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Abstract

In eukaryotic cells, alternative cleavage of 3’ untranslated regions (UTRs) can affect transcript 

stability, transport and translation. For polyadenylated (poly(A)) transcripts, cleavage sites can be 

characterized with short-read sequencing using specialized library construction methods. 

However, for large-scale cohort studies as well as for clinical sequencing applications, it is 

desirable to characterize such events using RNA-seq data, as the latter are already widely applied 

to identify other relevant information, such as mutations, alternative splicing and chimeric 

transcripts. Here we describe KLEAT, an analysis tool that uses de novo assembly of RNA-seq 

data to characterize cleavage sites on 3’ UTRs. We demonstrate the performance of KLEAT on 

three cell line RNA-seq libraries constructed and sequenced by the ENCODE project, and 

assembled using Trans-ABySS. Validating the KLEAT predictions with matched ENCODE RNA-

seq and RNA-PET libraries, we show that the tool has over 90% positive predictive value when 

there are at least three RNA-seq reads supporting a poly(A) tail and requiring at least three RNA-

PET reads mapping within 100 nucleotides as validation. We also compare the performance of 

KLEAT with other popular RNA-seq analysis pipelines that reconstruct 3’ UTR ends, and show 

that it performs favourably, based on an ROC-like curve.

1. Introduction

The section of an mRNA transcript that is translated into protein sequence is flanked by 5’ 

and 3’ untranslated regions (UTRs). These UTRs play a number of important biological 

roles. The 3’ end of an mRNA molecule (the 3' UTR) helps to regulate its stability and 

localization, hence the amount of corresponding protein that is produced [1–4]. Over 50% of 

human genes produce two or more transcript isoforms via alternative polyadenylation (APA) 

of the 3’ UTRs [5]. APA is recognized as playing a role in cancer biology [6–9].

A number of direct sequencing protocols have been developed for characterizing 

polyadenylated (poly(A)) tails of 3’ UTRs and APA [9–15]. A cost-effective alternative to 

these direct sequencing protocols would be high throughput transcriptome sequencing 
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(RNA-seq) [16], coupled with a validated bioinformatics pipeline to detect 3’ UTR cleavage 

sites (CS).

RNA-seq is a central data type for many studies, including the ENCODE (ENCyclopedia Of 

DNA Elements) project, whose goal is to identify all functional elements in the human 

genome sequence [17]. Using various sequencing protocols, an ENCODE study [18] 

identified over 100,000 transcripts, about 60,000 of which were protein coding, and reported 

that transcript expression levels span six orders of magnitude. This is remarkable, as it 

speaks to the sensitivity of the RNA-seq technology. The lower range of the reported 

expression levels of 10−2 RPKM in that study implies that RNA-seq can detect a transcript 

expressed by 1 in 100 cells [16]. This resolution of RNA-seq data can be leveraged to 

identify 3’ UTR ends of transcripts. An earlier study [19] inferred 3’ UTR switching using 

sudden changes in expression profiles near cleavage sites, but did not utilize the direct 

evidence of observed poly(A) sequences.

In this report, we introduce KLEAT, a post-processing tool for characterizing 3’ UTRs in 

assembled RNA-seq data through direct observation of poly(A) tails. While we developed 

KLEAT as an extension to the Trans-ABySS analysis pipeline [20, 21], it can also accept 

contigs from other transcriptome assembly tools, as we demonstrate below. It analyses the 

structures of assembled transcripts for poly(A) tails, filters 3’ UTR cleavage site (CS) 

candidates using several evidence types within RNA-seq reads, and gathers and reports 

metrics that can be used in downstream post-processing, such as for filtering calls by their 

levels of read support.

2. Methods

The key technology KLEAT uses in detecting 3’ UTR ends is de novo transcriptome 

assemblies. Compared to genome assembly, a successful transcriptome assembly has to 

address some particular challenges. These include robust assembly of transcripts from a 

wide range of transcript abundance levels, and resolution of transcripts from alternative 

isoforms and gene families. There are several specialized de novo assembly tools, including 

Trans-ABySS [21], Trinity [22] and Oases [23] that successfully address these challenges.

The KLEAT pipeline (Figure 1) uses Trans-ABySS by default. Using the raw reads and 

assembled contigs, it performs two levels of alignments in parallel: (1) reads to contigs; and 

(2) contigs to reference genome. It processes these alignment results to identify tail, bridge, 

and link evidence (Figure 2), and collates the evidence to predict cleavage sites.

2.1. Tail

Contig sequences that end in a poly(A) stretch represent high-confidence candidates. We 

filter these candidates to identify true poly(A) tails by aligning the flagged contigs to a 

reference genome. Accounting for the direction of transcription, we classify contigs with 

untemplated poly(A) sequence (a stretch of poly(A) sequence not observed in the reference 

genome) at their 3’ ends as tail type events. For a transcript that is sufficiently abundant, this 

would be the expected default event type.
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2.2. Bridge

Expressed alternative long and short 3’ UTRs present alternative paths for contig extensions 

during de novo assembly. In such cases, if the graph indicates a branch that does not extend 

to a poly(A) sequence, the alternative branch with the poly(A) sequence is removed by an 

assembly quality assurance stage within ABySS, in an operation called trimming [24]. 

While this is a desirable behaviour in general, it creates a particular challenge in assembling 

contigs with poly(A) tails. However, the information removed during this step can be 

recovered later by aligning reads to contigs, then assessing the sequences of partial read 

alignments at the contig edges. When an overhanging read alignment represents an 

untemplated poly(A) sequence, we infer the presence of a cleavage site. We call such cases 

bridge type evidence.

2.3. Link

The sequence complexity of 3’ UTRs may drop substantially near their 3’ ends, where the 

region is dominated by AU-rich sequence [25], and this may affect contig extensions due to 

loss of specificity of read-to-read overlaps. When this happens near a cleavage site, the 

corresponding contig may fail to present a tail type evidence, and may terminate extension 

before a read with a poly(A) tail can bridge it to beyond the cleavage site. However, the 3’ 

UTR end may be within a typical sequencing fragment length, and if we identify read pairs 

linking the end of a contig to an untemplated poly(A) sequence, we classify the 

corresponding contig as having link type evidence.

Some cleavage sites may have supporting evidence from a combination of these evidence 

types, and even multiple observations from the same evidence type. The latter is partly due 

to the fuzzy definition of a cleavage site, where the end of a 3’ UTR may fluctuate by about 

±30 nucleotides (nt) between mRNA molecules of the same transcript species [26]. 

Accordingly, we cluster cleavage sites predicted from multiple contigs if they fall within a 

certain window, label them as being representatives of the same cleavage site, and tally the 

counts presented by each evidence type in a given cluster to score the strength of our 

prediction.

We note that read-to-contig alignments performed in the pipeline have unique requirements. 

Although we demonstrate our results using BWA [27] – an established general-purpose 

sequence alignment tool – we recognize that detecting cleavage sites is most effective when 

reads are aligned to contigs with a tool that is capable of handling alignments with 

overhangs, that is, when a read aligns to the end of a contig with its sequence extending 

beyond the boundary(ies) of the contig. Because many high-throughput general-purpose 

sequence alignment tools are developed by the explicit or implicit assumption of a reference 

sequence that is composed of a small number of long contigs (i.e. chromosomes), they may 

suffer from accuracy and performance issues when the reference sequence is in many short 

pieces (as in an assembled transcriptome). Alignments near contig or scaffold edges are 

particularly challenging for general-purpose alignment software. We call this the edge effect, 

and address it by an FM-index based aligner within the ABySS genome assembly package 

[24], as an alternative. This aligner weighs edge alignments that are shorter but with fewer 
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mismatches more favourably than longer alignments with more mismatches to provide local 

alignments.

KLEAT compares putative cleavage sites to annotation and EST databases to characterize 

and annotate them with other supporting observations, if any. Again using the annotation 

and EST databases, KLEAT groups, classifies and filters the putative events.

For method validation, we used the RNA-PET protocol [10] as our gold standard. We 

quantified the concordance between the “putative” (KLEAT) and “real” (RNA-PET) 

cleavage sites (CS) using the following definitions:

false positive | A called CS not within a certain window of an RNA-PET cluster

true positive | An RNA-PET cluster with at least one called CS in a window

false negative | An RNA-PET cluster without a called CS in a window

true negative | Cannot be defined

One way to gauge the performance of a detection tool is to study its receiver-operator-

characteristic (ROC) curve, where a stringency parameter is varied to plot the true positive 

rate, TPR (the ratio of the true positive count to the total number of events) versus the false 

positive rate, FPR (the ratio of the false positive count to the total number of negatives). 

Note that, because true negative is undefined in this context, FPR cannot be defined either. 

A common practice in such cases is to use the false discovery rate, FDR (defined as the ratio 

of the false positive count to the total number of calls) as surrogate for the FPR.

3. Results and Discussion

For validating our method, we employed experimental data collected by the ENCODE 

project [18]. The ENCODE consortium characterized transcript ends using the RNA-PET 

protocol [10], and generated RNA-seq data for some of the same samples. We considered 

three cell lines (H1-hESC, A549 and MCF-7) for which RNA-PET and RNA-seq data were 

available (Table 1).

For RNA-PET coverage data, we applied an expression level threshold (default, 3 reads), 

and clustered observations that occurred within a certain distance (default, 100 nt) of each 

other. We used the resulting clusters as ‘true’ events.

We used Trans-ABySS v1.4.7 [20, 21] to assemble the RNA-seq reads; aligned the 

assembled transcripts to the human genome reference hg19 using GMAP 2012-12-20 [28]; 

and aligned reads back to the assembled contigs using BWA-SW v0.6.2-r126 [27]. We 

processed the results to identify the tail, bridge and link evidence, and clustered the CS calls. 

We also used Trinity Release 2013-02-25 [22] for RNA-seq assembly, and used the same 

pipeline to identify CS calls. Table 2 summarizes the performance of KLEAT on the 

assembled transcriptomes (with Trans-ABySS and Trinity contigs) for the three cell lines.
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Using contigs from either transcriptome assembly tool as input, we observed the number of 

cleavage site calls to be the lowest for H1-hESC, and highest for MCF-7. The number of 

APA sites per gene also follows this pattern, ranging from roughly 2.5 to 3.0 APA isoforms, 

on average. Interestingly, while the fraction of true positive cleavage site calls range from 75 

to 93%, the average number of APA isoforms per gene is insensitive to filtering for true 

positives.

We compared the use of contigs from de novo transcriptome assembly to detect cleavage 

sites, with the use of transcripts reconstructed by aligning the reads to a reference genome. 

We ran the Cufflinks pipeline v2.1.1 [29] on the same dataset, and used the reconstructed 3’ 

UTR ends of predicted transcripts to measure its accuracy in detecting poly(A) tails. 

Cufflinks takes RNA-seq read alignments to a reference genome as input, and builds those 

alignments into a parsimonious set of transcripts with or without annotation support. We ran 

the pipeline with annotation support, allowing for transcript discovery.

Figure 3 depicts the ROC curves for these two paradigms for the three cell lines used. 

Curves closer to the top-left corner indicate better performance. These results suggest that to 

identify 3’ UTR cleavage sites an assembly-first approach (using either Trans-ABySS or 

Trinity) may be preferred over the alignment-first approach implemented in the Cufflinks 

pipeline. We note that the Trans-ABySS and Trinity results are similar, while the Trans-

ABySS assemblies perform marginally yet consistently better. This may be due to the 

difference between the total reconstruction figures of the two tools (Table 2).

Although the magnitudes of the reported TPR figures are low (<10%), we note that this 

reflects our simple but relaxed definition of the ground truth, with no distinction between 3’ 

and 5’ UTR ends, and applying none of the filtering suggested in the ENCODE report. 

These choices would inflate the denominator of TPR, and lead to underestimates in the 

reported figures. However, neither of these would change the relative performance of the 

analysis tools we present.

We also compared the concordance between these three sets of results (Figure 4). Our 

analysis indicates that Trans-ABySS and Trinity contigs are largely concordant in their 

reconstruction of cleavage sites, identifying roughly 9,000 to 13,000 and 7,000 to 11,000 

true positive calls, respectively (for an RNA-PET threshold of 3 reads) and agreeing on 

about 80 to 90% of the calls. In contrast, Cufflinks would identify 7,000 to 10,000 true 

positive calls with the same RNA-PET threshold, agreeing with the assembly-first results 

only about 25 to 30% of the time, meaning that it identifies a smaller yet largely distinct set 

of events.

We note that in this dataset the Cufflinks pipeline is more sensitive for detecting weakly 

expressed transcripts. This observation is supported by the performance metrics of the three 

tools when we increased the RNA-PET threshold from three to 10 reads. At the increased 

threshold, KLEAT with Trans-ABySS and Trinity loses about 6 to 10% of its true positive 

calls, while Cufflinks loses about 10 to 33% of such calls.

Further supporting this observation, a coverage histogram of the expressed genes in the 

A549 cell line, as detected by Cufflinks, is depicted in Figure 5. Here the two x-axes 
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represent expression levels in units of average coverage and FPKM on logarithmic scales. 

Cufflinks reports a major peak for transcripts represented at 1- to 10-fold average coverage, 

also reconstructing a large number of transcripts with less than 1-fold coverage, some of 

which would report cleavage sites also observed by RNA-PET data. In contrast, de novo 

assembly methods would typically reconstruct transcripts over 10-fold coverage. This 

apparent difference in target expression levels for transcript reconstruction explains the lack 

of concordance between KLEAT (in conjunction with Trans-ABySS or Trinity) and 

Cufflinks, as reported in Figures 3 and 4.

4. Conclusions

In this study, we introduced KLEAT as an analysis tool for detecting 3’ UTR cleavage sites 

using de novo assembled RNA-seq reads. We validated our method using data from the 

ENCODE project [30]. We measured the accuracy of KLEAT using two transcriptome 

assembly tools (Trans-ABySS [20, 21] and Trinity [22]), and compared its performance to 

results from an alignment-based analysis tool (Cufflinks [29], the method of choice in the 

ENCODE study).

Our results demonstrate that one can reliably detect around 10,000 poly(A) tails per sample 

using RNA-seq data, at a sequencing depth of 70 million read pairs. The depth of 

sequencing data will certainly affect the number of transcripts observed, hence the number 

of poly(A) tails detected. Therefore, although we suggest that detecting on the order of 

10,000 features will already provide important biological insights for highly expressed 

transcripts, if one wants to observe more features, one approach might be to sequence a 

library to greater depth (albeit with diminishing returns). With sequencing throughput on the 

Illumina platform pushing beyond 250 million read pairs per lane, experimental design (such 

as pooling multiple samples per lane) reflects a balance between cost and value, and that 

balance is determined by the particular experimental goals and the budget of a study.

We also note that overlapping sense/anti-sense gene annotations can potentially confuse the 

poly(A) tail calls. Using a strand-specific RNA-seq protocol should help mitigate this issue.

Surveying 15 human cell lines, the ENCODE study reports a total of 128,824 poly(A) sites 

mapping within annotated Gencode transcripts [30]. This observation puts the average 

number of polydenylation sites in this dataset to 2.5 per gene. Interestingly, before this 

landmark publication, the APA multiplicity was estimated to be around 1.1. Our analysis of 

RNA-seq data from three ENCODE cell lines (APA per gene statistics in Table 2) are in 

agreement with this ENCODE estimate.

There is a growing appreciation of 3’ UTRs, their molecular assembly, mechanistic roles 

and variants [9–15]. Many of these studies developed novel wet lab techniques to build 

specialized sequencing libraries, and applied them to interrogate a particular biological 

condition.

KLEAT offers an alternative analysis method to characterize 3’ UTRs and APA from RNA-

seq data at a nucleotide scale resolution. We anticipate the tool to be an enabling technology 

for many applications, including large-scale disease studies and clinical genomics, and to 
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provide added value to the large volume of sequencing data already generated using the data 

type. KLEAT is available at www.bcgsc.ca/platform/bioinfo/software, and is offered free for 

academic use.

Acknowledgments

The authors thank, Canadian Institutes of Health Research, Genome Canada, Genome British Columbia and British 
Columbia Cancer Foundation for their generous support. The work is also partially funded by the National 
Institutes of Health under Award Number R01HG007182. The content of this work is solely the responsibility of 
the authors and does not necessarily represent the official views of any of our funding agencies. We also thank the 
ENCODE project for enabling the validation work presented by making their datasets publicly available.

References

1. Keene JD. RNA regulons: coordination of post-transcriptional events. Nature reviews. Genetics. 
2007 Jul; 8(7):533–543.

2. To KK, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3' untranslated region 
of its mRNA through modulation of transcript stability and protein translation by a putative 
microRNA in the S1 colon cancer cell line. Molecular and cellular biology. 2008 Sep; 28(17):5147–
5161. [PubMed: 18573883] 

3. Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3' untranslated regions of mRNAs 
by alternative polyadenylation during mouse embryonic development. Proceedings of the National 
Academy of Sciences of the United States of America. 2009 Apr 28; 106(17):7028–7033. [PubMed: 
19372383] 

4. Muller S, Rycak L, Afonso-Grunz F, Winter P, Zawada AM, Damrath E, Scheider J, Schmah J, 
Koch I, Kahl G, Rotter B. APADB: a database for alternative polyadenylation and microRNA 
regulation events. Database (Oxford). 2014; 2014

5. Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and 
mouse genes. Nucleic Acids Res. 2005; 33(1):201–212. [PubMed: 15647503] 

6. Singh P, Alley TL, Wright SM, Kamdar S, Schott W, Wilpan RY, Mills KD, Graber JH. Global 
changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer 
subtypes. Cancer Res. 2009 Dec; 69(24):9422–9430. [PubMed: 19934316] 

7. Hamaya Y, Kuriyama S, Takai T, Yoshida K, Yamada T, Sugimoto M, Osawa S, Sugimoto K, 
Miyajima H, Kanaoka S. A distinct expression pattern of the long 3'-untranslated region dicer 
mRNA and its implications for posttranscriptional regulation in colorectal cancer. Clin Transl 
Gastroenterol. 2012; 3:e17. [PubMed: 23238289] 

8. Devany E, Zhang X, Park JY, Tian B, Kleiman FE. Positive and negative feedback loops in the p53 
and mRNA 3' processing pathways. Proc Natl Acad Sci U S A. 2013 Feb; 110(9):3351–3356. 
[PubMed: 23401530] 

9. Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, Xu A. Differential genome-wide profiling of tandem 3' 
UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 
2011 May; 21(5):741–747. [PubMed: 21474764] 

10. Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan A, Wong 
CH, Liu ET, Ruan Y. Gene identification signature (GIS) analysis for transcriptome 
characterization and genome annotation. Nat Methods. 2005 Feb; 2(2):105–111. [PubMed: 
15782207] 

11. Ruan Y, Ooi HS, Choo SW, Chiu KP, Zhao XD, Srinivasan KG, Yao F, Choo CY, Liu J, 
Ariyaratne P, Bin WG, Kuznetsov VA, Shahab A, Sung WK, Bourque G, Palanisamy N, Wei CL. 
Fusion transcripts and transcribed retrotransposed loci discovered through comprehensive 
transcriptome analysis using Paired-End diTags (PETs). Genome Res. 2007 Jun; 17(6):828–838. 
[PubMed: 17568001] 

12. Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y. Complex and dynamic landscape of 
RNA polyadenylation revealed by PAS-Seq. RNA. 2011 Apr; 17(4):761–772. [PubMed: 
21343387] 

Birol et al. Page 7

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bcgsc.ca/platform/bioinfo/software


13. Ruan X, Ruan Y. Genome wide full-length transcript analysis using 5' and 3' paired-end-tag next 
generation sequencing (RNA-PET). Methods Mol Biol. 2012; 809:535–562. [PubMed: 22113299] 

14. Hafez D, Ni T, Mukherjee S, Zhu J, Ohler U. Genome-wide identification and predictive modeling 
of tissue-specific alternative polyadenylation. Bioinformatics. 2013 Jul; 29(13):i108–i116. 
[PubMed: 23812974] 

15. Minasaki R, Rudel D, Eckmann CR. Increased sensitivity and accuracy of a single-stranded DNA 
splint-mediated ligation assay (sPAT) reveals poly(A) tail length dynamics of developmentally 
regulated mRNAs. RNA Biol. 2014 Feb.11(2)

16. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian 
transcriptomes by RNA-Seq. Nat Methods. 2008 Jul; 5(7):621–628. [PubMed: 18516045] 

17. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. 
Science. 2004 Oct; 306(5696):636–640. [PubMed: 15499007] 

18. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, 
Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Roder M, 
Kokocinski F, Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P, Bell K, Bell 
I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T, Drenkow J, Dumais E, Dumais J, 
Duttagupta R, Falconnet E, Fastuca M, Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, 
Gonzalez D, Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P, King B, 
Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P, Risk B, Robyr D, Sammeth M, 
Schaffer L, See LH, Shahab A, Skancke J, Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters 
N, Wang H, Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T, 
Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B, Carninci P, Guigo R, 
Gingeras TR. Landscape of transcription in human cells. Nature. 2012 Sep 6; 489(7414):101–108. 
[PubMed: 22955620] 

19. Wang W, Wei Z, Li H. A change-point model for identifying 3'UTR switching by next-generation 
RNA sequencing. Bioinformatics. 2014 Aug 1; 30(15):2162–2170. [PubMed: 24728858] 

20. Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD, Zhao Y, Hirst M, 
Schein JE, Horsman DE, Connors JM, Gascoyne RD, Marra MA, Jones SJM. De novo 
transcriptome assembly with ABySS. Bioinformatics. 2009 Nov 1; 25(21):2872–2877. [PubMed: 
19528083] 

21. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K, Lee S, Okada HM, 
Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T, Butterfield YS, Newsome R, Chan SK, 
She R, Varhol R, Kamoh, A.-L. Prabhu B, Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones 
SJM, Hoodless PA, Birol I. De novo assembly and analysis of RNA-seq data. Nature Methods. 
2010 Nov.7(11) pp. 909-U62, 2010. 

22. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, 
Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, 
Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome 
assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011 Jul; 29(7):644–
652. [PubMed: 21572440] 

23. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across 
the dynamic range of expression levels. Bioinformatics. 2012 Apr 15; 28(8):1086–1092. [PubMed: 
22368243] 

24. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: A parallel assembler 
for short read sequence data. Genome Research. 2009 Jun; 19(6):1117–1123. [PubMed: 
19251739] 

25. Zhang T, Kruys V, Huez G, Gueydan C. AU-rich element-mediated translational control: 
complexity and multiple activities of trans-activating factors. Biochem Soc Trans. 2002 Nov; 
30(Pt 6):952–958. [PubMed: 12440953] 

26. Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D. Patterns of variant polyadenylation 
signal usage in human genes. Genome Res. 2000 Jul; 10(7):1001–1010. [PubMed: 10899149] 

27. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics. 2009 Jul 15; 25(14):1754–1760. [PubMed: 19451168] 

28. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST 
sequences. Bioinformatics. 2005 May 1; 21(9):1859–1875. [PubMed: 15728110] 

Birol et al. Page 8

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



29. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, 
Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts 
and isoform switching during cell differentiation. Nat Biotechnol. 2010 May; 28(5):511–515. 
[PubMed: 20436464] 

30. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, Aken BL, Barrell D, 
Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V, Hunt T, Kay M, Mukherjee G, Rajan J, 
Despacio-Reyes G, Saunders G, Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, 
Chrast J, Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I, van Baren J, 
Brent M, Haussler D, Kellis M, Valencia A, Reymond A, Gerstein M, Guigó R, Hubbard TJ. 
GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 
2012 Sep; 22(9):1760–1774. [PubMed: 22955987] 

Birol et al. Page 9

Pac Symp Biocomput. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Flowchart of the KLEAT pipeline. Two shades of yellow flowchart elements designate raw 

and external input to the pipeline; blue and grey indicate existing internal and external tools, 

respectively; green denotes new tools developed specifically for KLEAT.
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Fig. 2. 
Three types of support for detecting cleavage sites using RNA-seq data. The gene annotation 

(grey) indicates a single 3’ UTR isoform, while the sample expresses two APA (red) 

variants. RNA-seq data capture the presence of these two alternatives with reads that end in 

poly(A) sequence (red). Contigs with supporting evidence have either a poly(A) “tail”, an 

overhanging read that is “bridge” to a poly(A) sequence, or a read that has a “link” to a pair 

with poly(A) sequence.
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Fig. 1. 
Performance of KLEAT on three ENCODE cell lines. Curves represent the true positive rate 

(TPR) as a function of the false discovery rate (FDR), for KLEAT with Trans-ABySS (blue) 

and KLEAT with Trinity (green) and Cufflinks (red). RNA-PET evidence is considered as 

the gold standard at two support cutoffs: left column: 3 or more, right column: 10 or more 

RNA-PET reads.
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Fig. 4. 
Concordance between three methods. Blue, green and red sets indicate events detected by 

KLEAT/Trans-ABySS, KLEAT/Trinity and Cufflinks, respectively, that are supported by at 

least 3 or 10 RNA-PET reads, as indicated.
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Fig. 5. 
Gene level coverage histogram for the A549 cell line RNA-seq data, as reported by 

Cufflinks. The histogram is presented with two logarithmic scales on the x-axis, average 

coverage (Cov) and FPKM, to show the correspondence between the two units for the 

sequencing depth of the experimental data.
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Table 1

Three ENCODE cell lines used for validation. All libraries were prepared using the long polyA+ RNA 

fraction protocol. RNA samples represent the whole cell transcriptome. RNA-PET reads were sequenced at 

2×36 nt. H1-hESC cell line RNA-seq reads were sequenced at 2×78 nt, and A549 and MCF-7 cell lines at 

2×76 nt. All data were generated and made publicly available by the ENCODE project [18].

Cell Line # RNA-PET Read Pairs (million) # RNA-seq Read Pairs (million)

H1-hESC 50.2 78.3

A549 181.7 70.5

MCF-7 174.0 87.4
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