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introduction
Massively parallel sequencing, also called next-generation 
sequencing, has dramatically lowered the cost of genomic 
sequencing for multiple genetic conditions. Best ethical and 
clinical practice for clinical diagnostic testing using traditional 
targeted sequencing technologies requires obtaining informed 
consent and ensuring the availability of genetic counseling. 
Testing for specific genetic conditions using massively paral-
lel sequencing poses new challenges in terms of ensuring that 
informed consent is obtained because testing may discover off-
target genetic conditions, known as incidental findings (IFs).1,2

The American College of Medical Genetics and Genomics 
(ACMG) recently published recommendations proposing the 
mandated clinical reporting of IFs for 24 autosomal dominant 
(AD) (including one semidominant) conditions.3–5 These con-
ditions were selected because they are highly penetrant, asymp-
tomatic for long periods of time, and amenable to preventive 
measures and/or treatments. Controversially, the ACMG rec-
ommended that genetic identification of the 24 conditions 
be sought and reported “without reference to patient prefer-
ences” both because of the high potential benefit to patients 
and because individual informed consent seemed logistically 
unfeasible. In its policy statement the ACMG predicted “1% of 

sequencing reports will include an incidental variant” from the 
list of 24. Other authors applied the ACMG recommendations 
to various data sets and found rates of IFs varying from 1.2 to 
11%.6–9

We describe a simple mathematical model that calculates the 
rate at which AD IFs would occur in a data set or a popula-
tion. Our model is based on binomial distribution, and input 
requires only an estimate (or range of estimates) of gene fre-
quencies of variants (including mutations). We primed the 
model with variant frequencies drawn from the literature. We 
then validated the model by comparing its predicted rates of IFs 
with those found from other data sets.

Assuming that exome and whole-genome sequencing 
becomes increasingly routine, it is likely that the lists of recom-
mended conditions to be reported will expand. The ACMG has 
recommended that only variants highly likely to be pathogenic 
be included among the genes for which reporting is mandatory. 
As the establishment of reference databases of variation con-
tinues to expand, new variants are being found and the clas-
sification of variants into pathogenic versus nonpathogenic is 
continuing to change.10 We used our model to study the effects 
of increasing the number of AD conditions included. We also 
used our model to predict how changes in the frequencies of 
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Purpose: The American College of Medical Genetics and Genomics 
released practice guidelines recommending reporting of incidental 
findings from exome and whole-genome sequencing by massively 
parallel (next-generation) sequencing for multiple conditions. Policy 
statements from other agencies are still being developed, and many 
attempt to take into consideration the predicted increase in workload 
caused by reporting incidental findings. We describe the effects of 
changing the sensitivity and the specificity, as well as the implications 
of varying diagnostic criteria and a priori prevalence, and those of 
increasing the number of included conditions, on rates of incidental 
findings.

Methods: We developed a simple mathematical model based on 
binomial probability for predicting rates of incidental findings. We 
primed and validated the model using published variant frequencies.

results: The model correctly calculates observed rates of incidental 
findings. Changing the model’s parameters shows that even minor 
changes in diagnostic criteria or sequencing accuracy cause large 
variation in rates of incidental findings.

conclusion: Our model correctly explains observed rates of 
 incidental findings. Key drivers of rates include diagnostic criteria, 
variant frequency, disease penetrance, and sequencing and bioinfor-
matics accuracy. Rates of incidental findings are relatively insensitive 
to even large increases in the number of conditions included.
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variants, or of variants of unknown significance (VUS), might 
affect the rates of reporting of IFs; finally, we define the theo-
retical limits of rates of reporting of IFs.

MAteriALs And MetHods
in silico model
A simple mathematical model was developed based on bino-
mial distribution.11

p X 1 1 P1 1 P2 1 Pn( )= − − ⋅ − ⋅… −(( ) ( ) ( )) (1)

p(X) represents the probability of reporting at least one IF, and 
P1 to Pn are the pathogenic variant frequencies of the various 
genetic conditions.

The model assumes all conditions are inherited indepen-
dently. We used gene variant prevalence data when available. 
For those conditions for which variant prevalence data were 
not available, we estimated them by assuming they were the 
same as the observed disease prevalence with 100% penetrance. 
Variations in penetrance were addressed by sensitivity analysis 
over a range of variant rates (described below).

Validation of model
A diagnostic panel was constructed in silico based on the 24 
ACMG-recommended minimum list of genes to be reported.3 
Prevalence data were obtained from the literature (Table 1). 
When a range of prevalence data was available, the lowest and 
highest values were selected, and the most likely estimate was 
calculated as the geometric mean. Alternatively, when only a 
single datum was available, half and twice this prevalence were 
selected as the low and high estimates, respectively.

The predicted rate of IFs was calculated by applying these 
gene frequencies (Table 1) to our model (Eq. 1). Calculations 
were repeated separately for the lower and higher limits.

Assessing the impact of deviations from reported variant 
prevalence rates
To simulate the effect of altering variant prevalence rates 
(because of changes in variant classification, variations in dis-
ease penetrance, inaccuracies in the literature data, or differ-
ences in populations), we performed sensitivity analysis by 
repeating our calculations over a range of three log2 orders of 
magnitude of variant frequencies, using one-quarter or one-
half the lower or twice the upper reported estimates of preva-
lence for all conditions in Table 1. This simulation would also 
account for errors in sequencing or incorrect annotations in 
variant databases resulting in incorrectly calling variants patho-
genic, nonpathogenic, or VUS. The range of values was chosen 
to cover the range of described inaccuracies of current variant 
databases.10,12

simulating the effects of increasing the number of tested 
conditions
To calculate the increase in reporting frequency that occurs 
with the inclusion of additional conditions, we first ordered the 
list of variant frequencies from most to least frequent. We then 

successively considered including only the most common con-
dition, the two most common conditions, the three most com-
mon conditions, and so forth, until all conditions were included 
for the calculation of the cumulative frequency of predicted sig-
nificant findings. To determine the incremental contribution of 
each additional condition tested to the overall rate of findings, 
we calculated the percentage difference between the predicted 
frequency of findings for the first n most common conditions 
and the (n + 1) next most common condition. We identified the 
value of n at which there was less than a 1% relative increase in 
findings, as well as the value of n at which the relative increase 
in findings was less than 0.1%.

To simulate the effect of further increasing the number of 
included conditions in some future panel of recommended 
reporting conditions, we extended our model. We allocated each 
of the conditions examined into one of 10 “bins” based on orders 
of magnitude of variant frequency; these bins ranged from 2, 1, 
0.1, 0.01, and 0.001 down to 10–8%. This allocation was done in 
two separate experiments. Each condition was initially assigned 
to the bin with the closest frequency that it did not exceed (to 
produce a maximum estimate), and then each was assigned to 
the bin with closest frequency that it did exceed (to produce a 
minimum estimate). We repeated the in silico simulation of all 
conditions in Table 1 to validate the modification of the model. 
We then observed the effects of changing the number of condi-
tions in each variant frequency bin.

resuLts
iFs and Ad inheritance
Applying our model to the proposed ACMG-recommended 
screening panel of 24 conditions (Table 1), we calculated that 
~2.7% (range: 1.5–6.5%) of screened individuals would have an 
IF (Tables 2 and 3).

We considered the impact of IFs on the rate of reporting if 
variant frequencies were to change or if there were sequenc-
ing errors or errors in the subsequent bioinformatics analyses 
and database annotations. For each condition in Table 1, we 
repeated our calculations by assuming the highest and lowest 
variant prevalence rates were incorrect by a factor of two or four 
(Figure 1 and Tables 2 and 3).

increasing the list of mandatory reporting conditions
We studied the effects of increasing the number of tested 
AD conditions on the predicted number of IFs reported. 
Commencing with the one condition in the ACMG list with 
the highest variant prevalence, we simulated the effects of test-
ing for only that one condition, or for that condition plus the 
next most prevalent condition, or for those two conditions plus 
the next most prevalent condition, and so on, until all 24 condi-
tions were included. The resulting rates of IFs and the marginal 
increase in IFs with each addition to the number of conditions 
tested are shown in Figure 2. Using only the seven genes with 
the highest variant prevalence of the 24 genes recommended 
for mandatory reporting contributed 97% toward the total 
number of predicted IFs; including the 11 most prevalent of the 
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24 genes contributed 99%, and by the time 19 of the 24 genes 
had been considered, more than 99.9% of all IFs discoverable 
with the full ACMG list would have been reported.

To generalize our understanding of the rate at which sig-
nificant findings will be reported as the number of conditions 
being considered is increased, we modified our model slightly 
by introducing “bins” of logarithmic variant frequencies. This 
modification did not significantly change our calculation of the 
rate of IFs for the ACMG panel of AD conditions: the range of 
IFs predicted by our original model (1.5–6.5%; Table 1) became 

1.5–6.3% using the binned model. However, using the binned 
model, we were able to simulate the effect of introducing addi-
tional conditions. We found that increasing the number of con-
ditions being considered had very different effects, depending 
on the variant frequencies of those conditions. Adding only 
a small number of conditions with high variant frequencies 
(>0.1%) has a large effect on the number of IFs. By contrast, the 
addition of 100 conditions with variant frequency of ~10–2, or 
even 1,000 conditions with variant frequency of ~10–3, did not 
have as large an effect on the number of IFs (Figure 3).

table 1 Prevalence and frequencies of gene variants for the 24 ACMG conditions

Probability disease phenotype Genes

carrier frequency (%)

references
Low 

estimate
Most likely 
estimate

High 
estimate

P1 Hereditary breast and ovarian cancer BRCA1, BRCA2 0.1060 0.4589a 2.8820 14–16

P2 Li–Fraumeni syndrome TP53 0.0050 0.0100a 0.0200 17

P3 Peutz–Jeghers syndrome STK11 0.0004 0.0012a 0.0040 18

P4 Lynch syndrome MLH1, MSH2, MSH6, 
PMS2

0.0500 0.1066a 0.2273 19

P5 Familial adenomatous polyposis APC 0.0023 0.0027a 0.0032 20

P6 MYH-associated polyposis; adenomas, 
multiple colorectal, FAP type 2, colorectal 
adenomatous polyposis, autosomal 
recessive, with pilomatricomas

MUTYH 1.0000 1.4142a 2.0000 21

P7 Von Hippel–Lindau syndrome VHL 0.0014a 0.0028 0.0056a 22

P8 MEN1 MEN1 0.0017a 0.0033 0.0067a 23

P9 MEN2 RET 0.0014a 0.0029 0.0057a 24

P10 Familial medullary thyroid cancer RET, NTRK1 Included 
in MEN2

Included in 
MEN2

Included 
in MEN2

NA

P11 PTEN hamartoma tumor syndrome PTEN 0.0003a 0.0005 0.0010a 25

P12 Retinoblastoma RB1 0.0050 0.0058a 0.0067 26

P13 Hereditary paraganglioma–
pheochromocytoma syndrome

SDHD, SDHAF2, SDHC, 
SDHB

0.0001 0.0003a 0.0009 27

P14 Tuberous sclerosis complex TSC1, TSC2 0.0086a 0.0172 0.0345a 28

P15 WT1-related Wilms tumor WT1 0.0005 0.0006a 0.0006 29

P16 Neurofibromatosis type 2 NF2 0.0025 0.0028a 0.0030 30

P17 Ehlers–Danlos syndrome, vascular type COL3A1 0.0005 0.0010a 0.0020 31

P18 Marfan syndrome, Loeys–Dietz syndrome, 
and familial thoracic aortic aneurysms and 
dissections

FBN1, TGFBR1, TGFBR2, 
SMAD3, ACTA2, MYLK, 
MYH11

0.0102 0.0144a 0.0205 32–34

P19 Hypertrophic cardiomyopathy, dilated 
cardiomyopathy

MYBPC3, MYH7, 
TNNT2, TNNI3, TPM1, 
MYL3, ACTC1, PRKAG2, 
GLA, MYL2, LMNA

0.1100 0.1241a 0.1400 35

P20 Catecholaminergic polymorphic ventricular 
tachycardia

RYR2 0.0050 0.0058a 0.0066 36

P21 Arrhythmogenic right-ventricular 
cardiomyopathy

PKP2, DSP, DSC2, 
TMEM43, DSG2

0.0800 0.2530a 0.8000 37

P22 Romano–Ward long QT syndrome types 1, 
2, and 3; Brugada syndrome

KCNQ1, KCNH2, SCN5A 0.0143 0.0218a 0.0333 38

P23 Familial hypercholesterolemia LDLR, APOB, PCSK9 0.1500a 0.3000 0.6000a 39

P24 Malignant hyperthermia susceptibility RYR1, CACNA1S 0.0010a 0.0071 0.0500a 40

Each probability, P1–P24, represents the combined probabilities of the conditions listed; for example, P1 represents the combined probabilities of BRCA1 and BRCA2. Note 
that familial medullary thyroid cancer (P10) is included in MEN2 (P9).

ACMG, American College of Medical Genetics and Genomics; FAP, familial adenomatous polyposis; MEN, multiple endocrine neoplasia; MYH, MUTYH mutY homolog ; NA, 
not available; PTEN, phosphatase and tensin homolog.
aFrequency estimates indicate calculated estimates (see Materials and Methods section).
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discussion
Massively parallel sequencing technologies will greatly increase 
the number of genetic diagnoses made primarily through labo-
ratory testing. High rates of reporting of significant genetic find-
ings will result in downstream costs to and impact on the health 
system because of the need for genetic counseling, confirma-
tory testing, medical consultation, and potential intervention. 

However, the individuals identified may derive significant 
benefit from identification of these findings, and the high rates 
of reporting may ultimately provide cost benefits through 
improved screening and early medical intervention. The costs 
to implement the recommendations need to be compared with 
the potential benefits, cost offsets, and utility of reporting and 
acting on these findings.

We have developed a model to simulate the impact of changes 
in variant frequencies and classification and of expanding the 
list of conditions recommended for mandatory reporting. The 
impact of expanding the list of conditions for reporting can also 
be considered a model to demonstrate the impact of reporting 
VUS in addition to pathogenic mutations. We used this model 
to explore the likely impact of expanded testing on the rates of 
diagnoses of AD conditions (and especially IFs).

the rate of iFs
The implementation of the ACMG Recommendations for 
Clinical Reporting of Incidental Findings suggested only a 
modest increase in the use of health system resources, with 
an estimated IF frequency of ~1%.3 Recent studies by others 
have begun to explore these implications, initially by apply-
ing the ACMG Recommendations to various large data sets.6,8,9 
These studies suggest that the rate of IFs may be higher than 

table 2 Modeling how the overall rates of IFs are 
influenced by prevalence rates for the 24 ACMG 
conditions

Variant frequenciesa 
(relative to table 1)

iF rate

Lower limit
Most 
likely upper limit

4× Table 1 — — 24.1

2× Table 1 — — 12.7

1× Table 1b 1.5 2.7 6.5

0.5× Table 1 0.8 — —

0.25× Table 1 0.4 — —

ACMG, American College of Medical Genetics and Genomics; IF, incidental finding.
aColumn labeled “Variant frequencies” indicates the effects of frequencies of 
variants relative to Table 1.
bRow labeled “1× Table 1” shows the rate of IFs for variant prevalence rates shown 
in Table 1.

table 3 ACMG condition and identifier code from Table 1

iterative ranking AcMG condition
“P” code 

(from table 1)

1 MYH-associated polyposis; adenomas, multiple colorectal; familial adenomatous polyposis type 2; 
colorectal adenomatous polyposis, autosomal recessive, with pilomatricomas

6

2 Hereditary breast and ovarian cancer 1

3 Familial hypercholesterolemia 23

4 Arrhythmogenic right-ventricular cardiomyopathy 21

5 Hypertrophic cardiomyopathy; dilated cardiomyopathy 19

6 Lynch syndrome 4

7 Romano–Ward long QT syndromes types 1, 2, and 3; Brugada syndrome 22

8 Tuberous sclerosis complex 14

9 Familial thoracic aortic aneurysms and dissections 18

10 Li–Fraumeni syndrome 2

11 Retinoblastoma 12

1% Marginal increase

12 Catecholaminergic polymorphic ventricular tachycardia 20

13 Multiple endocrine neoplasia type 1 8

14 Multiple endocrine neoplasia type 2; familial medullary thyroid cancer 9,10

15 Von Hippel–Lindau syndrome 7

16 Neurofibromatosis type 2 16

17 Familial adenomatous polyposis 5

18 Malignant hyperthermia susceptibility 24

19 Peutz–Jeghers syndrome 3

0.1% Marginal increase

20 Ehlers–Danlos syndrome, vascular type 17

21 WT1-related Wilms tumor 15

22 PTEN hamartoma tumor syndrome 11

23 Hereditary paraganglioma–pheochromocytoma syndrome 13

ACMG, American College of Medical Genetics and Genomics; PTEN, phosphatase and tensin homolog.
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originally anticipated but that some of this increase may be arti-
factual because of measurement uncertainty in the sequencing 
or bioinformatics phases, or even the incorrect classification of 
pathogenicity.

Our modeling of the ACMG Recommendations for Clinical 
Reporting of Incidental Findings confirms that a nontrivial 
percentage (1.5–6.5%) of screened individuals will have a sig-
nificant reportable finding (Tables 2 and 3). Although slightly 
higher than the value of ~1% IFs originally forecast by the 
ACMG,3 it is in broad agreement with experimental values of 
1.2% (Americans with African ancestry) and 3.4% (Americans 
with European ancestry).8

This value is lower than those found by Xue et al.,6 who 
reported a rate of IFs of 11% among 179 individuals from the 
1000 Genomes Project, and by Cassa et al.,9 who reported a 
rate of 8.5% from a set of 1,092 individuals drawn from various 
studies in the literature. However, both these studies included 
in their data sets a wider range of inheritance modes than those 
considered in our model.

The ACMG recommendations were based on an AD mode of 
inheritance, whereas Xue et al.6 included both AD and homozy-
gous autosomal recessive conditions in their calculations. If one 
corrects the findings of Xue et al.6 to include only AD inherited 
conditions (as listed in their Table 2), a revised rate of IFs of 
6.9% is obtained; further reduction in their rate of IFs might be 
appropriately made by noting that Xue et al.6 included yet more 
conditions, some of which (e.g., loose anagen hair syndrome) 
were pathogenic but had significantly less serious consequences 
to patients and some of which were disease-causing variants 
from databases that were incompletely validated. Noting these 

qualifications of Xue et al6., their adjusted rate of IFs of 6.9% is 
consistent with the upper limit of 6.5% predicted by our model.

Cassa et al.9 similarly included in their study a broader range 
of conditions and inheritance modes (and thus diagnostic 
triggers for reporting an IF) than the specific set of 24 condi-
tions defined in the ACMG recommendations3; ~24% of their 
reported conditions were homozygous minor variants. To make 
their data more comparable with the AD recommendations of 
the ACMG, correcting their findings by excluding these 24% 
homozygous variants obtained a revised rate of IFs of 6.5%, 
and further reduction in their rate of IFs might be appropriate 
by noting their conclusions that at least some of the variants 
detected may be erroneous findings or have lower penetrance 
than previously expected. Again, this revised rate of 6.5% is 
consistent with the upper limit predicted by our model.

We conclude that our base model is fit for the purpose of 
describing the expected rates of IFs. However, we note the many 
cautions expressed by these investigators6,8,9 regarding errone-
ous reports and the source of possible errors, and we used our 
model to explore the significance of these factors.

effects on iFs of changing the input parameters
Information about the population frequencies of rare condi-
tions is necessarily limited, and calculations based on such 
limited information must be regarded with caution. Most of 
the estimates of variant frequency for these rare conditions are 

Figure 1  effects on rate of incidental findings (iFs) over a range of 
variant frequencies and prevalence. For each of the 24 American College 
of Medical Genetics and Genomics conditions, we determined the proportion 
of screened individuals who would have a reported IF for varying prevalence 
rates of each condition.  Table 1 lists the lowest, most likely, and highest rates 
as determined from literature review, and these are graphically displayed 
here. We then repeated our calculations over a three log2 order of magnitude 
range of variant frequencies, using one-quarter or one-half the lower or twice 
the upper reported estimates of variant prevalence.

0
0%

5%

S
cr

ee
ne

d 
in

di
vi

du
al

s 
w

ith
 p

os
iti

ve
 IF

10%

15%

4 8 12

Number of conditions

16 20 24

2x high estimate

High estimate

Most likely
estimate

Low estimate

1/2 low estimate

1/4 low estimate

Figure 2 Marginal increases in the number of reported incidental 
findings (iFs). As described in the Materials and Methods section, we 
calculated the marginal increase in IFs by iteratively considering the effect 
of adding to the first n most common conditions, one additional condition, 
until all 24 conditions were included for the calculation of the cumulative 
frequency of predicted IFs. Each data point in the series represents the relative 
marginal increase in IFs beyond the IFs identified by the previous point in the 
series. We identified the value of n at which there was less than a 1% relative 
increase in IFs (occurring at n = 11) and the value of n at which the relative 
increase in IFs was less than 0.1% (occurring at n = 19).  Table 3 indicates the 
sorted order of analyses of the 24 conditions from  Table 1.

0
0%

5%

M
ar

gi
na

l i
nc

re
as

e 
in

 IF
s

10%

15%

20%

25%

30%

35%

4 8 12

Number of ACMG conditions in testing panel

1% marginal
increase

0.1% marginal
increase

16 20 24

Genetics in Medicine  |  Volume 17  |  Number 3  |  March 2015



202

DING et al  |  Modeling the reporting of incidental findingsOriginal research article

based on the prevalence of a particular disorder in a popula-
tion, rather than the prevalence of pathogenic allelic variants 
for that condition.

Because our model relies on estimated rates of variants of 
these genetic conditions rather than prevalence of the con-
ditions themselves, we must rely on some implicit assump-
tions.6,8,9,12,13 To derive rates of variant prevalence from rates 
of condition prevalence, our calculations assume 100% pen-
etrance, 100% identification of causative variants (sensitivity), 
and 100% specificity. In reality, these assumptions are unlikely 
to hold true. For example, the degree of penetrance and expres-
sivity, and thus the true variant frequency, is not known for 
many genetic conditions13; this would lead to an incorrect esti-
mation of the predicted number of IFs. Some conditions (such 
as malignant hyperthermia) may manifest themselves only 
after a rare environmental event, and should this event not be 
encountered during the life of the individual, then the true inci-
dence of these conditions will be underestimated. Furthermore, 
diseases such as these, which have had their genetic basis deter-
mined by sequencing high-risk patients and looking for the 
common themes, are likely to overestimate the penetrance of 
the associated genetic cause.12 Finally, because some pathogenic 
phenotypes will be due to genetic variations not yet described 
or currently considered VUS, estimation of the number of 

reported IFs will contain additional imprecision. Even experts 
may disagree when clinical cases are reviewed: manual curation 
is time consuming and, even then, what is actionable may not 
always be agreed on.6,8,13

To attempt to account for these various uncertainties in the 
estimates, we performed a sensitivity analysis of our model. 
We studied the effect on the predicted rate of IFs by vary-
ing the estimated prevalence of all conditions over a range of 
values. We chose factors of two- and fourfold increase above 
or decrease below the most likely values; this range would be 
sufficient to encompass reported alterations in misclassifica-
tions of variants in major databases.10 As noted by Johnston 
et al.,7 when the goal is to identify only variations likely to be 
causative and to minimize false positives, laboratory and bio-
informatics decisions need to make a trade-off between diag-
nostic sensitivity and specificity because small variations in 
the diagnostic decision matrix will greatly affect the apparent 
rate of IFs. We found that the rate at which IFs are reported 
is highly dependent on the actual clinical prevalence of the 
condition and the prevalence of pathogenic variants for that 
gene (Figure 1).

Adding to this uncertainty, the analytical processes involved 
in massively parallel sequencing/whole-genome sequencing 
are not error free. Sequencing errors,12 variations in bioinfor-
matics assembly and pipelines,6 and limitations, inadequacies, 
or errors in the annotations of current databases6,10,12 all intro-
duce significant measurement uncertainty and analytical error, 
which can lead to over- or underreporting of IFs.

Figure 1 shows that errors in sequencing and in bioinformat-
ics analysis after sequencing, errors in database annotations, 
and difficulties in determining the true incidence of disease 
and the true prevalence of pathogenic variants all are major 
determinants of the rate of IFs. When other parameters are held 
constant, a 4-fold change in the value of any one of these key 
drivers can produce up to a 10-fold difference in the rate of IFs 
(Tables 2 and 3).

effects of increasing the number of Ad conditions in the 
AcMG recommendations
Ongoing research continues to reveal the genetic basis for more 
and more conditions. The ACMG list of recommendations 
is likely to grow over time. We therefore modeled the likely 
impact of this list increasing in number. Although the number 
of IFs reported will increase as the number of tested conditions 
increases, our modeling suggests this increase is not linear. This 
nonlinearity is partly because of the underlying mathematics of 
the binomial calculations used in the model and partly because 
(we assume) the most common monogenic, AD, highly pen-
etrant conditions have already been identified and included. A 
consequence of this nonlinear behavior is that there is a dimin-
ishing marginal increase in reported IFs as more conditions are 
added. From the ACMG-recommended list of 24 conditions, 
those with the highest variant frequencies contribute between 
99 and 99.9% (the top 11 and 19 conditions, respectively) to 
potential IFs (Figure 2).

Figure 3 numbers of significant diagnoses with increasing numbers 
of tested conditions. We calculated the predicted number of additional 
significant findings that would be reported if we were to add to the American 
College of Medical Genetics and Genomics (ACMG)–recommended testing 
panel additional conditions of the indicated prevalence. Note that the 24 
current ACMG recommendations have prevalences ranging from 1.4 to 
0.0003% (see  Table 1).
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We modeled the effects of expanding the list of conditions 
tested by adding more AD conditions. We found that the 
most significant driver of the rate of IFs is not the number of 
additional conditions per se (Figure 2) but rather the vari-
ant frequency of the most common of these additional con-
ditions (Figure 3). If we assume that the current ACMG list 
already contains the most frequent of the AD conditions to 
be considered, then expanding the list to 100 or even 1,000 
additional conditions only modestly increases the rate of IFs. 
However, adding even a single condition whose variant fre-
quency is of the order of 1% sharply increases the number of 
IFs. These effects of variant frequencies on increasing num-
bers of IFs can also be used to model the effect of reporting 
VUS for these conditions.

conclusion
We developed and validated a simple model that allows the 
effects of various lists of AD conditions to be simulated and 
allows the rates of reporting of IFs and genetic carriers to be 
readily estimated. Our model shows that these rates are highly 
dependent on the apparent prevalence of included conditions, 
the actual prevalence of the genetic variants that cause these 
conditions, and the accuracy and quality of the sequencing and 
bioinformatics analyses.

This study has two key findings: (i) The accuracy of variant 
annotation of the underlying genomic databases is a significant 
factor in the proportion of individuals who will be flagged with 
a reportable finding. (ii) The proportion of individuals with IFs 
rapidly becomes asymptotic and self-limiting, even with the 
addition of many more highly penetrant AD condition/gene 
pairs to the list of reportable findings. There is a diminishing 
marginal increase in reported IFs as more mutations are added. 
The major benefits in identifying the most clinically significant 
IFs may be achieved by including as few as 11 (for 99% ben-
efits) or 19 (for 99.9% benefits) of the currently recommended 
ACMG panel of 24 conditions.

However, although the proportion of individuals with 
IFs may become limiting and constant, different challenges 
will emerge as the range of potential condition/gene pairs is 
expanded. These will include issues such as the need for clini-
cians to be familiar with an ever-widening corpus of knowledge 
and information and the assessment of cost/utility of testing for 
this broadening range of conditions balanced by the availabil-
ity, cost, and complexity of potential therapeutic options that 
may in turn be offset by a reduction in later costs through early 
intervention and disease prevention.
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