. MaxQuant 1.5.0.0 (20) was used to
generate the iBAQ abundance values (21) (same databases as men-
tioned above, trypsin with up to two missed cleavages, mass toler-
ances set to 20 ppm for first search and 4.5 ppm for main search,
other settings were set to defaults). The search results were filtered
based on a 1% FDR on peptide and protein level. Peak areas for
peptide quantification were determined using a MS1-filtering experi-
ment in Skyline (22).

Mass spectrometry data and search results for the enriched protein
data sets are available at Peptideatlas.org (23) (identifier PASS00449,
http://www.peptideatlas.org/PASS/PASS00449).

Peptide Classification
Training Data—The LC-MS/MS data from the 120 singly analyzed

proteins were utilized as training data (2842 peptides, supplemental
Table S1). Tryptic in silico digestion of these proteins was performed
with the following settings (http://prospector.ucsf.edu/prospector/
cgi-bin/msform.cgi?form � msdigest): minimum five amino acids,
MW between 600 to 6400 Da. Any in silico peptide that was not
identified in the LC-MS/MS experiments was labeled as not detected.
To assess the data quality for model building/training the data have
been 10� cross validated.

Calculation of the Physicochemical Feature Values of the Pep-
tides—A total of 544 amino acid physicochemical features were con-
sidered as initial features in this study (10). Each physicochemical
feature contains 20 numeric values (continuous or discrete) indicating
its relative weights for the 20 amino acids. For each peptide the
feature’s aggregated value was computed by summing the feature
weights of the amino acids contained in the peptides. Therefore, the
peptide sequences in training data were transformed to a two-dimen-
sional feature-value matrix containing N*544 (N being the number of
peptides used for training) explanatory values, and a binary vector of
dimension N*1 indicating whether each peptide from the in silico
digestions was actually detected or not. Because different physico-
chemical features such as molecular weight, contain values orders of
magnitude larger than other features, the gradient descent back-
propagation algorithm adjusted weights for some features more than

for others. To reduce the bias toward features with larger values the
original input data was standardized—the mean and variance of each
feature was set to zero and one, respectively.

Artificial Neural Network Backpropagation
Input to the Neural Network—For the neural network classification

(24, 25), the input data consisted of a complete standardized feature
list, xi (i.e. the maximum number of inputs could be 544), where i is an
index to a specific physicochemical feature (input to first-order neu-
rons, i � 1,2,…, 544). The number of intermediate neurons and layer
were varied (see below). The network computed a single output value,
o, for each input peptides standardized aggregated feature values.
This model value will be compared with t, a binary value indicating the
peptide was detected by (t � 1) and not detected (t � 0). The training
process iteratively updated the model coefficients until the differ-
ences between all target values t� and original data o� were minimized.

Neural Network Structure—After multiple tests with different num-
bers of nodes and hidden layers on our initial test set (supplemental
Table S4 and below), we determined that one hidden layer with two
neurons recapitulated more complicated networks and hence used
this simpler design for all further analysis. Two sets of network clas-
sifier parameters were estimated, w●j, the weight of the j th hidden
neuron to output, j � 1,2, and wji, the weight of the i input to j hidden
neuron, i � 1,2,…,15, and j � 1,2.

Each neuron in the network first calculates the weighted linear com-
bination of the input nodes (1.3 first layer, 1.4 s layer) and then passes
this value through a sigmoid function (1.5) to help force the network to
categorize the outputs likely detected or likely not detected.

yj � ���
i�1

15

wji
t xi� (Eq. 1)

o � ���
j�1

2

w●j
t yj� (Eq. 2)

��z� �
1

1 � e�z (Eq. 3)

Objective Function—The weights in the neural network were
“trained” by minimizing the objective function (4) – the difference
between the target vector, t�, and output of the neural network for all
peptides, o� , from the input data

Ed�w� �
1
2�

k�1

N

�tk � ok�
2 �

1
2

� t� � o� �2 (Eq. 4)

Minimizing the Objective Function—The objective function was
minimized by iteratively testing small deviation from the current
weights (5), input-to-hidden weight wji and hidden-to-output weight
w●j, and updating w any time the objective function was smaller than
the previous attempt.

w � w � 	w (Eq. 5)

Given the network learning rate �, the model learning rule for
weight updates was a series of computations to find the steepest
descent in the error surface defined by the partial derivatives of error
surface with respect to weight vectors.

	w●j � ��
�Ed

�w●j
� �o�1 � o��t � o�yj (Eq. 6)
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	wji � ��
�Ed

�wij
� �yj�1 � yj�o�1 � o��t � o�w●j xi (Eq. 7)

Backpropagation was known for the weight updates by starting
from the hidden-to-output layer first and then propagated to the
input-to-hidden layer. This process was iterative; weights for the
hidden-to-output were updated first, followed by the input-to-hidden
layer weights, which also utilized weight updates in the downstream
layer.

Artificial Neural Network Model Training Procedures—Because
many physicochemical features are highly correlated with others,
feature selection methods such as back-selection or forward-selec-
tion were applied to reduce the number of redundant features.

During the training process, 90% of the data were randomly se-
lected as training data and the remaining 10% as validation data. This
procedure was repeated until every theoretical peptide was included
in the validation set. For any selected feature set, sensitivity rate,
specificity rate, and accuracy was computed to evaluate the model
performance (supplemental Table S4). Results from the performance
evaluations suggested that a considerable number of false positives
came from a small number of proteins (30) that were expressed at low
amounts (7 fmol/�l) and/or were identified with a low sequence cov-
erage (
 20%). These proteins were removed from the training data.

After training with the experimental data, a neural network model
containing 15 outer layer physicochemical features and a hidden layer
with two neurons performed best (scheme in Fig. 2A, supplemental
Table S5) and was utilized as basis for PPA.

In addition to the physicochemical properties that were used for
this model, our neural network was extended in one novel way by
including an extra feature to represent the protein abundance. Four
versions of the extended neural network full model have been devel-
oped: (1) absolute amount of protein (in fmol) determined using the
FLEXII-peptides, (2) the sequence coverage, (3) Top-3 abundance
(average signal intensity of the three highest intense tryptic peptides
(26)), and (4) iBAQ abundance (intensity of identified peptides divided
by theoretically observable peptides (21), supplemental Fig. S3). Us-
ing the identification result from the training data, the peptide’s PPA
were matched to its corresponding observation (detected/not de-
tected) and the models were compared based on Receiver Operating
Characteristic (ROC) and corresponding areas under the curve were
computed (AUROC, R package: ROCR by Tobias Sing and www.vas-
sarstats.net/roc_comp.html, supplemental Table S6, neural network
feature weights in supplemental Table S8).

Artificial Neuron Network Validation—For validation, in silico diges-
tion was performed on the identified proteins of the data set under
study as described for the training data (identification data from this
study in Supplemental Tables S2, S9–S11, additionally used data:
Wisniewski et al. (27) and Hebert et al. (2)). Peptides were flagged
whether they have been detected or not detected and the peptide
score based on the 15-feature model was calculated. Afterward, two
different sets of sequence coverage were applied to calculate the
PPA score of the peptides:

(1) Sequence coverage from another experiment (external se-
quence coverage, eSC): for the pool of eight and the Wisniewski et al.
samples the sequence coverage data from the human lysates ac-
quired on the Q-Exactive (K562 cells) were used and the Wisniewski
et al. data for the K562 data; for all yeast samples sequence coverage
information were used from de Godoy et al. (28).

(2) Sequence coverage from the data itself (internal sequence
coverage, iSC).

Similarly, a probability score was also computed for the same set
of peptides using ESP Predictor (15). Finally, the peptide’s PPA and
ESP score were matched to its corresponding observation (detected/
not detected) and the models were compared based on AUROC and

a modified z-test (29) was applied to compute the significance of the
difference between the models (supplemental Tables S6–S7).

Calculation of the Protein Enrichment/Prediction of Sequence Cov-
erage Based on PPA Scores—To enable the calculation of protein
enrichment, the protein abundance has to be transferred on a linear
scale (intensity scale) as the sequence coverage does not correlate
linearly with the protein abundance and reaches a maximum at 100%.
To convert the sequence coverage based input onto an intensity
scale, the PPA model was trained with Top-3 abundances (26) from
the initial training data set (performance comparison in supplemental
Fig. S6). Starting with an average protein abundance (log2 trans-
formed intensity) from the training data, the PPA scores of each
peptides per protein were calculated and a peptide length weighted
average PPA score per protein was computed. This weighted average
weighted PPA score can be seen as prediction of protein sequence
coverage. Afterward the intensity was iterated to match the weighted
PPA score average with the experimental sequence coverage, which
is the input value for most PPA applications. For enrichment predic-
tion, the intensity was increased so that peptides reach a predefined
PPA score (likelihood of peptide detection, default value: 0.65).

For the prediction of sequence coverage of the dilution series data
(Fig. 3B, supplemental Fig. S4C), PPA scores were calculated based
on the 15 features and the FLEXII-Tag abundance. The FLEXII-Tag
abundance was normalized by the ratio of the heavy FLEXII-Tag
versus the spiked in light FLEXII-peptides to correct for run-to-run
variation in MS signal intensity. Peptides with a score � 0.5 were
assumed to be detected, and therefore used to compute the pre-
dicted sequence coverage.

RESULTS AND DISCUSSION

Generation of a Spectral Library for Development of an
Abundance-based Classifier—Previous classifiers (12–15)
were developed and optimized for the prediction of the most
easily detectable “proteotypic” peptides for the purpose of
quantifying protein abundance. By focusing only on the most
detectable peptides, it was possible to develop these classi-
fiers using widely available LC-MS/MS data sets from com-
plex protein samples such as whole cell lysates (14, 15). In
contrast, in our study, we aimed at predicting the likelihood of
detecting every peptide of a tryptic digest, and understanding
how abundance quantitatively effects this prediction.

To this end, we used MS to analyze tryptic peptides derived
from proteins of known abundance. To achieve this, we
adapted our FLEXIQuant strategy (18, 30) (see Fig. 1A) to
create a large number of peptides of known abundance. This
strategy entails in vitro expression and purification of a large
number of proteins for which we designed an improved
FLEXII-plasmid to be used with wheat germ expression sys-
tems (pEU-E01-His-N1-FlexII, supplemental Fig. S1A). Ex-
pression from this improved plasmid results in recombinant
proteins with an N-terminal His6-tag for efficient purification
and a MS quantification tag, the FLEXII-Tag. The FLEXII-Tag
proteolyzes into several reporter peptides upon digestion with
trypsin, LysC, LysN, and/or GluC, thereby facilitating quick
isotope dilution-based MS based quantification of the ex-
pressed protein (supplemental Fig. S1B). These reporter pep-
tides (here called FLEXII-peptides) have artificial sequences
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that do not occur in any of the proteomes of any currently
used common model organism.

Our efforts to clone 846 genes into our improved FLEXII-
plasmid resulted in a clone library consisting of 801 gene
constructs. After in vitro transcription and translation, 703 of
the 801 expected proteins could be detected by SDS-PAGE
and Coomassie staining. Spot checks showed that missing
proteins typically resulted from stop codons, missing plas-
mids, or wrong clones. As determined by isotope dilution MS,
proteins were expressed between 0.5 and 62 pmol of protein
(95 percentile range reported here and below) for a single 240
�l in vitro transcription/translation reaction (median of 5.5
pmol). Digestion of 10–15% of each sample resulted in con-
centrations between 1.2 and 110 nM per protein digest (me-
dian 4.5 nM, supplemental Fig. S1C–E) as determined by
MS-based quantification with our FLEXII-peptides. For abso-
lute quantification by our FLEXIQuant approach and as train-
ing data set for the development of the classifier, we individ-
ually analyzed 120 of these purified proteins by LC-MS/MS.
As expected, higher protein abundance results in higher se-
quence coverage (supplemental Fig. S1F, supplemental Table
S1). To create a test set to validate our classification tool, 801

proteins were run in pools of eight proteins resulting in the
identification of 735 proteins (supplemental Table S2). On
average, we obtained a sequence coverage of 49% (16 to
77%) (Fig. 1B) with 21 peptides identified per protein (10 to
37, Fig. 1C), thereby providing an excellent basis for future
FLEXIQuant experiments.

To validate our system, replicates of the same digest (“tech-
nical replicates”) as well as replicates of the entire workflow
(“workflow replicates”) were analyzed. Using the binary read-
out of being identified or not identified in a data dependent
acquisition (DDA) routine, 89% of all peptides were detected
in the technical replicates and 86% of the peptides in the
workflow replicates (supplemental Fig. S2A). The two relevant
FLEXII-peptides used for quantification purposes were de-
tected in all replicates. Not surprisingly, peptides that were
identified in only one of the two replicate were on average
4-fold lower in intensity than peptides identified in both rep-
licates (supplemental Fig. S2B). A more detailed analysis of
the data showed that for those peptides only identified in a
single replicate, only for 12%, i.e. a minor fraction, the peptide
signal was clearly absent in the MS1 spectra. Of the remaining
88% of the peptides identified only in a single replicate,

FIG. 1. Workflow of Spectral Library Generation. A, Workflow: 846 genes from the human ORFeome bank were introduced via Gateway
cloning into a wheat germ expression vector (vector map in supplemental Fig. S1A) containing a 5�-FLEXII-Tag (sequence in supplemental Fig.
S1B) resulting in a clone library with 801 of the selected 846 ORFs (95%). FLEXII-tagged proteins were expressed in cell-free wheat germ
expression system and enriched via Ni-NTA beads. Eighty-four percent of the expressed clones yielded visible bands on SDS-PAGE (details
in supplemental Fig. S1C). The purified proteins were in solution trypsinized and the peptide mixtures were analyzed in pools of eight by
LC-MS/MS on a Q-Exactive mass spectrometer. Database searches were performed by the ProteinPilot software and a global FDR cutoff of
1% was chosen for peptide/protein identification resulting in 735 identified proteins, that is an identification rate of 90%; this included proteins
not visible by SDS-PAGE. Absolute quantification was carried out using synthetic peptide-based isotope dilution mass spectrometry when
necessary. MS data are publicly available at Peptide Atlas (www.peptideatlas.org). B, Sequence coverage distribution for the 735 identified
proteins. C, Distribution of the observed number of peptides per protein for the 735 identified proteins.
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MS/MS data were not acquired for �50% of the peptides
suggesting that the precursor intensity was too low to trigger
MS/MS experiments; for the other 50%, MS/MS spectra were
acquired, but the quality of the spectra was too low to gen-
erate a positive database hit (within the 1% FDR threshold).

In summary, these experiments confirmed the notion that
the reproducibility of peptide identification using DDA routines
highly depends on the peptide signal intensities. To be able to
create an abundance-based tool for predicting detectability it
was also necessary to validate the quantitative reproducibility
of our intensity measurements. To this end, we determined
the reproducibility of our FLEXII-peptides as these peptides
were the initial basis of the abundance measurement for our
peptide classifier; one peptide had a correlation coefficient of
0.89 and the other 0.96, i.e. the average fold changes be-
tween the replicates were within 10% highlighting the preci-
sion of our approach (supplemental Fig. S2C).

A Peptide Classifier That Incorporates Protein Abundance—
Following the example of previously published tools for pre-
dicting the easily detectable “proteotypic” peptides14,15, we
started out using a set of 544 different amino acid features
(10). A 10x-cross validation approach was used to train and
test our classification model based on the LC-MS/MS data of
the 120 individually analyzed protein digests. We evaluated
our classifier not only on its ability to predict whether a pep-
tide is detected, but also on its ability to predict whether a
peptide is not detected.

Three different classification methods were tested: Support
Vector Machine (SVM) (31), Random Forest (32), and neural
network approaches (25). The initial evaluation of the classi-
fication methods suggested that the neural network provided
slightly better results than Random Forest, which in turn gave
better results than SVM. Thus, we used the former for further-
ing the development of our classification model (Fig. 2A and
supplemental Table S3). Our classifier assigns each peptide a
detectability classification score between zero and one that
represents our confidence in detecting or not detecting a
peptide. A score of one signifies 100% confidence that a

peptide will be detected, whereas a score of zero signifies
100% confidence that a peptide will not be detected. We
calculated the score for each detected and not detected
peptides from the individually analyzed protein digests and
plotted the densities (Fig. 2B). Our neural network model is
able to separate between detected (Fig. 2B - red curve) and
not detected peptides (Fig. 2B - blue curve). Importantly,
�60% of peptides receive scores above 0.75 or below 0.15
underscoring the notion that for the majority of peptides we
can predict with reasonable confidence that it will or will not
be detected.

We first developed a classifier that incorporated all 544
different amino acid features similar to previously published
studies (15). Because of the risk of overfitting, we sought to
determine if the number of features could be reduced without
significant reduction in classification performance. In the end,
a classifier with only 15-features had comparable perfor-
mance to a classifier with all 544 features (see Materials and
Methods for details, supplemental Tables S4–S5 for the final
set of 15 features) on the same training set. Our 15-feature
classifier performed at least as well as the ESP predictor (Fig.
2C, Materials and Methods for details, and supplemental Ta-
ble S6), also demonstrating that 2842 peptides from 120
proteins is a sufficiently large training set for peptide classifi-
cation.

Next, abundance was integrated into our 15-feature classi-
fier. Using the average signal intensity of our FLEXII-peptides
as a measure of abundance significantly improved the area
under the receiver operating characteristic curve (AUROC)
from 0.79 to 0.83 (Fig 2C, p value 
1e6 by modified z-test
(29), supplemental Tables S6–S8). Although this significant
improvement clearly shows that abundance information is a
highly relevant feature for predicting the detectability of pep-
tides, in practice, researchers will most often not have exog-
enously expressed tagged proteins available as a standard.
Thus, we tested whether sequence coverage could be used
as an easily available protein-specific abundance estimate
instead of FLEXII-peptide intensity. Indeed, sequence cover-

FIG. 2. Incorporation of Protein Abundance in Peptide Detection Classifier Improves Performance. A, Scheme of the neural network
model used for classification of peptide detection resulting in 16 features including 15 physicochemical properties and protein abundance,
resulting in the Peptide Prediction with Abundance (PPA) score. The model was trained with 10-fold cross-validation. B, Distribution of PPA
scores for detected versus not detected peptides of the 120 singly analyzed protein digests. C, The Receiver Operating Characteristic (ROC)
was calculated for three models and compared with the previously published ESP predictor (15): red: 15 neural network model physicochem-
ical features only; blue: PPA including protein abundance (PA) as FLEXII-peptide intensity; orange: PPA including protein abundance (PA) as
sequence coverage; green: ESP predictor on the 10-fold cross-validated data set.
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age and signal intensity of the FLEXII-peptides resulted in
similar performance improvements over our 15-feature clas-
sifier (Fig. 2C - AUROC 0.84 versus 0.83).

Although sequence coverage is an easily available protein
abundance estimate, other studies have shown that it is only
an estimate for protein abundance, i.e. it is not very precise
(33, 34). Therefore, we tested whether the use of the iBAQ as
a quantitative measure of protein abundance would improve
our classifier; iBAQ is defined as the intensities of all observed
peptides divided by theoretically observable peptides (21),
which has been shown to be a reliable absolute protein quan-
tification method (33). To ensure comparability of the iBAQ
values independent of the mass spectrometer used for the
analysis, we calculated normalized iBAQ values by dividing all
iBAQ values by the highest iBAQ value in the data set of
interest. Using these normalized iBAQ values we generated
an iBAQ-based classifier and applied it to two different data
sets: one acquired on a Q-Exactive (Orbitrap), the other on a
TripleTOF 5600 (quadrupole TOF). Comparing the perfor-
mances of an iBAQ based or sequence coverage based clas-
sifier, we obtained AUROCs of 0.85 versus 0.83 (Q-Exactive)
and 0.82 versus 0.82 (TripleTOF 5600), respectively. An iBAQ-
based classifier is at best only marginally better than a cov-
erage-based classifier (supplemental Fig. S3, supplemental
Table S6). We therefore decided to continue to focus on the
sequence coverage-based classifier to account for the fact
that sequence coverage information is normally readily avail-
able for proteomics data sets and does not require additional
data analysis and/or data normalization.

Given the initial promise of this tool, we named it “Peptide
Prediction with Abundance” (PPA) and next sought to validate
PPA on other data sets.

PPA Validation—Next, we validated our ability to predict
whether a specific peptide of interest is detected given a
known protein abundance and whether we can predict the
change in peptide detectability with changing protein abun-
dance. This is particularly important as we envision the utility
of our tool being its ability to predict the enrichment needed to
detect a specific peptide of interest. We computed, over a
broad range of protein abundances, the PPA score of each
peptide and found significant differences even when the pep-
tides are from the same protein (Fig. 3A, supplemental Fig.
S4A). We then compared the computation to an experimental
dilution series of 31 different proteins at 2–4 different concen-
trations (DTX3 in Fig. 3B, other 30 proteins in supplemental
Fig. S4B–S4C) for a total of 110 predictions. Analyzing the
data from all 31 dilution series, 96% of the peptides with PPA
scores 
0.15 were not detected, whereas 83% of the pep-
tides with PPA scores �0.75 were detected. In summary, we
were able to correctly predict peptide detectability 78% of the
time (Fig. 3B and supplemental Fig. S4B–S4C). To the best of
our knowledge there is no other peptide prediction software is
able to predict changes in peptide detectability over a wide
range of protein concentration.

A second way to evaluate the ability of our PPA classifier to
predict abundance-based detectability is to compare pre-
dicted sequence coverage to actual sequence coverage at
several different concentrations. PPA scores were again cal-
culated over a broad range of concentrations, but here these
PPA scores were converted into a single metric – sequence
coverage. Predicted sequence coverage was calculated by
assuming that a peptide will be detected if the PPA score was
above 0.5. This value is a based on the PPA score that was
equally likely to predict a peptide would be detected as not
detected (Fig. 2B). Fig. 3B–3D compares our predicted se-
quence coverage to the actual sequence coverage from at
least three dilutions of 31 proteins (supplemental Fig. S4B–
S4C); the observed median difference between predicted se-
quence coverage and actual sequence coverage (	SC in Fig.
3C) is �0.6% with a standard deviation of 15%. The median
of the absolute value of 	SC is 9%. Additionally, we estimated
the accuracy of our method by dividing the experimental
protein abundance by the predicted protein abundance re-
quired to obtain the same sequence coverage as experimen-
tally obtained sequence coverage (	PA in Fig. 3D). The me-
dian 	PA is 1.4-fold with a standard deviation of sixfold. The
median of the absolute value of 	PA was fivefold (see also
supplemental Fig. S4D). This shows again, that our PPA clas-
sifier is capable of predicting which peptides are either de-
tected or not detected as a function of abundance, thereby
underscoring PPA’s utility as a tool for determining how much
enrichment would be required to detect a peptide of interest.

After confirming that the PPA tool works for single protein
digests and enrichment prediction, we extended the testing of
PPA to complex samples. Specifically, we tested the perfor-
mance of PPA on data from samples containing: (1) mixtures
of eight recombinantly expressed proteins (Fig. 4A), (2) human
K562 cell lysates (Fig. 4B), and (3) yeast lysates (Fig. 4C).
LC-MS/MS data for all samples were collected on a Q-Exac-
tive mass spectrometer (supplemental Tables S9–S10). For
the calculation of the PPA, we used protein abundance esti-
mates from one of two sources: (1) external sequence cover-
age (eSC), that is, protein abundance information from other
sources than the initial data set, or 2) internal sequence infor-
mation (iSC), i.e. sequence coverage from the same data set
analyzed.

The following eSCs were used for the different data sets: 1)
sequence coverage from our human K562 cell lysate data to
calculate the eSC for the recombinant protein mixture, 2)
sequence coverage information from de Godoy et al. (28) for
the yeast lysate, and 3) sequence coverage information pub-
lished by Wisniewski et al. (27) from a human colon tissue
proteomics study for the human K562 cell lysate. Fig. 4A–4C
compares PPA using eSC and iSC to the ESP predictor and
our initial 15-feature classifier for these three data sets. Even
though the protein abundance values used for eSCs are very
crude estimates, as they are likely to vary widely based on
sample type and/or condition, PPA with eSC outperformed
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our initial 15-feature classifier and the ESP predictor under all
(except the recombinant protein mixture) tested conditions
(Fig. 4), with p values of 1e-5 (modified z-test (29)) or better.
As expected, the protein mixtures comprising eight recombi-
nantly expressed proteins were the only exception as there is
no reason to expect any correlation between expression in a
human cell type and in vitro expression in a wheat germ
extract (supplemental Tables S6–S7).

Although the PPA calculated with eSC (PPAeSC) improved
the AUROC, we reasoned that an abundance measurement
directly from the sample of interest should be more accurate.
Protein abundance was therefore calculated directly from the
sequence coverage of the measured samples to determine
the PPA score (PPAiSC). PPAiSC had the highest AUROC
across all samples (p values less than 1e-6 by modified z-test
(29)) (Fig. 4, supplemental Tables S6–S7). Using PPA with
internal sequence information from the sample itself may
seem circular. However, the rationale for using this internal

sequence information is that the most frequent application
envisioned for PPA will be the detailed characterization of one
protein or a set of proteins. Such characterization normally
entails pilot experiments, that is preliminary LC-MS/MS-
based analyses of some test samples whose results can be
used by the researchers to estimate the amount and/or en-
richment necessary to detect the peptides of interests.

To validate PPA across MS platforms we compared ESP
predictor, our initial 15-feature model, PPAeSC, and PPAiSC on
three different samples: (1) human colon tissue data acquired
on an Orbitrap Velos (27) (Fig. 4D), (2) yeast samples analyzed
on a TripleTOF 5600 (Fig. 4E, supplemental Table S11), and
(3) yeast data acquired on an Orbitrap Fusion (2) (Fig. 4F).
Sequence coverage from our human K562 cell lysate data
was used to calculate eSC for the human colon tissue data set
and sequence coverage information from de Godoy et al. (28)
was used as eSC for the two yeast lysate data sets. PPAeSC

improves on the AUROC over the 15-features and ESP

FIG. 3. Validation of PPA Enrichment Prediction. A, Each line represents the abundance depended PPA score for all individual peptides
from DTX3 at different protein concentrations. These predictions were compared with the outcome of LC-MS/MS analyses of DTX3 digests
at three different concentrations. Black: not-detected; green: detected at 4 fmol; blue: detected at 7.6 fmol; red: detected at 65.2 fmol. B,
Prediction of protein abundance-dependent sequence coverage (blue curve) for DTX3. For a sequence coverage prediction, peptides with a
PPA score � 0.5 were considered to be detected. Inset highlights our two evaluation metrics – 	SC and 	PA. The pie charts represent the
experimental data points. Green color: correct prediction; red color: peptides were not detected, but predicted to be detected; white color:
peptides were detected, but not predicted to be detected. Each data point (supplemental Fig. S4C) contributes to C and D. C, This histogram
uses all 110 data points. D, This histogram uses 95 data points (all 110 data points are shown in supplemental Fig. S4D). We eliminate 15 data
points where the maximal sequence coverage of our prediction was less than the actual observed sequence coverage. This results when a
single peptide from a protein that has a very low PPA score is actually detected.
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metrics (p value for ESP versus PPAeSC 
1e-6 by modified
z-test (29); Supplemental Table S7). Further improvement is
achieved when iSC is used for the PPA as determined by
AUROC (p value ESP versus PPAiSC 
1e-6 by modified z-test
(29)).

We noticed that the 15-feature model, PPAeSC and PPAiSC

prediction performance improvements relative to the ESP
were less significant in the case of the Orbitrap Velos and
Orbitrap Fusion data sets in comparison to the Q-Exactive
data sets. One obvious difference between the data sets is the
application of two different types of collision-induced disso-
ciation, namely ion trap CID in the case of the Orbitrap Velos
and Fusion and HCD in the case of the Q-Exactive. Therefore,
to explore the effect of the fragmentation method on the
prediction performance, we trained the 15-feature model us-
ing a CID-based data set acquired on an Orbitrap Velos data
set (27). For performance evaluation, we applied two different
models, one trained with the ion trap CID data and one with
the HCD data, to a CID-based data set (Orbitrap Fusion; see
Ref (2) and to a HCD-based data set (Q-Exactive; see sup-
plementary Table S10). The ROC analysis of the results
showed that the prediction performance is independent of the
type of collision-induced dissociation (supplemental Fig. S5),
that is, the AUROCs were almost identical irrespective of the

PPA model used (supplemental Table S6). Although the im-
provement in AUROC for the PPAeSC and PPAiSC metric are
smaller when compared with the ESP metric for our two data
sets from the Orbitrap Velos and Orbitrap Fusion, collision
method does not explain this difference. Instead, some other
variable must exist that explains this difference perhaps dif-
ferences in analytical depth in the different data sets; deter-
mining the source of this difference is out of the scope of this
work.

In summary, PPA works on samples from multiple organ-
isms and across several mass spectrometry platforms to suc-
cessfully predict when a peptide is detected. The thorough
testing and validation of the PPA with data sets acquired on
different instrument types (Orbitrap, ion linear ion trap/or-
bitrap, and/or quadrupole-TOF) ensures that the PPA is very
robust and is valid for use with the vast majority of the LC/
MS-based proteomics data sets. That is, a single PPA model
can be used: (1) irrespective of the type collision-induced
dissociation (i.e. ion trap CID versus HCD/linear quadrupole
CID; see above and supplemental Fig. S5), (2) independent of
the ion sources from different instrument manufacturers (var-
ious generations of Thermo ion sources versus ion source
from AB Sciex), and (3) independent of the mass analyzer
used for the acquisition of the product ion spectra (low reso-

FIG. 4. Validation of PPA Classification Model on Different Data sets. A–C, ROC-based evaluation of different PPA models and the ESP
predictor (15) using various data sets acquired on a Q-Exactive and across instrument platforms: A, data from a pool of eight individual protein
digests, B, data from an unfractionated K562 cell lysate, and C, data from an unfractionated yeast lysate. D, publicly available Orbitrap Velos
data from highly fractionated colon tissue lysates (27), E, TripleTOF 5600 data from an unfractionated yeast lysate, and F, publicly available
Orbitrap Fusion data from an unfractionated yeast lysate (2). ROC curves for the ESP predictor (green, “ESP”), our PPA using only the 15
physicochemical properties (red, “15”), our PPA predictor using sequence coverage information from previously published resources as
(external) abundance feature (blue, “eSC”), and our PPA score using the data set-derived sequence coverage as (internal) abundance feature
(orange, “iSC”). The statistical significance for the difference between “15” and “eSC,” “15” and “iSC,” and “ESP” and “iSC” was determined
by modified z-test (29); p values are listed.
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lution and accuracy ion trap versus high resolution and accu-
racy TOF and/or Orbitrap).

Given this robustness in our PPA model, scenarios for
generating new neural network parameters for a customized
PPA are limited to drastic changes in the analytical strategy
such as alternative fragmentation mechanisms such as elec-
tron transfer dissociation (ETD), or changes in the upfront
liquid chromatography, which significantly alters the contribu-
tion from very hydrophilic and/or hydrophobic peptides. Sim-
ilarly, users should consider testing the appropriate set of
physicochemical properties when selected amino acid side
chains are derivatized that cause significant changes in their
properties. One example for such modification is lysine pro-
pionylation; this derivatization abolishes the basic properties
of the side chain and significantly increases the hydrophobic-
ity. To facilitate the extension of PPA beyond the tested
conditions, we provide the source code, which will allow users
to develop classifiers that are more specific to their respective
instrument and data set.

CONCLUSIONS

Earlier work has shown that physicochemical properties of
peptides can predict detectability by MS. However, these
previous prediction algorithms focused on identifying the
most detectable, that is, the “proteotypic” peptides to facili-
tate protein quantification. For protein quantification the
choice of peptides is based on their detectabilities and re-
searchers are able to select the most detectable peptides of
the protein of interest. In contrast, in the analysis of post-
translational modifications, one does not have the luxury of
selecting the peptides of choice. Instead, the modification
defines the peptide of interest, irrespective of its detectability.
Therefore, we were interested in an algorithm to estimate the
likelihood of detecting any peptide and the amount of enrich-
ment needed to detect a particular peptide that is not initially
detected. Based on a neural network approach, we identified
15 physicochemical properties that combined with a measure
of protein abundance (Peptide Prediction with Abundance -
PPA) allows for better detectability predictions than other
published programs and algorithms. PPA was validated using
data sets from various samples and instrument platforms from
our own as well as other labs. Quantitative information from
literature or protein sequence coverage from pilot experi-
ments can be used as an abundance input, thereby making
PPA a very useful tool to guide targeted experiments aimed at
characterizing proteins and/or monitoring selected peptides.

PPA is available for download or can be used through our web
interface at http://software.steenlab.org/rc4/PPA.php. Using the
web-based tool, the user enters one or many peptides or
protein sequences and optionally sequence coverage infor-
mation (either from pilot experiments or from published stud-
ies) for the different protein sequences. Optionally, the user
can also provide a protein amount in fmol, in case the protein
has been precisely quantified in previous experiments. The

web-based tool then performs an in silico tryptic digestion
and predicts on a peptide-by-peptide basis the probability of
detecting each peptide as well as the enrichment needed for
a desired probability of detection, that is, PPA score.
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