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Abstract

Recent research suggests that the nervous system controls muscles by activating flexible 

combinations of muscle synergies to produce a wide repertoire of movements. Muscle synergies 

are like building blocks, defining characteristic patterns of activation across multiple muscles that 

may be unique to each individual, but perform similar functions. The identification of muscle 

synergies has strong implications for the organization and structure of the nervous system, 

providing a mechanism by which task-level motor intentions are translated into detailed, low-level 

muscle activation patterns. Understanding the complex interplay between neural circuits and 

biomechanics that give rise to muscle synergies will be critical to advancing our understanding of 

neural control mechanisms for movement.

Introduction

How do humans and animals successfully interact with the complex and unpredictable 

dynamics of the natural environment? In motor control, task-level goals such as moving the 

hand to a target, walking through a door, or orienting the body with respect to gravity must 

be translated into complex muscle activation patterns that produce the movement. Studies of 

motor systems ranging from those of invertebrates to those of humans suggest that the 

nervous system uses flexible combinations of just a few muscle synergies—the elements 

from which complex muscle activation patterns are constructed—to produce a wide range of 

motor behaviors [1,2,3•,4•,5•,6]. We define a muscle synergy to be a vector specifying 

relative levels of muscle activation (cf. [7,8]). The absolute level of activation of each 

muscle synergy is presumed to be modulated by a single neural command signal. For a 

given motor task, several muscle synergies are activated in varying combinations to produce 

the motor behavior [9].
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We propose that the nervous system uses muscle synergies as a set of heuristic solutions to 

transform task-level goals into detailed spatiotemporal patterns of muscle activation (Figure 

1). Muscle synergies may therefore represent the bottom of a hierarchal neural control 

structure in which higher neural centers operate on increasingly conceptual variables related 

to task-level motor performance [10–14]. This structure mirrors the series of hierarchal 

transformations that occur in many sensory processing systems [15,16]. The existence of 

muscle synergies also implies that from among many possible motor solutions, a limited set 

are chosen by each individual—addressing Bernstein’s degrees-of-freedom problem [17]. 

Thus, at least on behaviorally short time-scales, motor patterns are constrained by the 

available library of muscle synergies, influencing motor performance.

Here we review recent findings regarding the characteristics and functions of muscle 

synergies in a variety of motor tasks. We will focus on several open questions in the field: 

Do muscle synergies produce task-level functions? Are muscle synergies innate or learned? 

How many muscle synergies are required for task performance? We propose that 

appropriate neuromechanical models can help to answer these questions.

Muscle synergies

Do muscle synergies produce task-level functions, or are they an artifact of a sophisticated 

analysis? Recently, results from many areas have demonstrated that the activity of muscle 

synergies can be correlated to functional outputs related to task performance [1,7,18,19]. 

During standing balance control, a small set of muscle synergies can be identified that co-

activate muscles throughout the limbs and trunk. For any given perturbation, one or more 

muscle synergies may be activated, so that their combined influences define the resulting 

muscle activation pattern [9]. The activity of each muscle synergy is directionally tuned, 

responding to specific directions of center-of-mass (CoM) motion in both voluntary [8] and 

reactive postural adjustments [3•,4•,20], suggesting an appealing link between muscle 

synergy activity and higher motor centers (e.g., [21]). In cats, muscle synergy activation has 

been more specifically correlated with the direction of the force vector produced by the 

hindlimb for postural stabilization [4•,20]. Further supporting the idea that a few descending 

signals determine muscle activation patterns, trial-by-trial variations in human postural 

control can be explained by variations in muscle synergy activation levels [3•]. Because 

robust muscle synergies must be identified in data sets in which the number of muscles and 

experimental conditions exceed the number of underlying muscle synergies, they reflect 

structure in the data rather than structure in the experimental design [22].

Experimental evidence also suggests that – rather than reflecting the state of local sensory or 

reflex networks during any particular postural task – muscle synergy function is generalized 

across tasks [4•,20]. When postural configuration is changed, proprioceptive information 

[23], H-reflex excitability [24], and even intrinsic electrical properties of spinal motoneurons 

[25] are altered. Despite these alterations, changes in postural responses to perturbations in a 

range of different postural configurations can be accounted for by modulating the activation 

levels of a common set of muscle synergies [4•]. Further, when there is explicit sensory loss 

in the visual, vestibular, or somatosensory systems, the spatial tuning characteristics of 

individual muscles are retained, suggesting that muscle synergy patterns are unaffected by 
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sensory deficits [26,27]. Similarly, muscle synergies producing locomotor behaviors are 

largely retained after deafferentation [28]. Although sensory information appears to alter the 

amplitude and timing of neural commands to muscle synergies, muscle synergy patterns 

themselves do not appear to be affected.

Are muscle synergies innate or learned? In humans, rudimentary postural responses emerge 

as early as 4–5 months of age [29], suggesting that the underlying muscle synergies may be 

innate to some degree. It is possible that muscle synergies for postural control are encoded 

in cells at the level of the spinal cord [30,31] or brainstem [32•], and are similar to cortico-

motoneuronal cells that coordinate hand muscles for grasp [33••,34]. However, inter-subject 

variations in both muscle synergy patterns and the number of muscle synergies suggest that 

muscle synergies are shaped by adaptive processes. If this is the case, the morphology and 

experience of each individual may interact in unexpected ways over time [35], resulting in a 

unique set of muscle synergy patterns. More subtly, these adaptive processes themselves 

may vary depending on context [36•,37]. It is therefore reasonable to expect that adaptation 

may occur differently – and at different rates – for muscle synergy patterns and for 

descending commands [38•]. Fundamentally, mechanics dictates that responses to postural 

perturbations across subjects must be similar in terms of kinetic and kinematic variables (cf. 

[39]). Accordingly, in cats, the directional tuning and force outputs of each muscle synergy 

are consistent across animals, but the specific muscular patterns of each muscle synergy 

vary considerably across animals [4•]. Despite these variations, the particular muscle 

synergy pattern chosen by a subject – whether cat or human – is stable across days and does 

not appear to be rapidly modified. In contrast, levels of muscle synergy activation, which we 

presume to reflect descending neural commands, change both across and within 

experimental conditions [3•,4•].

Finally, how many muscle synergies are required for task performance? Clinically, muscle 

synergies have been associated with constraints on movement in motor deficit, for example 

the “pathological synergies” associated with stroke [40,41]. How can we reconcile this 

conception of muscle synergies with the above studies demonstrating healthy subjects using 

muscle synergies as a flexible, dextrous strategy? We hypothesize that even in healthy 

subjects, motor patterns are in fact constrained by the available library of muscle synergies, 

limiting motor performance to well within the boundaries imposed by musculoskeletal 

mechanics (cf. [33••,42]). Perhaps then, the difference between some conditions of motor 

deficit and motor skill is simply a matter of the number of available muscle synergies and 

the appropriateness of those muscle synergies [43,44].

Neuromechanical modeling

Neuromechanical modeling studies [45] may help resolve these and other pertinent 

questions regarding muscle synergies. In this section we will outline the advantages of this 

integrative approach.

Anatomically-detailed biomechanical models are critical for estimating muscle synergy 

function. Because of interactions between musculoskeletal elements, the function of any 

single muscle or muscle synergy cannot be examined in isolation. As all muscles accelerate 
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joints they do not cross, proximal and distal muscles must be co-activated to produce stable 

task function [46–48,49•]. This idea is strikingly apparent when one considers animals 

without obvious rigid structure (e.g., [50•]).

However, biomechanical models in themselves are insufficient to reveal neural control 

mechanisms, but rather provide a landscape of possible solutions available to the nervous 

system. In most natural behaviors, task-level goals can be equivalently achieved with 

different kinetic or kinematic strategies [51–53], which can themselves be equivalently 

achieved with different spatial and temporal patterns of muscle activation [54•,55,56]. 

Therefore, biomechanical models do not uniquely determine muscle activation patterns, nor 

do they predict muscle synergies, but rather they delineate the large “solution space” 

afforded by the musculoskeletal system for task performance.

What computations might determine the way the nervous system coordinates muscles? One 

possibility is that the nervous system explicitly encodes an appropriate transformation 

function (e.g., an “inverse internal model” [57]), perhaps selected to optimize various 

performance criteria [56,58•,59,60]. These explanations produce good estimates of 

experimental measures, generally describing mean neural behaviors without estimating 

variations from that mean. In general, such models do not directly address how such 

computations might be inplemented, but instead assume that the nervous system is 

unconstrained in its plasticity [61].

Neural models that incorporate relevant properties and constraints of neural processing are 

also necessary to understand how muscle synergies might be encoded in the nervous system. 

Information representation in the nervous system may be limited by metabolic constraints, 

making some computational structures more favorable than others [16,62•]. Such “sparse” 

representations appear to encode explicit features in the environment in an efficient manner 

[16]. Additionally, the nervous system adapts through statistical learning processes [36•,

37,63], so that computational structures may reflect the prior experience of the individual. In 

turn, conservative mechanisms may limit the context and extent of adaptation [36•,64].

Although the constraints of the nervous system are important, the solution space afforded by 

the nervous system is still very large. In neural systems, the same network can be modified 

to produce a variety of outputs [50•,65], which in turn can be equivalently produced by a 

many different parameter states [66,67]. Therefore, neural models are also insufficient to 

specify muscle synergies, providing only a landscape of possible motor output patterns.

We propose that muscle synergies emerge from the interacting constraints and features of 

the nervous and musculoskeletal systems. Our rationale is supported by computational 

studies of motor cortex topography demonstrating that functionally-organized regions of the 

cortex may arise from interactions between the biomechanical characteristics of the 

behavioral repertoire and the biases in the nervous system towards co-localizing neurons 

that process similar information [68,69•,70]. As an example relevant to muscle synergies, 

consider the energetic constraints on the musculoskeletal and nervous systems during 

locomotion. Movement patterns are energetically efficient in a mechanical sense when joint 

motions are functionally immobilized or linearly correlated (e.g. “inverted pendulum,” or 
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“spring-mass” dynamics in locomotion [71–74]). Simultaneously, energetic efficiency in 

neural systems — limiting the number of neurons dedicated to encode task performance — 

may favor piecewise-linear representations of complex elements [16,52]. Thus the combined 

neural and mechanical energetic pressures may give rise to a motor control strategy of 

activating linear combinations of muscle synergies that coordinate the musculoskeletal 

system to act in low-dimensional movement patterns [33••,67].

Muscle synergies may allow higher centers in the nervous system to encode task-level 

variables, perhaps enabling faster adaptation to environmental demands. In postural control 

a few variables encoding overall body motion are sufficient to specify muscle synergy 

activation levels over the time-course of a postural response [54••], eliminating the need to 

actively control lower-level variables, for example individual joints. This type of 

dimensional reduction in the neuromechanical system may also explain why simple 

biomechanical models can predict complex motor behaviors [71–74], as well as 

compensatory strategies in motor deficit [54••,75•]. But, it is important to note that these 

low-dimensional and linear behaviors arise from specific relationships between many 

nonlinear components within the neural and musculoskeletal systems [16,55,67,76••], and 

do not imply that the systems themselves are linear. Muscle synergies may reflect a sparse 

code for motor tasks, whereby higher centers can rapidly reconfigure the coordination of 

task-level commands to muscle synergies, which in turn coordinate specific elements in the 

periphery that produce functional behaviors [67,77]. Muscle synergies therefore represent a 

solution to an inverse “binding problem” typical of sensory systems by encoding functional, 

task-relevant muscle coordination patterns [78]. Thus, muscle synergies may be stable over 

short-term motor adaptation, but over longer time scales, muscle synergies themselves may 

also change [38•]. Because of the large solution space of muscle synergies sufficiently near 

the energetically optimal operating regions defined by simple biomechanical models, a 

cascade of ancillary factors may influence the specific muscle synergy patterns within each 

individual [79].

Neuromechanical models can be a practical way to estimate the degree to which motor 

patterns are constrained by the available library of muscle synergies and whether these 

constraints influence motor performance. Due to adaptive processes, in statistically-likely 

tasks motor performance using muscle synergies can approximate that of an optimal 

controller [10,46,80•]. However, in statistically-unlikely conditions, this approximation may 

be degraded (cf. [52]). As an example, using a neuromechanical model of the cat hindlimb 

[81•] we demonstrated that muscle synergies used for postural control in the cat restrict the 

force-production capability of the limb (Figure 2, [81•]), but may also reduce moments 

about the CoM when the cat stands in a postural configuration approximating its natural 

stance. However, when the cat is required to assume postural configurations away from the 

“preferred” condition, postural forces rotate with the sagittal limb axis, creating large 

moments about the CoM. This rotation is not imposed by biomechanical limitations, but 

appears to be a consequence of using identical muscle synergies in disparate postural 

configurations. Similarly, neuromechanical models of both finger force generation and 

pedaling in humans demonstrate that muscle activation patterns corresponding to maximal 

task performance appear to be retained at sub-maximal levels [46,82], possibly in order to 
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achieve a range of related behaviors using the smallest number of muscle synergies. These 

studies suggest that from the perspective of the nervous system, there may be some “cost” 

associated with increasing the number of muscle synergies; however, this has yet to be 

explicitly compared to that of the sub-optimal performance that may arise as a consequence 

of using fewer muscle synergies.

Finally, neuromechanical models may help explain the redundancy that exists between 

neural and biomechanical motor control strategies. Biomechanical mechanisms may perform 

computation typically attributed to active neural control [74,83•]. This idea has been linked 

to Bernstein’s [17] concept of “preparing the periphery” [50]. In posture, stabilization of the 

body occurs with equal frequency across individuals through feedforward activation of 

muscles or through sensory feedback control [84•]. These strategies predict qualitatively 

different muscle synergy patterns. In the first, a muscle pattern is selected to increase the 

stiffness of the system, rejecting perturbations using biomechanical properties of the 

musculature. In the second, a muscle pattern is selected to increase the compliance of the 

system, to facilitate the effectiveness of the active response (NE Bunderson, TJ Burkholder, 

LH Ting, American Society of Biomechanics, 2007, also J Biomech in review). The decision 

to use any particular balance of these two strategies within each individual may be a 

heuristic process based on experience. Similarly, any particular muscle synergy pattern may 

represent a unique coordination solution that emerges from complex, multifaceted 

interactions between the components of the neuromechanical system. Future work 

investigating the robustness, flexibility, and emergence of muscle synergies depends upon 

the development of neuromechanical models as well as evaluation techniques to quantify the 

interactions of components within the models [76••].
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Figure 1. 
Muscle synergies allow task-level neural commands to be translated into execution-level 

muscle activation patterns. This hierarchal structure mirrors that of multisensory integration 

systems.
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Figure 2. 
The force-production capability of the cat hindlimb is restricted when an identical set of 

muscle synergies is used for balance control in different postural configurations (adapted 

from [81•]). A: The gray polygons represent the manifold of possible endpoint forces in a 

neuromechanical model of the cat hindlimb, given musculoskeletal constraints. From left to 

right, postural configuration is altered by increasing the “stance distance”, or the anterior-

posterior distance between the feet. The most natural, “preferred” postural configuration in 

the third column is denoted by the cartoon cat. Colored lines denote the force vectors 

associated with each experimentally-observed muscle synergy. These synergy force vectors 

rotate with the limb axis as postural configuration changes. The white polygons represent 

the restricted manifold of possible endpoint forces when the experimentally-identified 

muscle synergies are used at all postures. B: Manifolds from A are overlaid with recorded 

postural forces. The “synergy-limited” manifolds predict the systematic rotation of postural 

forces as stance distance increases.
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