Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Feb 7;71(Pt 3):248–250. doi: 10.1107/S205698901500184X

Crystal structure of chlorido­(2-{1-[2-(4-chloro­phen­yl)hydrazin-1-yl­idene-κN]eth­yl}pyridine-κN)(η5-penta­methyl­cyclo­penta­dien­yl)rhodium(III) chloride

Neelakandan Devika a, Nandhagopal Raja b, Subbiah Ananthalakshmi c, Bruno Therrien b,*
PMCID: PMC4350752  PMID: 25844178

The title compound, [Rh(η5-C5Me5)Cl(C13H12ClN3)]Cl, is chiral at the metal and crystallizes as a racemate. Upon coordination, the hydrazinyl­idene­pyridine ligand is non-planar, an angle of 54.42 (7)° being observed between the pyridine ring and the aromatic ring of the [2-(4-chloro­phen­yl)hydrazin-1-yl­idene]ethyl group.

Keywords: crystal structure, rhodium(III) complex, penta­methyl­cyclo­penta­dien­yl, piano-stool geometry, N—H⋯Cl hydrogen bond

Abstract

The cation of the title compound, [Rh(η5-C5Me5)Cl(C13H12ClN3)]Cl, adopts a typical piano-stool geometry. The complex is chiral at the metal and crystallizes as a racemate. Upon coordination, the hydrazinyl­idene­pyridine ligand is non-planar, an angle of 54.42 (7)° being observed between the pyridine ring and the aromatic ring of the [2-(4-chloro­phen­yl)hydrazin-1-yl­idene]ethyl group. In the crystal, a weak inter­ionic N—H⋯Cl hydrogen bond is observed.

Chemical context  

Chiral-at-metal penta­methyl­cyclo­penta­dienyl rhodium complexes are popular catalysts in enanti­oselective reactions (Carmona et al., 1999; Davies et al., 2004). To obtain such chiral-at-metal complexes, a non-symmetrical bidentate ligand can be used. Among bidentate ligands, hydrazinyl­idene­pyridine derivatives are easy to synthesise (Liu et al., 2002; Ghedini et al., 2004; Marandi et al., 2015), and when coupled to metal centers not only can they introduce chirality, but also they can generate biologically relevant complexes (Ghosh et al., 2011, 2012). Herein, we present the synthesis and characterization of a chiral-at-metal penta­methyl­cyclo­pentadienyl rhodium(III) hydrazinyl­idene­pyridine complex, [Rh(η5-C5Me5)Cl(C13H12ClN3)]Cl.graphic file with name e-71-00248-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is presented in Fig. 1. The cationic complex adopts a typical piano-stool geometry and it is chiral at the metal centre. The salt crystallizes as a racemate in the ortho­rhom­bic space group Pbca. In the complex, the hydrazinyl­idene­pyridine ligand is N,N-coordinating, the N-hydrazono and the N-pyridine groups forming with the rhodium(III) atom a five-membered metalla­cycle. Upon coordination, the hydrazinyl­idene­pyridine ligand is non-planar, an angle of 54.42 (7)° being observed between the planes of pyridine and the benzene ring of the [(4-chloro­phen­yl)hydrazono]ethyl group. Otherwise, all geometrical data around the rhodium(III) atom are similar to those found in analogous N,N-chelated penta­methyl­cyclo­penta­dienyl rhodium complexes (Gupta et al., 2011; Payne et al., 2013).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Supra­molecular features  

The N—H group of the hydrazinyl­idene­pyridine ligand inter­acts weakly with the counter-anion giving rise to a nearly linear hydrogen bond (Table 1). No significant C—H⋯π or π–π stacking inter­actions are observed.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N3H3NCl3 0.83(3) 2.27(3) 3.087(2) 171(3)

Synthesis and crystallization  

The title compound was synthesized by reacting one equivalent of [(η5-C5Me5)2Rh2(μ-Cl)2Cl2] (100 mg, 0.16 mmol) with two equivalents of 2-{1-[2-(4-chloro­phen­yl)hydrazono]eth­yl}pyridine (Liu et al., 2002; 79 mg, 0.32 mmol) in methanol (25 ml), and the mixture was refluxed for 6 h. The solution turned from yellow to dark red. Then, the volume was reduced to 2 ml and diethyl ether was added to induce precipitation of a red–brown solid. After filtration, the solid was purified by column chromatography (silica gel, chloro­form/methanol 9.8:0.2 v/v). Crystals suitable for X-ray structure analysis were obtained by slow evaporation of a di­chloro­methane/n-pentane solution (1:1 v/v) containing the title compound. Yield: 80%. IR (KBr, ν, cm−1): 1592 (s, C=N). 1H NMR (400 MHz, CD3CN, 298 K): δ (p.p.m.) = 9.21 (br s, 1H, NH), 8.76 (d, 3 J H-H = 5.6 Hz, 1H, Har), 8.16 (dd, 3 J H-H = 8.0 Hz, 1H, Har), 8.01 (d, 3 J H-H = 8.0 Hz, 1H, Har), 7.77 (dd, 3 J H-H = 6.8 Hz, 1H, Har), 7.45 (d, 3 J H-H = 8.8 Hz, 2H, Har), 7.36 (d, 3 J H-H = 8.8 Hz, 2H, Har), 2.58 (s, 3H, CH3), 1.43 (s, 15H, C5Me5). MS (ESI positive mode): m/z 518.0 [M − Cl]+.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Except for the N-bound H atom, which was refined freely, all hydrogen atoms were included in calculated positions and treated as riding atoms using SHELXL97 default parameters, with C—H = 0.93 Å for Carom and 0.96 Å for CH3, and with U iso(H) = 1.2 U eq(C) or 1.5 U eq(C) for methyl H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Rh(C10H15)Cl(C13H12ClN3)]Cl
M r 554.74
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 173
a, b, c () 13.0774(5), 13.4537(5), 26.5153(9)
V (3) 4665.1(3)
Z 8
Radiation type Mo K
(mm1) 1.09
Crystal size (mm) 0.21 0.20 0.13
 
Data collection
Diffractometer STOE IPDS diffractometer
Absorption correction Empirical (using intensity measurements) (DIFABS; Walker Stuart, 1983)
T min, T max 0.629, 0.890
No. of measured, independent and observed [I > 2(I)] reflections 82717, 6320, 4619
R int 0.074
(sin /)max (1) 0.687
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.032, 0.054, 0.96
No. of reflections 6320
No. of parameters 281
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.48, 0.62

Computer programs: IPDS EXPOSE (Stoe Cie, 2000), IPDS CELL (Stoe Cie, 2000), IPDS INTEGRATE (Stoe Cie, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901500184X/rz5146sup1.cif

e-71-00248-sup1.cif (30.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500184X/rz5146Isup2.hkl

e-71-00248-Isup2.hkl (309.4KB, hkl)

CCDC reference: 1045840

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RN thanks the Swiss Confederation for a Swiss Government Scholarship.

supplementary crystallographic information

Crystal data

[Rh(C10H15)Cl(C13H12ClN3)]Cl F(000) = 2256
Mr = 554.74 Dx = 1.580 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 8000 reflections
a = 13.0774 (5) Å θ = 2.4–28.9°
b = 13.4537 (5) Å µ = 1.09 mm1
c = 26.5153 (9) Å T = 173 K
V = 4665.1 (3) Å3 Rod, yellow
Z = 8 0.21 × 0.20 × 0.13 mm

Data collection

STOE IPDS diffractometer 6320 independent reflections
Radiation source: fine-focus sealed tube 4619 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.074
Detector resolution: 0.81 pixels mm-1 θmax = 29.3°, θmin = 2.2°
phi oscillation scans h = −17→17
Absorption correction: empirical (using intensity measurements) (DIFABS; Walker & Stuart, 1983) k = −18→18
Tmin = 0.629, Tmax = 0.890 l = −36→36
82717 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054 H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0236P)2] where P = (Fo2 + 2Fc2)/3
6320 reflections (Δ/σ)max = 0.005
281 parameters Δρmax = 0.48 e Å3
0 restraints Δρmin = −0.62 e Å3

Special details

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 100 mm, φ oscillation scans 0 - 180°, step Δφ = 0.8°, 5 minutes per frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.57249 (18) −0.00756 (18) 0.60832 (10) 0.0279 (5)
H1 0.5871 0.0234 0.5778 0.034*
C2 0.6422 (2) −0.07526 (19) 0.62774 (11) 0.0355 (6)
H2 0.7029 −0.0886 0.6107 0.043*
C3 0.6205 (2) −0.12238 (18) 0.67247 (10) 0.0350 (6)
H3 0.6658 −0.1687 0.6859 0.042*
C4 0.5302 (2) −0.09975 (19) 0.69720 (9) 0.0312 (5)
H4 0.5145 −0.1304 0.7277 0.037*
C5 0.46296 (18) −0.03094 (16) 0.67623 (8) 0.0218 (5)
C6 0.36119 (19) −0.01036 (16) 0.69694 (8) 0.0217 (5)
C7 0.3320 (2) −0.04681 (19) 0.74812 (9) 0.0315 (6)
H7A 0.2787 −0.0055 0.7616 0.047*
H7B 0.3905 −0.0443 0.7700 0.047*
H7C 0.3080 −0.1141 0.7457 0.047*
C8 0.11641 (18) 0.05175 (16) 0.65302 (8) 0.0214 (5)
C9 0.11770 (18) 0.00803 (16) 0.60562 (9) 0.0228 (4)
H9 0.1771 −0.0224 0.5940 0.027*
C10 0.03097 (19) 0.00944 (18) 0.57538 (9) 0.0263 (5)
H10 0.0324 −0.0192 0.5435 0.032*
C11 −0.05724 (18) 0.05360 (19) 0.59299 (9) 0.0282 (6)
C12 −0.06171 (19) 0.09489 (19) 0.64099 (10) 0.0310 (6)
H12 −0.1222 0.1227 0.6529 0.037*
C13 0.02538 (18) 0.09408 (18) 0.67088 (9) 0.0277 (5)
H13 0.0234 0.1218 0.7030 0.033*
C14 0.41151 (18) 0.21684 (16) 0.54714 (8) 0.0185 (4)
C15 0.46438 (17) 0.23872 (16) 0.59274 (8) 0.0197 (5)
C16 0.39032 (18) 0.25436 (15) 0.63199 (8) 0.0203 (5)
C17 0.29044 (17) 0.24955 (15) 0.60875 (9) 0.0206 (5)
C18 0.30297 (17) 0.22316 (15) 0.55724 (8) 0.0186 (4)
C19 0.4574 (2) 0.19802 (19) 0.49645 (8) 0.0277 (5)
H19A 0.4671 0.2601 0.4792 0.042*
H19B 0.4124 0.1565 0.4771 0.042*
H19C 0.5221 0.1654 0.5004 0.042*
C20 0.57832 (18) 0.2459 (2) 0.59914 (11) 0.0314 (6)
H20A 0.6115 0.2052 0.5743 0.047*
H20B 0.5969 0.2235 0.6323 0.047*
H20C 0.5994 0.3138 0.5949 0.047*
C21 0.4125 (2) 0.28192 (18) 0.68547 (9) 0.0310 (6)
H21A 0.4770 0.2540 0.6954 0.046*
H21B 0.3594 0.2565 0.7069 0.046*
H21C 0.4153 0.3530 0.6885 0.046*
C22 0.1914 (2) 0.27337 (17) 0.63382 (10) 0.0288 (5)
H22A 0.1771 0.3430 0.6302 0.043*
H22B 0.1957 0.2570 0.6690 0.043*
H22C 0.1376 0.2354 0.6185 0.043*
C23 0.22078 (19) 0.20957 (18) 0.51908 (9) 0.0272 (5)
H23A 0.1577 0.1938 0.5358 0.041*
H23B 0.2389 0.1563 0.4967 0.041*
H23C 0.2126 0.2698 0.5001 0.041*
Cl1 0.34471 (4) −0.02319 (4) 0.54150 (2) 0.02355 (12)
Cl2 −0.16517 (5) 0.05548 (6) 0.55360 (3) 0.04123 (17)
Cl3 0.19592 (5) 0.18619 (5) 0.77896 (2) 0.03405 (14)
N1 0.48505 (14) 0.01482 (14) 0.63192 (7) 0.0207 (4)
N2 0.29842 (14) 0.03410 (13) 0.66601 (7) 0.0184 (4)
N3 0.20095 (15) 0.05148 (15) 0.68473 (7) 0.0229 (4)
H3N 0.199 (2) 0.082 (2) 0.7119 (11) 0.036 (8)*
Rh1 0.371080 (13) 0.107403 (11) 0.602805 (6) 0.01552 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0221 (12) 0.0290 (12) 0.0328 (13) 0.0055 (10) 0.0013 (11) 0.0033 (11)
C2 0.0236 (14) 0.0349 (13) 0.0481 (15) 0.0099 (11) −0.0049 (12) −0.0034 (12)
C3 0.0299 (14) 0.0300 (13) 0.0453 (14) 0.0086 (12) −0.0162 (13) 0.0007 (11)
C4 0.0368 (14) 0.0278 (12) 0.0289 (12) 0.0045 (12) −0.0134 (11) 0.0037 (11)
C5 0.0260 (13) 0.0187 (11) 0.0207 (11) −0.0015 (9) −0.0078 (9) −0.0006 (9)
C6 0.0296 (13) 0.0185 (10) 0.0169 (10) −0.0028 (10) −0.0025 (10) −0.0004 (8)
C7 0.0438 (16) 0.0298 (13) 0.0207 (12) 0.0022 (12) −0.0004 (11) 0.0060 (10)
C8 0.0220 (12) 0.0184 (10) 0.0239 (10) −0.0042 (9) 0.0025 (10) 0.0013 (8)
C9 0.0213 (12) 0.0232 (10) 0.0240 (10) −0.0001 (9) 0.0025 (10) 0.0005 (10)
C10 0.0263 (13) 0.0288 (12) 0.0238 (12) −0.0033 (10) 0.0001 (10) −0.0005 (10)
C11 0.0194 (12) 0.0308 (13) 0.0345 (15) −0.0045 (10) −0.0032 (10) 0.0075 (10)
C12 0.0220 (12) 0.0282 (13) 0.0427 (14) 0.0001 (11) 0.0081 (11) 0.0021 (11)
C13 0.0257 (12) 0.0289 (13) 0.0286 (12) −0.0009 (10) 0.0075 (10) −0.0023 (10)
C14 0.0233 (11) 0.0158 (10) 0.0163 (10) 0.0010 (9) −0.0006 (9) 0.0015 (8)
C15 0.0224 (11) 0.0159 (10) 0.0209 (12) −0.0034 (9) −0.0014 (9) 0.0041 (8)
C16 0.0271 (14) 0.0159 (9) 0.0178 (10) −0.0011 (9) −0.0007 (9) −0.0006 (8)
C17 0.0239 (11) 0.0134 (9) 0.0245 (12) 0.0018 (8) 0.0017 (10) 0.0020 (9)
C18 0.0200 (11) 0.0146 (10) 0.0212 (11) 0.0015 (9) −0.0015 (9) 0.0030 (8)
C19 0.0317 (14) 0.0321 (13) 0.0192 (11) 0.0044 (11) 0.0045 (10) 0.0011 (10)
C20 0.0235 (12) 0.0361 (13) 0.0345 (13) −0.0079 (11) −0.0043 (12) 0.0089 (12)
C21 0.0482 (16) 0.0258 (12) 0.0190 (11) 0.0002 (11) −0.0051 (11) −0.0021 (10)
C22 0.0316 (14) 0.0191 (11) 0.0358 (14) 0.0067 (10) 0.0113 (11) 0.0010 (10)
C23 0.0270 (14) 0.0261 (12) 0.0285 (12) 0.0010 (10) −0.0083 (10) 0.0028 (10)
Cl1 0.0249 (3) 0.0202 (2) 0.0255 (3) 0.0013 (2) 0.0007 (2) −0.0065 (2)
Cl2 0.0240 (3) 0.0549 (4) 0.0448 (4) −0.0029 (3) −0.0080 (3) 0.0091 (3)
Cl3 0.0422 (4) 0.0344 (3) 0.0256 (3) −0.0010 (3) 0.0048 (3) −0.0084 (2)
N1 0.0191 (10) 0.0193 (9) 0.0236 (10) 0.0007 (8) −0.0038 (8) 0.0007 (8)
N2 0.0208 (10) 0.0158 (9) 0.0186 (9) −0.0012 (7) 0.0004 (8) −0.0013 (7)
N3 0.0221 (10) 0.0279 (11) 0.0188 (9) −0.0007 (9) 0.0027 (8) −0.0045 (8)
Rh1 0.01625 (7) 0.01479 (6) 0.01552 (6) 0.00163 (7) −0.00072 (8) 0.00038 (7)

Geometric parameters (Å, º)

C1—N1 1.338 (3) C15—C16 1.437 (3)
C1—C2 1.388 (3) C15—C20 1.503 (3)
C1—H1 0.9300 C15—Rh1 2.164 (2)
C2—C3 1.375 (4) C16—C17 1.446 (3)
C2—H2 0.9300 C16—C21 1.494 (3)
C3—C4 1.385 (4) C16—Rh1 2.138 (2)
C3—H3 0.9300 C17—C18 1.421 (3)
C4—C5 1.392 (3) C17—C22 1.491 (3)
C4—H4 0.9300 C17—Rh1 2.190 (2)
C5—N1 1.357 (3) C18—C23 1.487 (3)
C5—C6 1.466 (3) C18—Rh1 2.163 (2)
C6—N2 1.306 (3) C19—H19A 0.9600
C6—C7 1.493 (3) C19—H19B 0.9600
C7—H7A 0.9600 C19—H19C 0.9600
C7—H7B 0.9600 C20—H20A 0.9600
C7—H7C 0.9600 C20—H20B 0.9600
C8—C9 1.388 (3) C20—H20C 0.9600
C8—N3 1.389 (3) C21—H21A 0.9600
C8—C13 1.402 (3) C21—H21B 0.9600
C9—C10 1.389 (3) C21—H21C 0.9600
C9—H9 0.9300 C22—H22A 0.9600
C10—C11 1.379 (3) C22—H22B 0.9600
C10—H10 0.9300 C22—H22C 0.9600
C11—C12 1.390 (4) C23—H23A 0.9600
C11—Cl2 1.756 (2) C23—H23B 0.9600
C12—C13 1.388 (4) C23—H23C 0.9600
C12—H12 0.9300 Cl1—Rh1 2.4183 (6)
C13—H13 0.9300 N1—Rh1 2.0902 (18)
C14—C15 1.424 (3) N2—N3 1.388 (3)
C14—C18 1.447 (3) N2—Rh1 2.1643 (18)
C14—C19 1.493 (3) N3—H3N 0.83 (3)
C14—Rh1 2.151 (2)
N1—C1—C2 122.4 (2) C14—C18—Rh1 69.95 (12)
N1—C1—H1 118.8 C23—C18—Rh1 126.08 (15)
C2—C1—H1 118.8 C14—C19—H19A 109.5
C3—C2—C1 119.1 (3) C14—C19—H19B 109.5
C3—C2—H2 120.4 H19A—C19—H19B 109.5
C1—C2—H2 120.4 C14—C19—H19C 109.5
C2—C3—C4 118.9 (2) H19A—C19—H19C 109.5
C2—C3—H3 120.6 H19B—C19—H19C 109.5
C4—C3—H3 120.6 C15—C20—H20A 109.5
C3—C4—C5 119.7 (2) C15—C20—H20B 109.5
C3—C4—H4 120.2 H20A—C20—H20B 109.5
C5—C4—H4 120.2 C15—C20—H20C 109.5
N1—C5—C4 120.9 (2) H20A—C20—H20C 109.5
N1—C5—C6 115.58 (19) H20B—C20—H20C 109.5
C4—C5—C6 123.3 (2) C16—C21—H21A 109.5
N2—C6—C5 114.96 (19) C16—C21—H21B 109.5
N2—C6—C7 124.1 (2) H21A—C21—H21B 109.5
C5—C6—C7 120.7 (2) C16—C21—H21C 109.5
C6—C7—H7A 109.5 H21A—C21—H21C 109.5
C6—C7—H7B 109.5 H21B—C21—H21C 109.5
H7A—C7—H7B 109.5 C17—C22—H22A 109.5
C6—C7—H7C 109.5 C17—C22—H22B 109.5
H7A—C7—H7C 109.5 H22A—C22—H22B 109.5
H7B—C7—H7C 109.5 C17—C22—H22C 109.5
C9—C8—N3 122.5 (2) H22A—C22—H22C 109.5
C9—C8—C13 119.2 (2) H22B—C22—H22C 109.5
N3—C8—C13 118.2 (2) C18—C23—H23A 109.5
C8—C9—C10 120.5 (2) C18—C23—H23B 109.5
C8—C9—H9 119.8 H23A—C23—H23B 109.5
C10—C9—H9 119.8 C18—C23—H23C 109.5
C11—C10—C9 119.6 (2) H23A—C23—H23C 109.5
C11—C10—H10 120.2 H23B—C23—H23C 109.5
C9—C10—H10 120.2 C1—N1—C5 119.0 (2)
C10—C11—C12 121.2 (2) C1—N1—Rh1 124.81 (16)
C10—C11—Cl2 118.5 (2) C5—N1—Rh1 115.99 (15)
C12—C11—Cl2 120.3 (2) C6—N2—N3 115.47 (18)
C13—C12—C11 119.0 (2) C6—N2—Rh1 114.78 (15)
C13—C12—H12 120.5 N3—N2—Rh1 127.12 (14)
C11—C12—H12 120.5 N2—N3—C8 121.01 (19)
C12—C13—C8 120.5 (2) N2—N3—H3N 115 (2)
C12—C13—H13 119.8 C8—N3—H3N 120 (2)
C8—C13—H13 119.8 N1—Rh1—C16 109.48 (8)
C15—C14—C18 107.88 (19) N1—Rh1—C14 119.08 (8)
C15—C14—C19 127.2 (2) C16—Rh1—C14 65.57 (8)
C18—C14—C19 124.8 (2) N1—Rh1—C18 158.28 (8)
C15—C14—Rh1 71.22 (12) C16—Rh1—C18 65.47 (8)
C18—C14—Rh1 70.85 (12) C14—Rh1—C18 39.20 (9)
C19—C14—Rh1 126.89 (16) N1—Rh1—C15 97.47 (8)
C14—C15—C16 108.55 (19) C16—Rh1—C15 39.03 (8)
C14—C15—C20 126.2 (2) C14—Rh1—C15 38.53 (8)
C16—C15—C20 125.2 (2) C18—Rh1—C15 64.87 (8)
C14—C15—Rh1 70.25 (12) N1—Rh1—N2 75.85 (7)
C16—C15—Rh1 69.52 (12) C16—Rh1—N2 101.11 (7)
C20—C15—Rh1 126.73 (16) C14—Rh1—N2 162.04 (8)
C15—C16—C17 107.07 (18) C18—Rh1—N2 125.44 (8)
C15—C16—C21 126.4 (2) C15—Rh1—N2 135.66 (7)
C17—C16—C21 126.2 (2) N1—Rh1—C17 146.86 (8)
C15—C16—Rh1 71.45 (12) C16—Rh1—C17 39.01 (8)
C17—C16—Rh1 72.42 (12) C14—Rh1—C17 64.52 (8)
C21—C16—Rh1 126.57 (16) C18—Rh1—C17 38.09 (8)
C18—C17—C16 108.47 (19) C15—Rh1—C17 64.36 (8)
C18—C17—C22 125.6 (2) N2—Rh1—C17 97.52 (8)
C16—C17—C22 125.8 (2) N1—Rh1—Cl1 85.24 (5)
C18—C17—Rh1 69.94 (12) C16—Rh1—Cl1 158.74 (6)
C16—C17—Rh1 68.57 (12) C14—Rh1—Cl1 94.08 (6)
C22—C17—Rh1 129.66 (16) C18—Rh1—Cl1 95.10 (6)
C17—C18—C14 107.81 (19) C15—Rh1—Cl1 126.21 (6)
C17—C18—C23 127.0 (2) N2—Rh1—Cl1 97.29 (5)
C14—C18—C23 125.2 (2) C17—Rh1—Cl1 127.90 (6)
C17—C18—Rh1 71.97 (12)
N1—C1—C2—C3 1.0 (4) C15—C16—Rh1—N2 156.22 (12)
C1—C2—C3—C4 −0.9 (4) C17—C16—Rh1—N2 −88.24 (13)
C2—C3—C4—C5 0.6 (4) C21—C16—Rh1—N2 34.2 (2)
C3—C4—C5—N1 −0.4 (4) C15—C16—Rh1—C17 −115.54 (17)
C3—C4—C5—C6 173.4 (2) C21—C16—Rh1—C17 122.5 (3)
N1—C5—C6—N2 12.0 (3) C15—C16—Rh1—Cl1 −54.3 (2)
C4—C5—C6—N2 −162.0 (2) C17—C16—Rh1—Cl1 61.2 (2)
N1—C5—C6—C7 −173.1 (2) C21—C16—Rh1—Cl1 −176.30 (14)
C4—C5—C6—C7 12.9 (3) C15—C14—Rh1—N1 −62.63 (15)
N3—C8—C9—C10 179.5 (2) C18—C14—Rh1—N1 179.89 (11)
C13—C8—C9—C10 2.4 (3) C19—C14—Rh1—N1 60.3 (2)
C8—C9—C10—C11 −0.8 (3) C15—C14—Rh1—C16 36.94 (13)
C9—C10—C11—C12 −1.5 (4) C18—C14—Rh1—C16 −80.53 (14)
C9—C10—C11—Cl2 179.27 (18) C19—C14—Rh1—C16 159.8 (2)
C10—C11—C12—C13 2.0 (4) C15—C14—Rh1—C18 117.47 (18)
Cl2—C11—C12—C13 −178.73 (19) C19—C14—Rh1—C18 −119.6 (3)
C11—C12—C13—C8 −0.3 (4) C18—C14—Rh1—C15 −117.47 (18)
C9—C8—C13—C12 −1.9 (3) C19—C14—Rh1—C15 122.9 (3)
N3—C8—C13—C12 −179.0 (2) C15—C14—Rh1—N2 81.3 (3)
C18—C14—C15—C16 2.6 (2) C18—C14—Rh1—N2 −36.1 (3)
C19—C14—C15—C16 178.3 (2) C19—C14—Rh1—N2 −155.8 (2)
Rh1—C14—C15—C16 −59.16 (15) C15—C14—Rh1—C17 80.15 (14)
C18—C14—C15—C20 −176.6 (2) C18—C14—Rh1—C17 −37.33 (12)
C19—C14—C15—C20 −0.9 (4) C19—C14—Rh1—C17 −157.0 (2)
Rh1—C14—C15—C20 121.6 (2) C15—C14—Rh1—Cl1 −149.45 (12)
C18—C14—C15—Rh1 61.73 (15) C18—C14—Rh1—Cl1 93.08 (12)
C19—C14—C15—Rh1 −122.5 (2) C19—C14—Rh1—Cl1 −26.6 (2)
C14—C15—C16—C17 −4.5 (2) C17—C18—Rh1—N1 −117.7 (2)
C20—C15—C16—C17 174.7 (2) C14—C18—Rh1—N1 −0.3 (3)
Rh1—C15—C16—C17 −64.13 (14) C23—C18—Rh1—N1 119.2 (2)
C14—C15—C16—C21 −178.1 (2) C17—C18—Rh1—C16 −36.65 (13)
C20—C15—C16—C21 1.1 (4) C14—C18—Rh1—C16 80.81 (14)
Rh1—C15—C16—C21 122.2 (2) C23—C18—Rh1—C16 −159.7 (2)
C14—C15—C16—Rh1 59.61 (15) C17—C18—Rh1—C14 −117.46 (18)
C20—C15—C16—Rh1 −121.2 (2) C23—C18—Rh1—C14 119.5 (2)
C15—C16—C17—C18 4.8 (2) C17—C18—Rh1—C15 −79.84 (14)
C21—C16—C17—C18 178.4 (2) C14—C18—Rh1—C15 37.62 (12)
Rh1—C16—C17—C18 −58.69 (14) C23—C18—Rh1—C15 157.1 (2)
C15—C16—C17—C22 −172.3 (2) C17—C18—Rh1—N2 49.64 (15)
C21—C16—C17—C22 1.3 (4) C14—C18—Rh1—N2 167.10 (11)
Rh1—C16—C17—C22 124.2 (2) C23—C18—Rh1—N2 −73.4 (2)
C15—C16—C17—Rh1 63.49 (14) C14—C18—Rh1—C17 117.46 (18)
C21—C16—C17—Rh1 −122.9 (2) C23—C18—Rh1—C17 −123.0 (3)
C16—C17—C18—C14 −3.3 (2) C17—C18—Rh1—Cl1 152.34 (12)
C22—C17—C18—C14 173.9 (2) C14—C18—Rh1—Cl1 −90.20 (12)
Rh1—C17—C18—C14 −61.10 (15) C23—C18—Rh1—Cl1 29.3 (2)
C16—C17—C18—C23 179.9 (2) C14—C15—Rh1—N1 128.49 (13)
C22—C17—C18—C23 −3.0 (4) C16—C15—Rh1—N1 −111.85 (13)
Rh1—C17—C18—C23 122.0 (2) C20—C15—Rh1—N1 7.5 (2)
C16—C17—C18—Rh1 57.85 (14) C14—C15—Rh1—C16 −119.66 (18)
C22—C17—C18—Rh1 −125.0 (2) C20—C15—Rh1—C16 119.3 (3)
C15—C14—C18—C17 0.4 (2) C16—C15—Rh1—C14 119.66 (18)
C19—C14—C18—C17 −175.4 (2) C20—C15—Rh1—C14 −121.0 (3)
Rh1—C14—C18—C17 62.40 (15) C14—C15—Rh1—C18 −38.27 (13)
C15—C14—C18—C23 177.4 (2) C16—C15—Rh1—C18 81.39 (14)
C19—C14—C18—C23 1.5 (4) C20—C15—Rh1—C18 −159.3 (2)
Rh1—C14—C18—C23 −120.7 (2) C14—C15—Rh1—N2 −154.14 (12)
C15—C14—C18—Rh1 −61.96 (15) C16—C15—Rh1—N2 −34.48 (17)
C19—C14—C18—Rh1 122.2 (2) C20—C15—Rh1—N2 84.8 (2)
C2—C1—N1—C5 −0.7 (4) C14—C15—Rh1—C17 −80.61 (14)
C2—C1—N1—Rh1 −175.13 (19) C16—C15—Rh1—C17 39.05 (13)
C4—C5—N1—C1 0.4 (3) C20—C15—Rh1—C17 158.4 (2)
C6—C5—N1—C1 −173.8 (2) C14—C15—Rh1—Cl1 38.93 (15)
C4—C5—N1—Rh1 175.32 (17) C16—C15—Rh1—Cl1 158.59 (10)
C6—C5—N1—Rh1 1.1 (2) C20—C15—Rh1—Cl1 −82.1 (2)
C5—C6—N2—N3 178.27 (18) C6—N2—Rh1—N1 14.84 (15)
C7—C6—N2—N3 3.5 (3) N3—N2—Rh1—N1 175.49 (18)
C5—C6—N2—Rh1 −18.7 (2) C6—N2—Rh1—C16 −92.67 (16)
C7—C6—N2—Rh1 166.52 (18) N3—N2—Rh1—C16 67.98 (18)
C6—N2—N3—C8 −148.6 (2) C6—N2—Rh1—C14 −133.1 (2)
Rh1—N2—N3—C8 50.9 (3) N3—N2—Rh1—C14 27.5 (3)
C9—C8—N3—N2 19.0 (3) C6—N2—Rh1—C18 −160.37 (15)
C13—C8—N3—N2 −163.9 (2) N3—N2—Rh1—C18 0.3 (2)
C1—N1—Rh1—C16 −96.4 (2) C6—N2—Rh1—C15 −71.37 (19)
C5—N1—Rh1—C16 89.00 (16) N3—N2—Rh1—C15 89.28 (19)
C1—N1—Rh1—C14 −24.2 (2) C6—N2—Rh1—C17 −132.06 (16)
C5—N1—Rh1—C14 161.22 (15) N3—N2—Rh1—C17 28.58 (18)
C1—N1—Rh1—C18 −24.0 (3) C6—N2—Rh1—Cl1 98.03 (15)
C5—N1—Rh1—C18 161.41 (19) N3—N2—Rh1—Cl1 −101.32 (16)
C1—N1—Rh1—C15 −58.1 (2) C18—C17—Rh1—N1 143.18 (15)
C5—N1—Rh1—C15 127.31 (16) C16—C17—Rh1—N1 22.8 (2)
C1—N1—Rh1—N2 166.6 (2) C22—C17—Rh1—N1 −96.6 (2)
C5—N1—Rh1—N2 −7.99 (15) C18—C17—Rh1—C16 120.37 (18)
C1—N1—Rh1—C17 −111.4 (2) C22—C17—Rh1—C16 −119.4 (3)
C5—N1—Rh1—C17 74.0 (2) C18—C17—Rh1—C14 38.40 (13)
C1—N1—Rh1—Cl1 67.84 (19) C16—C17—Rh1—C14 −81.97 (13)
C5—N1—Rh1—Cl1 −106.75 (15) C22—C17—Rh1—C14 158.6 (2)
C15—C16—Rh1—N1 77.45 (13) C16—C17—Rh1—C18 −120.37 (18)
C17—C16—Rh1—N1 −167.01 (12) C22—C17—Rh1—C18 120.2 (3)
C21—C16—Rh1—N1 −44.5 (2) C18—C17—Rh1—C15 81.31 (14)
C15—C16—Rh1—C14 −36.48 (12) C16—C17—Rh1—C15 −39.07 (12)
C17—C16—Rh1—C14 79.06 (13) C22—C17—Rh1—C15 −158.5 (2)
C21—C16—Rh1—C14 −158.5 (2) C18—C17—Rh1—N2 −141.23 (13)
C15—C16—Rh1—C18 −79.73 (13) C16—C17—Rh1—N2 98.39 (12)
C17—C16—Rh1—C18 35.81 (12) C22—C17—Rh1—N2 −21.0 (2)
C21—C16—Rh1—C18 158.3 (2) C18—C17—Rh1—Cl1 −35.87 (15)
C17—C16—Rh1—C15 115.54 (17) C16—C17—Rh1—Cl1 −156.25 (10)
C21—C16—Rh1—C15 −122.0 (3) C22—C17—Rh1—Cl1 84.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3N···Cl3 0.83 (3) 2.27 (3) 3.087 (2) 171 (3)

References

  1. Carmona, D., Vega, C., Lahoz, F. J., Elipe, S., Oro, L. A., Lamata, M. P., Viguri, F., García-Correas, R., Cativiela, C. & López-Ram de Viu, M. P. (1999). Organometallics, 18, 3364–3371.
  2. Davies, D. L., Fawcett, J., Garratt, S. A. & Russell, D. R. (2004). Dalton Trans., pp. 3629–3634. [DOI] [PubMed]
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Ghedini, M., Aiello, I., Crispini, A. & La Deda, M. (2004). Dalton Trans., pp. 1386–1392. [DOI] [PubMed]
  5. Ghosh, K., Kumar, P., Mohan, V., Singh, U. P., Kasiri, S. & Mandal, S. S. (2012). Inorg. Chem. 51, 3343–3345. [DOI] [PMC free article] [PubMed]
  6. Ghosh, K., Kumar, P., Tyagi, N., Singh, U. P., Goel, N., Chakraborty, A., Roy, P. & Baratto, M. C. (2011). Polyhedron, 30, 2667–2677.
  7. Gupta, G., Gloria, S., Nongbri, S. L., Therrien, B. & Rao, K. M. (2011). J. Organomet. Chem. 696, 2014–2022.
  8. Liu, Q., Mudadu, M. S., Schmider, H., Thummel, R., Tao, Y. & Wang, S. (2002). Organometallics, 21, 4743–4749.
  9. Marandi, G., Saghatforoush, L., Golsanamlou, V., Tofighjoo, E., Hassanabad, F. A., Hajari, S. & Ghadimkhani, R. (2015). Res. Chem. Intermed. 41, 631–636.
  10. Payne, R., Govender, P., Therrien, B., Clavel, C. M., Dyson, P. J. & Smith, G. S. (2013). J. Organomet. Chem. 729, 20–27.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Stoe & Cie (2000). IPDS EXPOSE, IPDS CELL and IPDS INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.
  13. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901500184X/rz5146sup1.cif

e-71-00248-sup1.cif (30.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500184X/rz5146Isup2.hkl

e-71-00248-Isup2.hkl (309.4KB, hkl)

CCDC reference: 1045840

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES